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REES MATRIX SEMIGROUPS
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In this paper we provide a new, abstract characterisation of classical Rees matrix semigroups over monoids
with zero. The corresponding abstract class of semigroups is obtained by abstracting a number of algebraic
properties from completely O-simple semigroups: in particular, the relationship between arbitrary elements and
idempotents.
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Introduction

The aim of this paper is to prove a new, abstract characterisation of Rees matrix
semigroups over monoids having regular sandwich matrices.

The motivation for wanting such characterisations is not hard to provide: from their
introduction in the fundamental paper of Rees [15], building on the pioneering work of
Suschkevitch [17], Rees matrix semigroups have established themselves as one of the
most useful semigroup theoretic constructions—as a glance at Meakin’s survey article
will verify [14]. Their usefulness lies in providing a technique for constructing new
classes of semigroups from known or simpler classes. The Rees Theorem itself constructs
completely O-simple semigroups via the Rees construction from groups (see Howie [6,
Theorem III 2.5]).

In looking for abstract characterisations of Rees matrix semigroups, it is natural to
take some defining characteristic of completely O-simple semigroups and then by
generalisation show how it describes abstractly a class of Rees matrix semigroups. The
two properties (i) and (ii) below were the starting points for abstract characterisations of
Rees matrix semigroups by Steinfeld [16] and Lallement and Petrich [7] respectively:

(i) (Proposition 34 [16].) A semigroup S with zero is completely
O-simple iff S has the form S=|J,.,Se; (el=e,) where the Se,; are
pairwise left S-similar 0-minimal left ideals of S.

(ii) (Theorem 4.5 [7].) A semigroup S with zero is completely O-simple
iff S is regular, (0) is “matriciel” in S and the non-zero classes of the
finest “0-matricielle” congruence are groups.
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Steinfeld generalised (i) to give an abstract characterisation of the class of Rees matrix
semigroups over monoids with zero having locally regular sandwich matrices. Lallement
and Petrich generalising (ii) characterised Rees matrix semigroups over monoids with
zero adjoined, the sandwich matrix being regular over the group of units of the monoid.

There is, however, a third well-known characterisation:

(iii) (Howie [6, Theorem III 3.5]) A semigroup S with zero is
completely O-simple iff S is a O-bisimple, regular semigroup in which
every non-zero idempotent is primitive.

Our aim is to characterise Rees matrix semigroups by generalising (iii). We achieve
this by generalising, in the first instance, the class of regular semigroups to a class we
have dubbed “U-semiabundant”. The origin of this class of semigroups lies in the thesis
of El-Qallali [4] and a paper of de Barros [2]: the general theory of such semigroups is
pursued in detail in [11] and [12].

The paper is divided into three sections. In Section 1, we show that a Rees matrix
semigroup has a number of important properties with respect to a distinguished subset
of its idempotents. Sections 2 and 3 are dedicated to showing that these properties
characterise Rees matrix semigroups; Section 2 introduces the class of U-semiabundant
semigroups and in particular the primitive U-semiabundant semigroups and we obtain a
number of structural results for this class of semigroups generalising work by Fountain
[5]; in Section 3 we specialise down to a class of primitive U-semiabundant semigroups
which we call “Rees semigroups™—these, we show, may be coordinatised by Rees matrix
semigroups, obtaining the converse results to those of Section 1. Finally we mention
that the results of this paper may be generalised to incorporate those of Steinfeld
[16]—where Rees matrix semigroups with locally regular sandwich matrices are
considered.

In a subsequent paper [10] we will extend the work of Fountain [5] to obtain a
description of a class of blocked Rees matrix semigroups.

1. Rees matrix semigroups

Let S be a monoid with identity 1 and zero element 0, having group of units G(S). Let
A and I be non-empty sets and let P be a A x I-matrix over S with entries p;; where
(4,9) e Ax 1. The Rees matrix semigroup M= MO(S;I, A; P) is the set of triples I xS x A
with a zero element 0 adjoined and where we identify all the elements of the form (i, 0, 1)
with 0, under a multiplication given by

Gx, )0, y, W)= (i, xp3; ), ﬂ) if p;;#0
0 otherwise.

