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SQUARE ROOTS OF HYPONORMAL OPERATORS
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Abstract. An operator T € L(H) is called a square root of a hyponormal
operator if 72 is hyponormal. In this paper, we prove the following results: Let S
and T be square roots of hyponormal operators.

(1) If o(T)N[—0(T)] = ¢ or {0}, then T is isoloid (i.e., every isolated point of
o(T) is an eigenvalue of T).

(2) If S and T commute, then ST is Weyl if and only if S and T are both Weyl.

(3) If o(T) N [—o(T)] = ¢ or {0}, then Weyl’s theorem holds for 7.

4) If o(T) N [—0o(T)] = ¢, then T is subscalar. As a corollary, we get that T has a
nontrivial invariant subspace if o(7) has non-empty interior. (See [3].)

1991 Mathematics Subject Classification. 47B20

1. Introduction. Let H and K be separable complex Hilbert spaces, and let
L(H, K) denote the space of all bounded linear operators from H to K. If H = K, we
write L(H) in place of L(H, K).

An operator T is called hyponormal if T*T > TT*, or equivalently if | 7Th||
> ||T*h|, for all h € H. We say that an operator T € L(H) is a square root of a
hyponormal operator if 72 is hyponormal. In general, T2 can be hyponormal
without T being hyponormal. For example, if T is any nilpotent operator of order 2
(i.e., T? = 0), then T is not necessary a hyponormal operator, but is a square root of
a hyponormal operator.

A bounded linear operator S on H is called scalar of order m if it possesses a
spectral distribution of order mz; i.e., if there is a continuous unital morphism

®: CJ(C) — L(H)

such that ®(z) = S, where z stands for the identity function on C and Cjj'(C) for the
space of compactly supported functions on C, continuously differentiable of order
m, where 0 < m < oo. An operator is subscalar if it is similar to the restriction of a
scalar operator to an invariant subspace.

2. Preliminaries. An operator T € L(H) is said to be Fredholm if ran T is closed
and both ker T and H/ranT(= kerT*) are finite dimensional. The index of a Fred-
holm operator is defined as

tSupported by KOSEF, under grant No. 971-0102-007-2 (1997-99).

https://doi.org/10.1017/50017089599000178 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089599000178

464 MEE-KYOUNG KIM AND EUNGIL KO
index T = dim ker 7 — dim (H/ran T)
= dim ker T — dim ker T%.

The spectrum of T is defined by

o(T) = {, € C: T — A is not invertible}

and p(T) = C\o(7) is called the resolvent set of T.
The Weyl spectrum of T is defined by

o(T) = {» € C: T — ) is not Fredholm of index 0}.

Clearly, o(T) C o(T). Furthermore, if 7T is Fredholm of index 0, we say that T is
Weyl.

Let iso o(T) denote the set of isolated points of o(7), 0,,(T) the set of eigenvalues
of T, and moo(7) the isolated points of o(7) that are eigenvalues of finite multiplicity.
If o(T) = o(T) — moo(T), or equivalently, if o(T) — w(T) = moo(T), we say that Weyl’s
theorem holds for 7. It is known that Weyl’s theorem holds for any hyponormal
operator. (See [2].)

An operator T € L(H) is said to satisfy the single valued extension property if
for any open subset U in C, the function

2~ T: O, H — OU, H),

defined by the obvious pointwise multiplication, is one-to-one, where O(U, H)
denotes the Fréchet space of H-valued analytic functions on U with respect to the
uniform topology. If, in addition, the function z — T above has closed range on
O(U, H), then T satisfies Bishop’s condition (8).

LemMma 2.1 [10, Introduction]. Every subscalar operator has property (B).

