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Abstract. An operator T 2 L�H� is called a square root of a hyponormal
operator if T 2 is hyponormal. In this paper, we prove the following results: Let S
and T be square roots of hyponormal operators.

(1) If ��T� \ �ÿ��T�� � � or {0}, then T is isoloid (i.e., every isolated point of
��T� is an eigenvalue of T).

(2) If S and T commute, then ST is Weyl if and only if S and T are both Weyl.
(3) If ��T� \ �ÿ��T�� � � or {0}, then Weyl's theorem holds for T.
(4) If ��T� \ �ÿ��T�� � �, then T is subscalar. As a corollary, we get that T has a

nontrivial invariant subspace if ��T� has non-empty interior. (See [3].)
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1. Introduction. Let H and K be separable complex Hilbert spaces, and let
L�H;K� denote the space of all bounded linear operators from H to K. If H � K, we
write L�H� in place of L�H;K�.

An operator T is called hyponormal if T�T � TT�, or equivalently if kThk
� kT�hk, for all h 2 H. We say that an operator T 2 L�H� is a square root of a
hyponormal operator if T 2 is hyponormal. In general, T 2 can be hyponormal
without T being hyponormal. For example, if T is any nilpotent operator of order 2
(i.e., T 2 � 0), then T is not necessary a hyponormal operator, but is a square root of
a hyponormal operator.

A bounded linear operator S on H is called scalar of order m if it possesses a
spectral distribution of order m; i.e., if there is a continuous unital morphism

� : Cm
0 �C� ! L�H�

such that ��z� � S, where z stands for the identity function on C and Cm
0 �C� for the

space of compactly supported functions on C, continuously di�erentiable of order
m, where 0 � m � 1. An operator is subscalar if it is similar to the restriction of a
scalar operator to an invariant subspace.

2. Preliminaries. An operator T 2 L�H� is said to be Fredholm if ran T is closed
and both ker T and H=ranT�� kerT�� are ®nite dimensional. The index of a Fred-
holm operator is de®ned as
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index T � dim ker Tÿ dim �H=ran T�
� dim ker Tÿ dim ker T�:

The spectrum of T is de®ned by

��T� � � 2 C : Tÿ � is not invertiblef g

and ��T� � Cn��T� is called the resolvent set of T.
The Weyl spectrum of T is de®ned by

!�T� � � 2 C : Tÿ � is not Fredholm of index 0f g:

Clearly, !�T� � ��T�. Furthermore, if T is Fredholm of index 0, we say that T is
Weyl.

Let iso ��T� denote the set of isolated points of ��T�; �p�T� the set of eigenvalues
of T, and �00�T� the isolated points of ��T� that are eigenvalues of ®nite multiplicity.
If !�T� � ��T� ÿ �00�T�, or equivalently, if ��T� ÿ !�T� � �00�T�, we say that Weyl's
theorem holds for T. It is known that Weyl's theorem holds for any hyponormal
operator. (See [2].)

An operator T 2 L�H� is said to satisfy the single valued extension property if
for any open subset U in C, the function

zÿ T : O�U;H� ! O�U;H�;

de®ned by the obvious pointwise multiplication, is one-to-one, where O�U;H�
denotes the FreÂ chet space of H-valued analytic functions on U with respect to the
uniform topology. If, in addition, the function zÿ T above has closed range on
O�U;H�, then T satis®es Bishop's condition ���.

Lemma 2.1 [10, Introduction]. Every subscalar operator has property ���.

Let z be the coordinate in C and let d��z�, or simply d�, denote planar Lebesgue
measure. Fix a separable, complex Hilbert space H and a bounded (connected) open
subset U of C. We shall denote by L2�u;H� the Hilbert space of measurable func-
tions f : U! H, such that

kfk2;U �
�
U

kf�z�k2d��z�
8<:

9=;
1
2

<1:

The space of functions f 2 L2�U;H� that are analytic in U (i.e., �@f � 0) is denoted by

A2�U;H� � L2�U;H� \ O�U;H�:

A2�U;H� is called the Bergman space for U.
Let us de®ne now a special Sobolev type space. Let U again be a bounded open

subset of C and m a ®xed non-negative integer. The vector valued Sobolev space
Wm�U;H� with respect to �@ and of order m will be the space of those functions
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f 2 L2�U;H� whose derivatives �@f; � � � ; �@mf in the sense of distributions also belong to
L2�U;H�. Endowed with the norm

kfk2Wm �
Xm
i�0
k �@ifk22;U

Wm�U;H� becomes a Hilbert space contained continuously in L2�U;H�.
The linear operator M of multiplication by z on Wm�U;H� is continuous and it

has a spectral distribution of order m, de®ned by the relation

�M : Cm
0 �C� ! L Wm�U;H�� �;�M�f� �Mf:

Therefore, M is a scalar operator of order m.