The matrix P is called regular if each row and each column contains an element from
G(S). From now on all Rees matrix semigroups will be assumed to be over a monoid
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and to have regular sandwich matrices. If ae G(S) we will write a~! for its group
inverse. We will denote the set of generalised inverses of the element a by V(a), and we
will write a'e V(a). The set of all idempotents of a Rees matrix semigroup will be
denoted by E or E(M).

Define the set of projections of M to be the following,

P(M)={(i,x, 2): p;;€ G(S) and x=py;'} U {0}.

Lemma 1.1. The projections are idempotents and every element of M has a right and
left identity in P(M).

Proof. If (i,p;',2)eP(M) then (i,p;;',A)*=(,pu'purn’, =0 pn',4). Let
(i,x,A)e M. Since P is regular there exists an invertible element p,;,, for some i(2)el
and similarly an invertible p,;, for some A(}eA. But then (i,x, 1) =(,x,4)(i(4),
pi._i(l).)’ A=, pl-(il)l's A0) (i, x, 2).

Lemma 1.2. If (i, p;;*, ) € P(M) then,

@ GG pi's D=0, x, ) iff A=p.
(i) Gpu'sA0XW=0,xp iff i=].

Proof. We will prove case (i), case (ii) follows similarly. If (j,x, u)(i,pz', 4)=(j, x, w)
then (j, xp,;p5:", 2) =(j, x, ) which implies 2= p.

Conversely, if A=p then since p,p;'=1 we have xp,p;'=x so that
(j’ X, #) (i’ p}._il, '1) =(j’ X, iu)

It is important to note that in general P(M) is a proper subset of E(S). For the
following result we use the (non-standard) notation

R(x)={aeS:axa=a}.
Lemma 1.3. P(M)=E(M) iff U{R(p,): (4,))e A x )= G(S)°.

Proof. Note that (i,x,2)e E(M) iff x=0 or x=xp;;x that is xe R(p;;). Let P(M)=
E(M). Let x#0 and xe U {R(py): (4, ))e AxI}. Then x=xp,;x for some (4,i)e A x I. But
then (i, x, 1) € E(M) so that (i, x, 2) € P(M) by assumption, giving x=pz;'. Thus xe G(S).

Conversely, let U {R(p;}:(Li)eAx)=G(S)® and let (i,x,A)e E(M)\{0}. Then
x€R(p;;) so that x e G(S) but then x=xp,;x implies xp,;=p,;x=1 giving x=py;' whence
(i, x, 2) € P(M).

A unipotent monoid is a monoid with a unique idempotent. It is easy to see that in
such monoids regular elements are invertible. The following is now immediate:

Corollary 1.4. If S is a unipotent monoid then P(M)= E(M).

B
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The previous corollary holds, in particular, for groups and cancellative monoids.
Define two relations L and R on M as follows:

(i, x, )L(j, y, ) iff (for all e€ P)((i,x, De=(i,x, ) iff (j, y, we=(j, y, u))
(i.x, HR(j, y, p) iff (for all ec P) (e(t:, x, A)=(i, x, 2) iff e(j, y, ) =(j, y, n))-

It is clear th~at L and R are equi~valence relations on M. In addition, define the
equivalences H=L AR and D=L v R.
Proposition 1.5. If (i,x, ), (j, y, Yy € M then:

(i) G,x, AL, v, iff (i,x,)=(, y, ) =0 or both elements are non-zero and A= p.
(i) (G, x, ARG, y,p) iff G,x,2)=(j,y, ) =0 or both elements are non-zero and i=j.
(iiiy If (a,b)eL and xe M and ax,bx #0 then (ax,bx)e L.
(iv) If (a,b)e R and xe M and xa,xb+0 then (xa,xb)e R.

(v) Each L-class and each R-class contains at least one projection.