Let z be the coordinate in C and let du(z), or simply du, denote planar Lebesgue
measure. Fix a separable, complex Hilbert space H and a bounded (connected) open
subset U of C. We shall denote by L>(u, H) the Hilbert space of measurable func-
tions f: U — H, such that

2

nmﬂzjmm%w)<w

U

The space of functions f € L*(U, H) that are analytic in U (i.e., 3f = 0) is denoted by
A(U. H) = L*(U, H) N O(U. H).
A*(U, H) is called the Bergman space for U.
Let us define now a special Sobolev type space. Let U again be a bounded open

subset of C and m a fixed non-negative integer. The vector valued Sobolev space
W™(U, H) with respect to d and of order m will be the space of those functions
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fe L*(U, H) whose derivatives 9, - - -, "fin the sense of distributions also belong to
L*(U, H). Endowed with the norm

W5 =D 1115,
i=0

W™ (U, H) becomes a Hilbert space contained continuously in L>(U, H).
The linear operator M of multiplication by z on W”(U, H) is continuous and it
has a spectral distribution of order m, defined by the relation

@y : CP(C) — LIW"(U, H)), Dy (f) = M.

Therefore, M is a scalar operator of order m.

3. Weyl’s theorem. In this section, we show that if T is a square root of a
hyponormal operator with the property that o(7) N [—o(T)] = ¢ or {0}, then Weyl’s
theorem holds for T.

THEOREM 3.1. If T is a square root of a hyponormal operator with the property
that o(T) N[—o(T)] = ¢ or {0}, then T is isoloid (i.e., iso o(T) C 0,(T)).

Proof. If A € iso o(T), then A2 € iso o(7)*. Since iso o(T)> = iso o(T?), by the
spectral mapping theorem, A% € iso o(7?). Since T2 is hyponormal, it is isoloid by
[11]. Therefore, A> € 0,(T?). Hence A% € 0,(T)* by [4, Problem 74].

If A =0, it is clear that 0 € 0,(7).

If A#0, then either A e€o0,(T) or —ie€a,(T). Since Aeisoo(T) and
o(T)N[—o(T)] = ¢, we know that —A & o(T). Therefore A € o,(7). This completes
the proof. O

COROLLARY 3.2. If T is a square root of a hyponormal operator with the property
that o(T) N [—o(T)] = ¢ or {0}, then for any polynomial p we have

o(p(T)) — moo(p(T)) = p(o(T) — 7oo(T)).

Proof. This is clear from Theorem 3.1 and [9, Proposition 1].
LemMma 3.3. ([5], [12]). Let S and T be commuting operators.

(a) ST is Fredholm if and only if S and T are both Fredholm.
(b) If S and T are both Fredholm, then index ST = index S + index T.

THEOREM 3.4. If S and T are commuting square roots of hyponormal operators,
then ST is Weyl if and only if S and T are both Weyl.

Proof. If ST is Weyl, then ST is Fredholm of index 0. By Lemma 3.3, we know
that (ST)* is Fredholm and index (ST7)*=index ST+ index ST =0. Since
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(ST)* = $2T? is Fredholm, S? and T? are both Fredholm, by Lemma 3.3. Since S2
and T2 are hyponormal, index S <0 and index 72 < 0. Since index (ST)> =0,
Lemma 3.3 implies that

0 = index (ST)*
= index S* + index T2

Therefore, index S? = 0 = index T2
Since S? and T2 are Fredholm, it follows from Lemma 3.3 that S and T are
Fredholm and

0 = index S” = index S + index S.

Therefore, index S = 0. Similarly, index 7"= 0. We conclude that S and T are both
Weyl.

Conversely, if S and T are both Weyl, then S and T are both Fredholm of
index 0. By Lemma 3.3, ST is Fredholm and

index ST = index S+ index 7' = 0.

Therefore, ST is Weyl. [

LemMa 3.5. Let T be a square root of a hyponormal operator with the property
that o(T) N [—o(T)] = ¢ or {0}. If A € moo(T), then 1> € moo(T?).

Proof. By Corollary 3.2 with p(f) = ¢>, we have
o(T?) — moo(T?) = (o(T) — 700(T))*.

