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Abstract. Certain features of a practical regularisation method, in which the potential or kinetic 
energy is used as a time-regularising function, are described. For two-body encounters the method 
is less powerful than Kustaanheimo-Stiefel regularisation, but it has wider applicability. 

1. Early experience of JV-body computations by many workers made clear the need 
for an efficient (i.e. rapid and accurate) method of treating close two-body encounters 
and, in particular, stable binaries. Two methods, both based on a description of such 
events as perturbed two-body motion, have been proposed and used: the 'binary 
method' of Aarseth (1970), and Kustaanheimo-Stiefel regularisation, described by 
Peters (1968). In practice, the binary method is unsatisfactory for moderate or heavy 
perturbations, and regularisation is inefficient at dealing with relatively stable three-
body configurations, where the choice of the pair of particles whose relative motion 
is to be regularised requires repeated alteration. It is therefore desirable to devise an 
efficient means of treating such cases, and one possible method is the subject of this 
paper. Although it is not suggested that the method be used for straightforward 
two-body encounters, for which powerful techniques already exist, this is nevertheless 
the simplest situation in which to examine its properties. 

In the K.-S. regularisation method, in which both time and position are transformed, 
the unperturbed relative motion of two point masses is described by the equations 

h 
<^~uk (/c= 1,2,3,4) (1) 

where u is the 4-vector of transformed coordinates, h is the total energy, fi is the 
reduced mass, and a prime denotes differentiation with respect to regularised time. 
Suppose, however, that only the time transformation is performed, that is, we define 
the regularised time, s, by the differential equation 

ds = g (x, x) dt 

where g is some well-behaved function of x, the relative position vector, and of x, 
its derivative with respect to physical time t. Then if m; (z = l, 2) are the masses of the 
two particles, and we write /*=|x|, the normal Newtonian equations 

xk = — (jrii + m2)xkr~3 (k = 1, 2, 3) (2) 
become 

g2x'k + g~1gxk = Fck (fe = 1,2,3) 
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where Fck is the right hand side of (2). Choosing g(x, x)=r i, this equation may be 
written as 

xl = r2Fck + rfxk (fc = 1,2,3). (3) 

It is this equation which will be generalised to the JV-body problem (JV>3) , but in 
order to study its properties, it is convenient to write it in the form 

xk = — (mt + m2) xkr~1 + rfxk — x2xk + 

(it = 1 , 2 , 3) 

where, 

Hence 

as 

+ 2xk 

before, 

h = 

4 

-= in*2 -

2h 
= —xk 

m1m2 

r 

+ Ck 

+ m2 

( f c = : 1, 2, 3) (4) 

where 
C = (m1 + m2) xr 1 + x x (x x x) . 

With the aid of (2) it is easy to show that C is a constant vector, which, incidentally, 
is directed along the line of apsides. It is of interest to note that, since (4) may be 
readily generalised to the case of perturbed two-body motion and the first derivatives 
of C and h are regular at r = 0, these equations could be used in a two-body regularisa-
tion method; however, that is not the subject of this paper. Comparison of (4) with 
(1) shows that, when the coordinate transformation is performed, the period of the 
motion (in case h<0) is doubled. Therefore, we may expect that, to achieve a certain 
accuracy in a numerical integration, twice as many steps per physical orbit are needed 
to integrate (3) as to integrate (1). That (3) is nevertheless generally more efficient 
than the ordinary equations (2), can be appreciated in the following way. Suppose one 
uses a time-step criterion based on the rate of convergence of the Taylor series for the 
velocity, such as 

2 2ri\x\+At\x\ 
(Atf^r, ri\x\ + At\xl 

and the analogue for As, the regularised time-step for integrating (3). In this expression, 
which is a modification of that used by Aarseth (1968), r\ is an adjustable constant. 
Then at pericentre one finds the approximate result 

At3\
2 2a 

J7 )=- (5) 

At2) r 
where a is the semi-major axis, and subscripts refer to the above numbering of the 
equations; one sees that, for close encounters, a much larger timestep can be taken for 
system (3) than for system (2). In practice the advantage gained is not as great as this, 
for reasons that will appear later. 
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2. In general, a close 2-body encounter in an N-body problem (N^ 3) can be treated 
similarly if the total potential energy, V, is used as the regularising function, for V 
is dominated by any two-body encounter. The regularised force per unit mass on any 
particle is 

Fk = V-' (V-'Fck - V'x'k) (k = 1, 2, 3) (6) 

where Fck is the corresponding Newtonian force. This system of equations is un
satisfactory for two reasons: 

(i) A close encounter between two bodies reduces the time step for all bodies, 
because of the second term in the expression for the force. This is very inefficient for 
large N. 

(ii) The calculation of V, involving about iN2 full precision distance calculations 
per step, is very time-consuming. It could be calculated from the regularised kinetic 
energy, T, and the total energy, H, by the relation 

V2T - V-H = 0. 