Proof. (i) By Lemma 1.2 it is clear that if (i, x, A), (j, y, #) #0 then
(i,%, LG, y, 1) iff A=p.
Conversely, if (i,x,)=0 then (i,x, A)=(i,0, u). Since 0*=0 and 0€ P(M) and given that
(i,x,)L(j, y, ) we must have that (j, y, )0=(j, y, ). But this implies (j, y, u)=0. The
proof of (ii) is similar. .
(iii) Suppose that (i, x, 4), (j, y, A)#0 and (i,x, A)L(j, y, 4). If (k,z, p) € M then,
(ia X, ’1) (k’ 2, #) = (’a XP k%, #)
(j’ Vs )') (k’ z, ﬂ) =(js YP a2, ﬂ)
If xpuz, ypuz#0 then (i, xpuz, 1) L(j, ypuz, #) by (i) above.
The proof of (iv) is similar.
-(v) By the regularity of P (for each leA) (there exists i(A)el) such that

(i(A), Pritzy» A) € P(M) thus (i, x, 2) L(i(2), pziiys A)-
We may similarly show that each R-class contains a projection.

Corollary 1.6. If S is such that for all x,yeS, xy=0 implies x=0 or y=0 then
M =M?O(S; I, A; P) has the following property:

for a,b#0, (a,b)eL and xe M then ax=0 iff bx=0.

Thus L is a right congruence. Similarly R is a left congruence.
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Proof. We consider the calculation carried out in Proposition 1.5(ii). If (i, xp,,z, u)=
0 then xp;z=0 in S. But under our assumption on § this occurs iff x=0 or p,, =0 or
z=0. By assumption x#0 so that either p; =0 or z=0 but in each case this implies
(j, ypaz, 1) =0. That L is a right congruence now follows from Proposition 1.5(iii).

We will now turn to look more closely at the properties of the set of projections.
If S is any semigroup define preorders o and ' on E(S) by

ew'f iff fe=e
eaf iff ef=e.

If P<E(S) we will say that P is closed under basic products if e,feP and
(e,f)e(w U ) u(w uw)! implies ef € P. Note that to prove that a subset P is closed
under basic products it is enough to show that for e,fe P

(e,f) e w" implies ef € P and (e,f) e o' implies fee P.

Proposition 1.7.

(i) The set P(M)\{0} is totally unordered under w.
(ii) The set P(M) is closed under basic products.
(ili) The elements of P(M)\{0} are all D-related.

Proof. (i) Let (i,pi',4), (j,ps',weP(MN\{0} with (ipy', Yw(, p.;',n). Then
(J»Pn;'s 1) is a left and right identity for (i, pz;', 4) so that by Lemma 1.2, i=j, and A=y,
giving p3'=p.'.

(ii) ¥f (j,py;', wo'(i,pz',2) then (i,py;', ) is a left identity for (j,p,;', ) so that by
Lemma 1.2 we have i=j. Thus, (i,p;;",0) (i, p5", A=, pa' pupii’s V=, pii*, A) € P(M).
A similar result holds for o'.

(iii) Let (i,p5",2),(,pg', w)e PAM\{0}. Consider the elements (i,py',u) and
(>pa;', 7). Tt is easy to check that (i,py;', e V((,ps' A). Also, (i,p3', W, pets )=
(,p5", 4 and (,p;', A pn' W=, py', ). Now apply Proposition 11 3.6 of Howie
(6].

The next result shows that local submonoids with respect to projections are of
interest.

Lemma 1.8. Ifee P(M), e#0 then eMe~S.

Proof. Let e=(i,p5;',4) and define a map 6:S—eMe by &a)=(i,aps;', A). It is easy to
check that this is an isomorphism.
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Lemma 1.9. The semigroup M=MOS; 1,A; P) has the property that L is a right
congruence and R is a left congruence iff for all x,ye S, xy=0 implies x=0 or y=0.

Proof. («) By Corollary 1.6.
(—) Let xy=0 and p;;e G(S) for some (4,i)e A x I. Then using the notation of Lemma
1.8,

0(x)=(i,xp3;*,2) and 6(y)=(,ypz", %)

and S~ (l plzl’}')M(l pAI ’)‘)

Now x=0 iff xp;'=0 and y=0 iff ypj —0 Either (i,xpg!,2)=0=(i,yp;;',4) in
which case x=y=0 or at least one is non-zero, say (i,xpy;',A)#0. Then
(i, xp5, A L(i,p5;*, ). But by assumption L is a right congruence so that

(xpit, DG ypa VLG pit, A G, ypits A)

thus (i, xypu ,/1)L(1 ypi',A). But (i,xypy',A)=0 so that OL(i,ypy;',2). This implies
ypi:' =0 giving y=0.