3. Weyl's theorem. In this section, we show that if T is a square root of a
hyponormal operator with the property that ��T� \ ÿ��T�� � � � or {0}, then Weyl's
theorem holds for T.

Theorem 3.1. If T is a square root of a hyponormal operator with the property
that ��T� \ ÿ��T�� � � � or {0}, then T is isoloid (i.e., iso ��T� � �p�T�).

Proof. If � 2 iso ��T�, then �2 2 iso ��T�2. Since iso ��T�2 � iso ��T 2�, by the
spectral mapping theorem, �2 2 iso ��T 2�. Since T 2 is hyponormal, it is isoloid by
[11]. Therefore, �2 2 �p�T 2�. Hence �2 2 �p�T�2 by [4, Problem 74].

If � � 0, it is clear that 0 2 �p�T�.
If � 6� 0, then either � 2 �p�T� or ÿ� 2 �p�T�. Since � 2 iso ��T� and

��T� \ ÿ��T�� � � �, we know that ÿ� 62 ��T�. Therefore � 2 �p�T�. This completes
the proof. &

Corollary 3.2. If T is a square root of a hyponormal operator with the property
that ��T� \ ÿ��T�� � � � or {0}, then for any polynomial p we have

� p�T�� � ÿ �00 p�T�� � � p ��T� ÿ �00�T�� �:

Proof. This is clear from Theorem 3.1 and [9, Proposition 1].

Lemma 3.3. ([5], [12]). Let S and T be commuting operators.

(a) ST is Fredholm if and only if S and T are both Fredholm.
(b) If S and T are both Fredholm, then index ST � index S� index T.

Theorem 3.4. If S and T are commuting square roots of hyponormal operators,
then ST is Weyl if and only if S and T are both Weyl.

Proof. If ST is Weyl, then ST is Fredholm of index 0. By Lemma 3.3, we know
that �ST�2 is Fredholm and index �ST�2 � index ST� index ST � 0. Since
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�ST�2 � S2T 2 is Fredholm, S2 and T 2 are both Fredholm, by Lemma 3.3. Since S2

and T 2 are hyponormal, index S2 � 0 and index T 2 � 0. Since index �ST�2 � 0,
Lemma 3.3 implies that

0 � index �ST�2
� index S2 � index T 2:

Therefore, index S2 � 0 � index T 2.
Since S2 and T 2 are Fredholm, it follows from Lemma 3.3 that S and T are

Fredholm and

0 � index S2 � index S� index S:

Therefore, index S � 0. Similarly, index T � 0. We conclude that S and T are both
Weyl.

Conversely, if S and T are both Weyl, then S and T are both Fredholm of
index 0. By Lemma 3.3, ST is Fredholm and

index ST � index S� index T � 0:

Therefore, ST is Weyl. &

Lemma 3.5. Let T be a square root of a hyponormal operator with the property
that ��T� \ ÿ��T�� � � � or {0}. If � 2 �00�T�, then �2 2 �00�T 2�.

Proof. By Corollary 3.2 with p�t� � t2, we have

��T 2� ÿ �00�T 2� � ��T� ÿ �00�T�� �2:

Let � 2 �00�T�. If �2 62 �00�T 2�, then �2 2 ��T 2� ÿ �00�T 2�. It follows that �2 2 ��T��
ÿ�00�T��2.