However this procedure is very inaccurate, because (Figure 1) (d77dF)=0at V=—2H, 
i.e. when the virial ratio is unity. In most practical cases, V soon tends to fluctuate 
about this value, and then it is ill-determined by T. 

The second objection can be met by using as regularising function the kinetic energy 

f = t I m;x,2. 
i = l 

Because of the presence of the term in 5~' in the regularised force, F must be known 
for every particle at each time-step. An explicit calculation is too expensive if individual 

V 

-2H 

- H 

O 

Fig. 1. The relation between Kand T for H<0, where J is the F-regularised kinetic energy. 
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time-steps are taken by each particle, and one can show that the method is unstable if 
F is extrapolated from previous, explicitly calculated values. It is therefore expedient 
to use the same time-step for each particle, which reinforces the first objection above. 

One may meet the first objection by taking as regularising function the kinetic 
energy, 3~*, of a small number JVreg of the particles, where Nteg-4N. In practice one 
selects those involved in binaries or in encounters, so that very often iVreg=0 or 2; 
and one's choice is reviewed from time to time. Then one still uses the unregularised 
equations, and individual time-steps, for all other particles. For the 'regularised' par
ticles, analogues of (6) are used, with a common time-step: this is not inefficient if 
Nreg is small, and indeed the efficiency may be improved, because several parts of a 
time-step calculation are shared between all such particles. At this stage there is little 
to choose between &~* and V* as regularising functions, and in the remainder of the 
paper the former is referred to. 

3. It remains to point out a number of features of the equations which become ap
parent in practical application. Here reference is made to computations carried out 
on the Institute's IBM 360/44, in which variables are normally carried to a standard 
precision of about six significant decimal digits; for very accurate work, a facility 
exists whereby the precision may be extended to up to about sixteen digits. 

Consider an isolated binary system. Suppressing the asterisks, we have 

x? = T (TFci - .r%) ( i = l , 2 ) (7) 

where T&~ = 1. Weighting each equation by the corresponding mass and adding, one 
obtains, for the motion of the centre of mass, the equation 

x" = - T3"x' 

which is unstable if S~' <0, i.e. after pericentre. In practice this instability is not serious. 
It is usually sufficient to compute and carry the force in standard precision, and so 

it is subject to considerable rounding error which may sometimes feed back into the 
force via T, the regularised kinetic energy. This cannot be obviated by reducing the 
steplength if the rounding error in the force has non-zero expectation, which is the 
case with those computers in which conversion from extended to normal precision 
is effected by truncation rather than by rounding. Equations (7) are not easy to discuss, 
but the one-dimensional analogue of the equation of relative motion of the two bodies 
reduces, in case m, =m2 =2, to 

x" = (XyX-2(l+ef(s)) 

which will be adopted as a model of the system (7). Here, ef(s) is the rounding error, 
so that /(X)=0(l) as e | 0 ; in practice e«10~6. 

Using e as expansion parameter we find, for e J, 0, the particular asymptotic solution 

X ''**•' XQ ~I~ O A J 
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where 
V- = J_C 2 

A0 — 8° 

and 
s s 

xt=-T2S \ f (v) dv + -^s4 I i T 3 / (v) dv 

SQ SQ 

if x1(so)=x'1(so)=0; so<s<0 during the approach to encounter. If a stepwise 
integration procedure is used, these integrals must be replaced by sums, and one finds 
that, as ifO (i.e. for very close encounters), the first term of xt dominates. If the ex
pectation of / vanishes, this term is 0(syJAs) as ifO, where As is the steplength, 
and if the expectation off is non-zero it is 0(s); in this case, the relative error is of 
order e\x\~1/2. Experience confirms the presence, during particularly close encounters, 
of an instability that cannot be removed by a reduction in steplength; it can be ob
viated by reducing e (e.g. by calculating the force in extended precision), and little 
inefficiency is introduced as this procedure is required only in rather exceptional cases. 
It is probable that this instability would be less serious in a computer with a more 
accurate standard precision. Rounding error can still be introduced in the higher 
terms of the integration scheme, but may be controlled by a modest reduction of 
steplength. Because of velocity-dependent terms in the force, significant truncation 
error in the velocity must be avoided, by the same reduction in the time-step. It is for 
reasons such as these that Equation (5) overestimates the efficiency of the method. 

A computer program, constructed on these principles, has been written in 
FORTRAN IV and applied to some standard problems. For example, the IAU 
25-body problem (Lecar, 1968) has been integrated to t = 10 in 16 min, the energy 
decrement being only 8 x 10~7, although this results from the fortuitous near-cancel
lation of two decrements of 3 x 10~6. Even so, the test compares very well with all 
those discussed by Lecar. In two integrations of comparable accuracy up to t = 5, 
respectively with and without regularisation, it was found that regularisation effects 
a reduction in computing time of about 50%. 
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