2. U-semiabundant semigroups

We will now begin the process of showing how the properties we derived for M in the
last section may be used to characterise M. Let S be a semigroup with zero and let
U< Ec S with Oe U. Define relations L and R on S depending on U as follows:

(a,b) e L iff (for all e U)(ae= aiff be=b)
(a,b)e R iff (for all ee U)(ea= aiff eb=b).

It is clear that L and R are equivalences on S. We will see later that these generalise the
relations defined in Section 1. It is straightforward to show that L< L and R< R, where
L and R are the usual Green’s relations.

The semigroup S is called U-semiabundant if each L-class and each R-class contains
an element from U. The L (resp. R) equivalence class containing the element a will be
denoted by L, (respectively R,). It will be convenient on occasion to denote an element
of U(L,) by a* and an element of U(R,) by at but it is important to note that these
elements are not generally unique. Define in addition the equivalences:

A=LARand D=L Vv R

A U-semiabundant semigroup is called primitive if o restricts to equality on U\{0}.
We will call a semigroup S a Rees semigroup if it satisfies the following conditions:

(i) S is a primitive U-semiabundant semigroup.
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(ii) The set U is closed under basic products.
(i) U\{0} is contained in a single D-class of S.

We will show that Rees semigroups are precisely the abstract counterparts of Rees
matrix semigroups.

Note. In this section we will often prove results which fall naturally into two
parts—a “left” and a “right”. For the most part we will only state and prove one of the
versions, the statement and proof of the other will always follow by interchanging left
and right.

We now turn to look at the relationship between the relations L and R and certain
ideals of S. For the time being S will be a semigroup with a fixed subset U of E(S). A
right ideal I of S is called a U-admissible right ideal if for each ael we have R,cl.
Similarly we say that I is a U-admissible left ideal if for each ae I we have L, 1.

In the following lemmas we generalise some results from the theory of abundant
semigroups [5].

Lemma 2.1. The intersection of any family of U-admissible right ideals {I :aeJ} is
either empty or a U-admissible right ideal. '

Proof. Straightforward.

If aeS we define the principal U-admissible right ideal containing a, denoted by R(a),
to be the intersection of all U-admissible right ideals containing a. Likewise define I(a)
to be the intersection of all U-admissible left ideals containing a. A useful description of
R(a) and I(a) may be obtained as follows:

Lemma 2.2. (i) be R(a) iff there exist elements a,...,a,€S" and elements x,,...,x,€S
such that a=a, and b=a, and (a;,a;,_,x;)eR for i=1,...,n.

(ii) beL(a) iff there exist elements a,,...,a,€S' and elements x,,...,x,€S such that
a=ay and b=a, and (a;, x;a;_,)eL fori=1,...,n.

Proof. We prove (i) the proof of (ii) is similar. Put I ={beS: b satisfies the conditions
of the lemma}. Now, bel implies there exist dq,...,a,€S and x,,...,x,€S" such that
a=ay, b=a, and (a;,a;_,x;)€R for i=1,...,n. If a;,_, € R(a) then a;_,x;e R(a) since R(a)
is a right ideal. But then a;e R(a) since R(a) is a U-admissible ideal. Since a,=ae R(a)
we see that a,e R(a) for i=0,...,n, in particular be R(a) and so 1< R(a). If bel then
R,<1, for if xRb then (x,b1)eR. Also, if s€S then bsel since (bs,bs)eR. Thus I is a
U-admissible right ideal. Since ae I we thus have R(a)=1.

Corollary 2.3. (i) aLb iff L(a)=I(b).
(ii) aRb iff R(a)=R(b).
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Proof. We will prove case (i). If (a,b)eL it is clear that I(a)=I(b). Conversely,
suppose that I(a)=1I(b). Then beI(a) so that we may find elements, a,,...,a,€S and
Xy,...,X,€8" such that, (a;,x;a;_,)€L for i=1 to n where a=a, and b=a,. Let ecU
with ae=q. Then (x,a)e=x,a. But x,ala, gives a,e=a,. Continuing in this way we
obtain a,e=a, that is be=>b. We may similarly show that be=>»b implies ae=a, so that
aLb.