If � � 0, it is clear that 0 2 ��T� ÿ �00�T� and so we have a contradiction.
If � 6� 0, then either � 2 ��T� ÿ �00�T� or ÿ� 2 ��T� ÿ �00�T�. Since � 2 �00�T�

and ��T� \ ÿ��T�� � � �;ÿ� 62 ��T�. Therefore, � 2 ��T� ÿ �00�T� and we have a
contradiction. Thus �2 2 �00�T 2�. &

Theorem 3.6. If T is a square root of a hyponormal operator with the property
that ��T� \ ÿ��T�� � � � or {0}, then Weyl's theorem holds for T.

Proof. It su�ces to show that � 2 ��T� ÿ �00�T� if and only if � 2 !�T�.
If � 2 ��T� ÿ �00�T�, then �2 2 ��T� ÿ �00�T�� �2. By Corollary 3.2, we have

�2 2 ��T 2� ÿ �00�T 2�:

Since T 2 is hyponormal, a theorem of Coburn [2] implies that

�2 2 ��T 2� ÿ �00�T 2� � !�T 2�:
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Since !�T 2� � !�T�2 by [1], �2 2 �T�2.
If � � 0, it is clear that 0 2 !�T�.
If � 6� 0, then either � 2 !�T� or ÿ� 2 !�T�. Since � 2 ��T�; !�T� � ��T�, and

��T� \ ÿ��T�� � � �;ÿ� 62 !�T�. Therefore, � 2 !�T�.
Conversely, let � 2 !�T�.

Claim. If � 62 ��T� ÿ �00�T�, then �2 62 ��T� ÿ �00�T�� �2.

We verify the claim above. If � � 0, it is clear. Let � 6� 0. If
�2 2 ��T� ÿ �00�T�� �2, then either � 2 ��T� ÿ �00�T� or ÿ� 2 ��T� ÿ �00�T�. Since
� 62 ��T� ÿ �00�T�;ÿ� 2 ��T� ÿ �00�T�. But ÿ� 62 ��T�, since � 2 !�T� � ��T� and
��T� \ ÿ��T�� � � �. Hence we have a contradiction.

Let us come back now to the proof of Theorem 3.6. If � 62 ��T� ÿ �00�T�, then
�2 62 ��T� ÿ �00�T�� �2 by the Claim. Now Corollary 3.2 implies that

�2 62 ��T 2� ÿ �00�T 2�:

Since T 2 is hyponormal, a theorem of Coburn [2] implies that
�2 62 ��T 2� ÿ �00�T 2� � !�T 2�. Therefore, �2 2 ��T 2� ÿ !�T 2�. Thus T 2 ÿ �2 is
Weyl.

If � � 0, then T 2 is Weyl. Hence T is Weyl by Theorem 3.4. Thus 0 62 !�T�, and
so we have a contradiction.

Let � 6� 0. By Lemma 3.3, T� � and Tÿ � are both Fredholm. Since
� 2 !�T� � ��T� and ��T� \ ÿ��T�� � � �;ÿ� 62 ��T�. Therefore, T� � is invertible
and so T� � is Weyl. By Lemma 3.3, we have

0 � index �T 2 ÿ �2� � index �T� �� � index �Tÿ ��:

Therefore, index �Tÿ �� � 0. Hence Tÿ � is Weyl. Thus � 62 !�T�, and so we have a
contradiction. Thus � 2 ��T� ÿ �00�T�.

Corollary 3.7. If T is a square root of a hyponormal operator with the property
that ��T� \ ÿ��T�� � � � or {0} and N is a nilpotent operator commuting with T, then
Weyl's theorem holds for T�N.

Proof. It follows from Theorem 3.6 and [9, Theorem 3]. &

4. Subscalarity. In this section, we show that if T is a square root of a hypo-
normal operator with the property that ��T� \ ÿ��T�� � � � then T is subscalar.

Lemma 4.1. ([10], Proposition 2.1). For every bounded disk D in C there is a
constant CD, such that for an arbitrary operator T 2 L�H� and f 2W2�D;H� we have

k�Iÿ P�fk2;D � CD k�Tÿ z�� �@fk2;D � k�Tÿ z�� �@2fk2;D
ÿ �

;

where P denotes the orthogonal projection of L2�D;H� onto the Bergman space
A2�D;H�.
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Lemma 4.2. Let T be a square root of a hyponormal operator with the property
that ��T� \ ÿ��T�� � � � and let D be a bounded disk which contains ��T�. Then the
operator V : H! H�D�, de®ned by

Vh � 1
 h� �zÿ T�W2�D;H� �� 1 ~
h�;

is one-to-one and has closed range, where H�D� �W2�D;H�=�zÿ T�W2�D;H� and
1
 h denotes the constant function sending any z 2 D to h.