Let & € moo(T). If A2 & moo(T'?), then A% € o(T?) — moo(T?). It follows that A% € (o(T)
—moo(T))’.

If A =0, it is clear that 0 € o(T) — moo(7) and so we have a contradiction.

If A #£ 0, then either A € o(T) — moo(T) or —X € o(T) — moo(T). Since A € mo(T)
and o(T)N[—o(T)] = ¢, =1 &€ o(T). Therefore, A € o(T) — myo(T) and we have a
contradiction. Thus A2 € mo(T?). O

THEOREM 3.6. If T is a square root of a hyponormal operator with the property
that o(T) N [—a(T)] = ¢ or {0}, then Weyl’s theorem holds for T.

Proof. 1t suffices to show that A € o(T) — moo(7) if and only if A € (7).
If & € o(T) — 7oo(T), then A2 € (o(T) — 7oo(T))*. By Corollary 3.2, we have

12 € o(T?) — moo(T2).

Since 72 is hyponormal, a theorem of Coburn [2] implies that

12 e o(T?) — moo(T?) = (T?).
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Since w(T?) C o(T)* by [1], A2 € (T)>.

If A =0, it is clear that 0 € w(T).

If & # 0, then either A € w(7T) or —A € w(7T). Since A € o(T), o(T) C o(T), and
o(T)N[—o(T)] = ¢, —r &€ o(T). Therefore, 1 € w(T).

Conversely, let A € w(7).

Claim. If & & o(T) — moo(T), then 3> & (o(T) — moo(T))’.

We verify the claim above. If A =0, it is clear. Let A #0. If
22 € (o(T) — moo(1))%, then either A € o(T) — moo(T) or —i € o(T) — mo(T). Since

A& o(T) — moo(T), =1 € o(T) — moo(T). But —A g o(T), since A € o(T) C o(T) and
o(T) N [—o(T)] = ¢. Hence we have a contradiction.

Let us come back now to the proof of Theorem 3.6. If A & o(T) — 7go(7), then
22 & (o(T) — moo(T))* by the Claim. Now Corollary 3.2 implies that

A2 & o(T?) — moo(T?).

Since 7?2 is hyponormal, a theorem of Coburn [2] implies that
2 & o(T?) — moo(T?) = o(T?). Therefore, A*> € o(T?) — (T?). Thus T? — 2% is
Weyl.

If A = 0, then T2 is Weyl. Hence T is Weyl by Theorem 3.4. Thus 0 ¢ w(7), and
so we have a contradiction.

Let A#0. By Lemma 3.3, T4+ XA and T—X are both Fredholm. Since
A€ o(T) C o(T) and o(T) N [—0o(T)] = ¢, =1 &€ o(T). Therefore, T+ A is invertible
and so T+ A is Weyl. By Lemma 3.3, we have

0 = index (7> — %) = index (T + A) + index (T — 1).

Therefore, index (T'— A) = 0. Hence 7' — A is Weyl. Thus A € o(T), and so we have a
contradiction. Thus A € o(T) — moo(7).

COROLLARY 3.7. If T is a square root of a hyponormal operator with the property
that o(T) N [—o(T)] = ¢ or {0} and N is a nilpotent operator commuting with T, then
Weyl’s theorem holds for T + N.

Proof. 1t follows from Theorem 3.6 and [9, Theorem 3]. O

4. Subscalarity. In this section, we show that if 7" is a square root of a hypo-

normal operator with the property that o(7) N [—o(7)] = ¢ then T is subscalar.