Lemma 24. Let U< E(S). Then if ecU the set Se is a U-admissible left ideal and eS
is a U-admissible right ideal. '

Proof. It is clear that Se is a left ideal containing e. Let xe Se and let xLy. We have
x =se for some se S so that xe=x. But then ye=y since xLy, so that y=yee Se.

Corollary 2.5. The semigroup S is U-semiabundant iff for each aeS there exist
elements e, f € U(S) such that,

L(a)=Se and R(a)=fS.

Proof. Suppose that S is U-semiabundant. Then aLe for some element ec U. Since
ae=a we have ae Se. But I(a) is a left ideal and ee I{a) so that Se< I(a). But Se is a U-
admissible left ideal containing the element a whence Se = I(a).

Conversely, suppose that for all aeS there exists e,fe U such that L(a)=Se and
R(a)=fS. Now eeSe and Se is a U-admissible left ideal so that I(e)<Se. But from
Sec I(e) we have L(e)=Se. This means [(a)=L(e) whence aLe by Corollary 2.3.

Corollary 2.6. Let acS. Then for ec U we have (a,e)e L iff acSe and Se is contained
in every left ideal containing -a, which is generated by an element of U.

Proof. Let (a,¢)e L. Then ae=a giving ae Se. Now let ac Sf where fe U. Then af =a
so that ef =e whence Se< Sf.

Conversely, let ae Se where ee U and for each f e U with aeSf we have Sec Sf. Then
L(a) = Se since Se is a U-admissible left ideal. Since S is U-semiabundant, by Corollary
2.5, L(a)=Sf for some fe U. But then Se< Sf = L(a) so that Se=Sf giving (a,e)e L.

From now on S will be a primitive U-semiabundant semigroup in which U is closed
under basic products.

Lemma 2.7. If e,f €U and eS<f'S then either e=0 or eS=f8.

Proof. From eScfS we have eefS so that fe=e giving ew’f. By the closure of U
under basic products ef € U. But ef wf, so that by U-primitivity either ef =0 or ef =f. If
ef =0 then e=e?> =fefe=0. If ¢f =/ then eRf so that eS=fS.

Corollary 2.8 If e#0 where ec U then aRe iff a#0 and aeeS.

Proof. Suppose that aRe then ea=a so that aceS. Conversely, suppose that aeeS.
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Now aRf for some fe U so that aefS and fS is contained in any right ideal generated
by an element of U containing a. Whence fSceS. By Lemma 2.7 either f=0 which

gives a=0 contrary to our assumption or fS=eS whence fRe giving aRe, where we use
the fact that RS R.

The following is immediate:

Corollary 2.9. With S as above the R-classes are all of the form eS\{0} for e€ U.
_ We say that a U-semiabundant semigroup satisfies the congruence condition if L and
R are right and left congruences respectively and that a U-semiabundant semigroup S
with Oe U satisfies the weak congruence condition if for all xe S, '

(a,b)e L implies that if ax#0 and bx #0 then (ax,bx)e L

together with the left-right dual for R.
Define the relations r and ! by

(a,b)er iff (ax=0iff bx=0)
(a,b)el iff (xa=0iff xb=0).

Lemma 2.10. The congruence condition holds iff the weak congruence condition holds
and L<r and Rl

Proof. Let L be a right congruence and let (a,b)e L. Suppose that ax=0. Then
axLbx but OLbx gives bx=0. A similar argument shows that bx =0 implies ax=0. Thus
(a,b)el.

Conversely, let (a,b)e L. Then ax=0 iff bx=0 since Lcr so if ax=0 then bx=0 and
axLbx. If ax#0 then bx #0 so that (ax, bx) e L by the weak congruence condition.

Lemma 2.11. Primitive U-semiabundant semigroups in which U is closed under basic
products satisfy the weak congruence condition.

P_l_'oof. If aLb then we need to show that if ac, bc #0 then acLbc for any ceS. Let ¢
be L-related to f where feU so that L .=Sf\{0} by Corollary 2.9. Since ac#0 and
bc#0 we have ac, bc e Sf\{0}. But then ac, bce L, whence acLbc.

Lemma 2.12. If x,yeS\{0} and xy#0 then xye R 4 n Z,..

Proof. Choose xt,y* then xextS\{0} by Corollary 2.9 so that xyextS n Sy*\{0}
that is xye R,y 0 L.