Proof. Let hi 2 H and fi 2W2�D;H� be sequences such that

lim
i!1
k�zÿ T�fi � 1
 hikw2 � 0: �1�

Then, by the de®nition of the norm of a Sobolev space, (1) implies that

lim
i!1
k�zÿ T� �@ jfik2;D � 0 �2�

for j � 1; 2. From (2), we get

lim
i!1
k�z2 ÿ T 2� �@ jfik2;D � 0

for j � 1; 2. Since T 2 is hyponormal,

lim
i!1
k�z2 ÿ T�2� �@ jfik2;D � 0: �3�

Since zÿ T is invertible for z 2 Dn��T�, the equation (2) implies that

lim
i!1
k �@ jfik2;Dn��T� � 0:

Therefore,

lim
i!1
k�zÿ T�� �@jfik2;Dn��T� � 0: �4�

Since ��T� \ ÿ��T�� � � � and ��T�� � ��T��, it is clear that T� � z is invertible for
z 2 ��T�. Therefore, from the equation (3) we have

lim
i!1
k�zÿ T�� �@ jfik2;��T� � 0: �5�

Hence, from (4) and (5) we obtain

lim
i!1
k�zÿ T�� �@ jfik2;D � 0: �6�
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Then, by Lemma 4.1, we have

lim
i!1
k�Iÿ P�fik2;D � 0; �7�

where P denotes the orthogonal projection of L2�D;H� onto A2�D;H�. By (1) and
(7), we have

lim
i!1
k�zÿ T�Pfi � 1
 hik2;D � 0:

Let ÿ be a circle in D such that ��T� lies inside ÿ. Assume that ÿ is described
once counterclockwise. Then

lim
i!1
kPfi�z� � �zÿ T�ÿ1�1
 hi�k � 0

uniformly for z in ÿ. Hence, by the Riesz functional calculus,

lim
i!1
k 1

2�i

�
ÿ

Pfi�z�dz� hik � 0:

But
�
ÿ

Pfi�z�dz � 0. Hence, lim
i!1

hi � 0.

Theorem 4.3. If T is a square root of a hyponormal operator with the property
that ��T� \ ÿ��T�� � � �, then T is subscalar of order 2.

Proof. Consider an arbitrary bounded open disk D in C that contains ��T� and
the quotient space

H�D� �W2�D;H�=�zÿ T�W2�D;H�

endowed with the Hilbert space norm. Let M��Mz� be the multiplication operator
by z on W2�D;H�. Then M is a scalar operator of order 2 and its spectral distribu-
tion is

� : C2
0�C� ! L W2�D;H�ÿ �

; ��f� �Mf;

where Mf is the operator of multiplication by f. Since M commutes with zÿ T, ~M on
H�D� is still a scalar operator of order 2, with ~� as a spectral distribution.

Let V be the operator

Vh � 1
 h�� 1
 h� �zÿ T�W2�D;H��;

from H into H�D�, denoting by 1
 h the constant function h. Then VT � ~MV. Since
V is one-to-one and has closed range by Lemma 4.2, T is subscalar of order 2. &
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Corollary 4.4. Let T be a square root of a hyponormal operator with the prop-
erty that ��T� \ ÿ��T�� � � �. If ��T� has interior in the plane, then T has a nontrivial
invariant subspace.

Proof. It follows from Theorem 4.3 and [3]. &

Corollary 4.5. If T is a square root of a hyponormal operator with the property
that ��T� \ ÿ��T�� � � �, then T has the property ���.

Proof. It follows from Theorem 4.3 and Lemma 2.1. &

Corollary 4.6. Let T be a square root of a hyponormal operator with the prop-
erty that ��T� \ ÿ��T�� � � �. If A is any quasia�ne transform of T (i.e., there exists a
one-to-one X with dense range such that XA � TX), then ��T� � ��A�.

Proof. It is clear from Corollary 4.5 and [8]. &
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