LEmmA 4.1. ([10], Proposition 2.1). For every bounded disk D in C there is a
constant Cp, such that for an arbitrary operator T € L(H) and f € W*(D, H) we have

I = P)fllo.p = Co(I(T = 2 #Nla,p + I(T = 2112, p).
where P denotes the orthogonal projection of L*(D, H) onto the Bergman space

A*(D, H).
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LeEmMA 4.2. Let T be a square root of a hyponormal operator with the property
that o(T) N [—o(T)] = ¢ and let D be a bounded disk which contains o(T). Then the
operator V : H — H(D), defined by

Vh=1Qh+(z—TWAD,H) (= 1&h),

is one-to-one and has closed range, where H(D) = W*(D, H)/(z — TYW2(D, H) and
1 ® h denotes the constant function sending any z € D to h.

Proof. Let h; € H and f; € W?(D, H) be sequences such that

11_1>r23 ”(Z - T)fl +1® hi”w2 =0. (l)

Then, by the definition of the norm of a Sobolev space, (1) implies that

lim [(z = 7)3fill2.p = 0 )

for j =1, 2. From (2), we get

lim [|(z2 = T7%)3/fill,.p =0
1— 00

for j =1, 2. Since T2 is hyponormal,

lim (22 = T)3fill2,0 = 0. (3)

Since z — T is invertible for z € D\o(7), the equation (2) implies that
A —
llgglo 187fill2, pvory = 0.
Therefore,

ll_lfg IZ — T filla.pvo(r) = O C))

Since o(T) N [—o(T)] = ¢ and o(T)* = o(T*), it is clear that T* + Z is invertible for
z € o(T). Therefore, from the equation (3) we have

Ilglolo I — T9)3fll2.01) = O. %)
Hence, from (4) and (5) we obtain

lim |2 = T)8fill2.0 = 0. (©)
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Then, by Lemma 4.1, we have

lim (7 = PYfill.p =0, )

where P denotes the orthogonal projection of L*(D, H) onto A*(D, H). By (1) and
(7), we have
Iim |z = DPfi + 1 & hill.p = 0.

Let T be a circle in D such that o(7) lies inside I'. Assume that I" is described
once counterclockwise. Then

lim | Pfi(2) + = D A @byl =0

uniformly for z in I'. Hence, by the Riesz functional calculus,

2mi
r

1
Jim | —JPff(z)dz il =0,

But [ Pfi(z)dz = 0. Hence, lim /; = 0.
r I—> 00

THEOREM 4.3. If T is a square root of a hyponormal operator with the property
that o(T) N [—o(T)] = ¢, then T is subscalar of order 2.

Proof. Consider an arbitrary bounded open disk D in C that contains o(7) and
the quotient space

H(D) = WA(D, H)/(z— DWA(D, H)

endowed with the Hilbert space norm. Let M(= M) be the multiplication operator
by z on W?(D, H). Then M is a scalar operator of order 2 and its spectral distribu-
tion is

@ : C3(C) — L(WA(D, H)), @(f) = My,
where M/ is the operator of multiplication by f. Since M commutes with z — T, M on

H(D) is still a scalar operator of order 2, with ® as a spectral distribution.
Let V' be the operator

Vh=1®h(=1® h + (z — TYWA(D, H)),

from H into H(D), denoting by 1 ® / the constant function /. Then VT = MV. Since
V' is one-to-one and has closed range by Lemma 4.2, T is subscalar of order 2. []
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COROLLARY 4.4. Let T be a square root of a hyponormal operator with the prop-
erty that o(T) N [—o(T)] = ¢. If o(T) has interior in the plane, then T has a nontrivial
invariant subspace.

Proof. 1t follows from Theorem 4.3 and [3]. O

COROLLARY 4.5. If T is a square root of a hyponormal operator with the property
that o(T) N [—o(T)] = ¢, then T has the property (B).

Proof. 1t follows from Theorem 4.3 and Lemma 2.1. O

COROLLARY 4.6. Let T be a square root of a hyponormal operator with the prop-
erty that o(T) N [—o(T)] = ¢. If A is any quasiaffine transform of T (i.e., there exists a
one-to-one X with dense range such that XA = TX ), then o(T) C o(A).

Proof. 1t is clear from Corollary 4.5 and [8]. O
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