We conclude with a result which is somewhat tangential but nevertheless of interest.
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Proposition 2.13. Let S be a primitive U-semiabundant semigroup with U closed under
basic products and satisfying the congruence condition. Then:

(i) If x,yeS\{0} choose xt, y* then yx=0 iff y*xt=0.
(i) H is a congruence.
(iii) A, is either a subsemigroup or H,H,={0}.

Proof. (i) If x, ye S\{0} then y*xt=0 implies y(y*x1)x=0 so that yx=0. Conversely,
let yx=0. From the fact that xRxt and that the congruence condition holds we have
yxRyxt. But then yx=0 implies yxt=0. Similarly from yLy* we obtain yxtLy*xt but
yxt=0 implies y*xt=0.

(ii) Let x,y,a,beS with xﬁy and aHb. Then x,yef,, and a,beﬁe some e,f e U. But
xa=0 iff fe=0iff yb=0 by (i). If fe+#0 then xaeR,nL, and ypbeR,n L, by Lemma
2.12 and since R,=R, and L,=1, we have xaHyb.

(i) Let ﬁa=§enif where e,feU and let x,yeH,. If fe=0 then xy=0 so that
A,A,={0}. Otherwise fe#0 so that xy#0 and xye R, nL,=H, by Lemma 2.12.

3. Rees semigroups

In this section we will obtain a Rees matrix representation for Rees semigroups,
thereby obtaining a converse to the results of Section 1. Let S be a U-semiabundant
semigroup. Define the following subset:

Reg(S)={aeS: there exist e,f € U such that eLaRf}.

Thus the elements of Regy(S) are regular, but not necessarily all regular elements of §
belong to Regy(S). If ae Regy(S) then the set Vy(a)={a' e V(a): d'a,aa’ € U}.

Lemma 3.1. (i) L n(Regy(S) x Regy(S)) =L n ((Regy(S) x Regy(S)).
(iiy R N (Regy(S) x Regy(S)) = R N ((Regy(S) x Regy(S)).

Proof. We will prove (i), the proof of (ii) is similar.

Let a,be Reg(S) with aLb. We indicated at the beginning of Section 2 that L< L thus
we have alb.

Now let a,beReg,(S) with alb. Let a’'€Vy(a) and b’ € Vy(b). Then a(a’a)=a implies
b(a'a)=b since a'ae U. Similarly, b(b'b)=b implies a(b’b) =a whence aLb.

Note that the previous lemma holds in particular for elements of U. Define a relation
D on S as follows:

(a, b) € D iff there exist elements a*, at, b*, bt such that (a*,b*)e D and (at, bt) € D.

Lemma 3.2. The relation D is an equivalence relation with D < D.
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Proof. Straightforward.

Lemma 3.3. Let S be U-semiabundant. If each H-class of S contains an element of
Regy(S) then: :

~ ~

D=D=LoR=RoL.

Proof. Let (a,b)e D. Then there exist elements a; (1 <i<n) such that,
alLa,Ra,...La,Rb.
Choose a;e Ha; n Regy(S) (1 Si<n) so that
aLa\Ra,...La,Rb.

But by Lemma 3.1 we have ala\Rdj ... La,Rb. But a\Ra,...La, implies a,Dd, so there
exists ceS such that a)LcRa), whence alLcRb giving (a,b)eLoR. But LoR<D thus
D=LoR. By symmetry D=RoL.

Now let (a,b)e D then (a,b)e Lo R so by a similar argument we may find an element
ce Regy(S) so that alcRb. Now, a*LaLc so a*Lc. Similarly b*Rc. Whence (a*, b*)e D.
Likewise (at,bt)eD giving (a,b)eD so we have D=D. By Lemma 3.2, D<D which
gives D=D as required.

The above lemma is a generalisation of a result of Asibong’s [1] from the theory of
abundant semigroup.

Lemma 34. If U\{0} is contained in a single D-class then Reg,(S) intersects each
H-class non-trivially.

Proof. Let aeS. Then kRaLh for some k,he U\{0}. Now (k,h)e D so by Howie [6,
Theorem II 3.5] there exists ¢ and ¢’ € V(c) such that c’c=h, cc' =k with ce H,. But then
c€ Reg(S).

Lemma 3.5 In a primitive U-semiabundant semigroup with U closed under basic
products eSe = H? for all ee U\{0}.

Proof. Clearly A%ceSe. Let xceSe with x#0. Then ex=x=xe. Now xLf for some
feU, but xe=x implies fe=f. The set U is closed under basic products so that ef e U
and ef we. Whence ef =0 or e¢f =e. If ¢f =0 then
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O=x(ef) =(xe)f=xf=x
contrary to our choice of x. Therefore we must have ¢f = e. Since fe=f we have eLf
giving xLe from the fact that L L. We may similarly show that xRe. Thus we have
xHe as required.

We now come to our main result.

Theorem 3.6. Let S be a Rees semigroup (with respect to U). Then S is isomorphic to
a Rees matrix semigroup MO(T;I;A;P) where T is a monoid with zero and P is a
A x I-matrix such that each row of P and each column contains at least one invertible
element from T. Under the isomorphism U is mapped bijectively onto P(M).

Proof. Index the non-zero R-classes by a set I and the non-zero L-classes by a set A
with I nA={1}.

Let ee U\{0} then eSe is a monoid with zero and identity e. Put T=eSe. Note that
by Lemma 3.5, eSe = f9.

In following the proof, it may be useful to draw a (generalised) eggbox diagram of S,
with the R-classes being represented by the rows and the L-classes being represented by
the columns, the intersection of the rows and the columns are precisely the H-classes.
We label A,=H,,. The A-classes of L, are labelled H,,(icI) and the H-classes of R, are
labelled H,, (leA). By Lemma 3.4, each H-class contains an element from Regy(S),
pick q,€H,; nRegy(S) and r;e H;; ~nRegy(S). If xeS then i, and p, will denote
respectlvely left and nght multlplxcatlon by the element x. We will show that the maps
ArpH,—H,, and pq,:H;, —H,;, are well-defined bijections. We prove this for the map Ar;
the proof for pq, is similar.

We begin by showing that the map JAr; is well defined. Let f e U such that fRr;. Then
we may choose (by Howie [6, Theorem II 3.5]) rie Vy(r;) such that r;ri=f and rir;=e. If
xHe then r;x#0, for if r,x=0 then rir,x=0 whence ex=0. But ex=x so that x=0,
contradicting our choice of x. We also have that r,e#0 for r,e=r;#0. Since both r;x#0
and re#0 and xRe we may apply the weak congruence condition and obtain
rixRrie=r, We may similarly show that r;xLex=x. Thus we obtain rxeH, as
required.

The map Ar; is one-to-one, for if x, ye H, and r;x=r.y then rir,x=rir,y giving ex=ey
whence x=y.

The map Jr; is onto for if de H,, then dRf so that by the weak congruence condition
ridRr,f =r; since rid,r,f #0. Also riLf so ridlfd=d since rid fd#0. This means that
ride H,. Furthermore r,(rid)=d since fd=d.

Now define a A x I-matrix P=(p;;) over eSe by putting p,;=q,r;.. Note that by
Lemma 2.12 either q,r;=0 or q,r;e Rq,n L, =H,,. In either case p;;eeSe. We need to
show that for each iel there exists AeA such that g,r; is invertible in eSe. Since § is
U-semiabundant there exists f € U such that fRr; and we suppose fLg, some AeA. By
Howie [6, Theorem II 3.5] there exists g€ V(q;) N H,, and there exists rje V(r,-)r\ﬁ“
such that

9.93=e, gig.=f, riri=e and r;r;=f.

Note first that q;r;#0, for g,r;,=0 implies q3q,r;=0, that is fr;=0 so that r,=0 a
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contradiction. Thus we have q,r,cH,,. Similarly rigie B, . It is straightforward to
check that the element riq; is the (group) inverse of g,r; in eSe so that p,; is invertible.

We may similarly show that for each A€ A there exists ie I such that the element q;r;
is invertible.

Thus far we have shown, in particular, that M°(T;I, A; P) is a Rees matrix semigroup
where P is regular.

We may now define a map 6:S—-M°(T;I,A;P) by putting 6(0)=0 and if s is a
non-zero element, where se H;; and xe A, is the unique element such that r;xq; =s, then
define 6(s)=(i,x,4). It is clear that @ is a bijection and easy to check that it is a
homomorphism.

Finally note that (0|U): U—~P(M), for if feH,;nU then r(riq)g,=f* so that
0f)=i,rigs, =0, pz". A).

Corollary 3.7.

O(Regy(S)) =1 x G(eSe)® x A.

Proof. Let reReg,(S) with hRrLg where h,geU and let 6(r)=(i,x,A) so that
r=r;xq,. By Howie [6, Theorem Il 3.5] we may find inverses '€ V(r), q5,€ V(q,) and
r;€ V(r;) such that

rr'=h,rr=g,rri=hrir;=e, q,q,=¢and q,q,=g.

It is easy to check that x=rirq; and that it has the (group) inverse q,r'r; in eSe.

Now let x be invertible in eSe with inverse x~*. Then the element r;xq, for any r; and
q, belongs to Regy(S): for choosing ¢, and r; as above (with r replaced by r;xq,) it is
straightforward to check that g, x ™ 'rie Vy(rixq,).

Corollary 3.8. The matrix P has the property that every non-zero entry is invertible iff
Regy(S) is a subsemigroup of S.

Proof. If all non-zero entries of P are invertible and (i,x,4), (j, y, u) € Regy(6(S)) then
by the previous corollary x and y are invertible in eSe. Also p;;=0 or is itself invertible
so that in either case xp,;y e G(eSe)® whence (i, x, ) (j, y, ) € Regy(S)). Thus Regy(S) is a
subsemigroup of S. .

Conversely suppose that Regy(S) is a subsemigroup and let gq,r;#0. Then
q,ri€ Regy(S) and q,r;eeSe so that q,r;c H, whence q,r;He by Lemma 3.1. Thus q,r; is
invertible.

The following corollary is now immediate from Corollary 3.8 and Lemma 1.9.

Corollary 3.9. (i) A Rees semigroup is isomorphic to a Rees matrix semigroup over a
monoid with zero adjoined iff it satisfies the congruence condition.
(i1) A Rees semigroup is isomorphic to a Rees matrix semigroup over a monoid with zero
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adjoined and in which every non-zero entry of P is invertible iff it satisfies the congruence
condition and Regy(S) is a subsemigroup.

The semigroups S of Corollary 3.9 (ii) may characterised as follows: S is a semigroup
with zero O having a subsemigroup T which is completely O-simple (with 0eT)
furthermore S is E(T)—semiabundant and satisfies the congruence condition (or
equivalently eSe is a semigroup with zero adjoined for some non-zero element ec E(T)).
This provides an alternative characterisation of the semigroups of Theorem 3.4 [8].

A U-semiabundant semigroup S is called reduced if o"=w' on U.

Lemma 3.10. Let S be U-semiabundant with U closed under basic products. Then S is
reduced iff each L-class and each R-class contains a unique element from U.

Proof. Let S be reduced and suppose that elf where e,f € U. By Lemma 3.1 eLf so
that ef =e and fe=f. But ef =e iff ewf. By assumption this gives e'f, that is fe=e. But
then e=fe=f.

Conversely let each L-class and each R-class contain a unique element from U. If
e,f e U with ew'f then ef € U, since U is closed under basic products and ef Re. But this
implies ef Re, so that ef =e whence ew'f. The inclusion in the other direction is similar.

The following is immediate:

Lemma 3.11. A Rees matrix semigroup is reduced iff each row and each column of P
contains a unique invertible element.

To conclude this section we give some well-known results in terms of our approach:

Proposition 3.12. Let S be a Rees semigroup with ee U\{0} then,

(i) S is abundant iff eSe is abundant.
(i) S is regular iff eSe is regular.
(iii) S is inverse iff S is reduced, eSe is inverse and Reg (S) is a subsemigroup.

Proof. (i) Proposition 2.11 and Lemma 2.10 [9].
(ii) Theorem 4 (13].
(iii) Theorem 6 [13].

Finally we note that the results of this paper may be generalised to incorporate the
results of Steinfeld [16]. A special case of this more general result extends that obtained
by Batbedat and Reilly [3]: they consider square Rees matrix semigroups over monoids
with zero adjoined having locally regular sandwich matrices.
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