ON THE DIOPHANTINE EQUATION $x^2 + 5^a \cdot 13^b = y^n$

FADWA S. ABU MURIEFAH

Mathematics Department, Riyadh University for Girls, P.O. Box 60561 Riyadh 11555 Saudi Arabia e-mail: abumuriefah@yahoo.com

FLORIAN LUCA

Instituto de Matemáticas UNAM, Campus Morelia Apartado Postal 27-3 (Xangari), C.P. 58089, Morelia, Michoacán, Mexico e-mail: fluca@matmor.unam.mx

and ALAIN TOGBÉ

Mathematics Department, Purdue University North Central, 1401 S, U.S. 421, Westville IN 46391 USA e-mail: atogbe@pnc.edu

(Received 11 May, 2007; revised 2 August, 2007; accepted 8 August, 2007)

Abstract. In this note, we find all the solutions of the Diophantine equation $x^2 + 5^a \cdot 13^b = y^n$ in positive integers $x, y, a, b, n \ge 3$ with x and y coprime.

2000 Mathematics Subject Classification. 11D61, 11Y50

1. Introduction. The history of the Diophantine equation

$$x^{2} + C = y^{n}, x \ge 1, y \ge 1, n \ge 3$$
 (1.1)

is very rich. In 1850, Lebesgue [14] proved that the above equation has no solutions when C = 1. In 1965, Chao Ko [11] proved that the only solution of the above equation with C = -1 is x = 3, y = 2. J. H. E. Cohn [10] solved the above equation for several values of the parameter C in the range $1 \le C \le 100$. A couple of the remaining values of C in the above range were covered by Mignotte and De Weger in [18], and the remaining ones in the recent paper [9]. In [20], all solutions of the equation $x^2 + C = 2y^n$ with $n \ge 3$, coprime integers x and y and $C = B^2$ with $B \in \{3, 4, \dots, 501\}$ were found.

Recently, several authors became interested in the case when only the prime factors of *C* are specified. For example, the case when $C = p^k$ with a fixed prime number *p*, was dealt with in [1] and [13] for p = 2, in [2], [3] and [15] for p = 3, and in [4] and [6] for p = 5. Partial results for a general prime *p* appear in [5] and [12]. All the solutions when $C = 2^a 3^b$ were found in [16]. See also the recent survey [7] for more results of this type. Not included in this survey is a result by the second and the third authors concerning the solutions of the above equation for the case $C = 2^a 5^b$ (see [17]), as well as Pink's study [19] of the case $C = 2^a 3^b 5^c 7^d$.

Here, we continue this study with the equation

$$x^{2} + 5^{a} \cdot 13^{b} = y^{n}, x \ge 1, y \ge 1, gcd(x, y) = 1, n \ge 3, a \ge 0, b \ge 0.$$
 (1.2)

Our main result is the following.

The third author was partially supported by Purdue University North Central.

THEOREM 1.1. The equation (1.2) has no solution except for: n = 3 (x, y, a, b) = (70, 17, 0, 1), (142, 29, 2, 2); n = 4 (x, y, a, b) = (4, 3, 1, 1).

2. The case n = 4. Here, we have the following result.

LEMMA 2.1. If n = 4, then the only solution to equation (1.2) is

$$(x, y, a, b) = (4, 3, 1, 1).$$
 (2.1)

Proof. Equation (1.2) can be written as

$$\left(\frac{x}{z^2}\right)^2 + A = \left(\frac{y}{z}\right)^4,\tag{2.2}$$

where A is fourth-power free and defined implicitly by $5^a \, 13^b = Az^4$. One can see that $A = 5^{a_1} \, 13^{b_1}$ with $a_1, b_1 \in \{0, 1, 2, 3\}$. Hence, the problem consists in determining the $\{5, 13\}$ -integer points on the totality of the 16 elliptic curves

$$V^2 = U^4 - 5^{a_1} 13^{b_1}, (2.3)$$

with $a_1, b_1 \in \{0, 1, 2, 3\}$.

Recall that if S is a finite set of prime numbers, then an S-integer is rational number a/b with coprime integers a and b > 0, where the prime factors of b are in S. We use MAGMA to determine the {5, 13}-integral points on the above elliptic curves. We find

$$(U, V, a_1, b_1) = (1, 0, 0, 0), (3, 4, 1, 1), (13, 156, 2, 2)$$

With the conditions on x, y and the definition of U, V, one can see that the only corresponding solution is (x, y, a, b) = (4, 3, 1, 1). This concludes the proof.

If (x, y, a, b, n) is a solution of the Diophantine equation (1.2) and *d* is any proper divisor of *n*, then $(x, y^d, a, b, n/d)$ is also a solution of the same equation. Since $n \ge 3$ and we have already dealt with the case n = 4, it follows that it suffices to look at the solutions *n* for which $p \mid n$ for some odd prime *p*. In this case, we may certainly replace *n* by *p*, and thus assume for the rest of the paper that *n* is an odd prime.

3. The case $n \ge 5$.

LEMMA 3.1. *The Diophantine equation* (1.2) *has no solution with* $n \ge 5$ *prime.*

Proof. We write the Diophantine equation (1.2) as $x^2 + dz^2 = y^p$, where d = 1, 5, 13, 65 according to the parities of the exponents *a* and *b*. Here, $z = 5^{\alpha} 13^{\beta}$ for some nonnegative integers α and β . Let $\mathbb{K} = \mathbb{Q}[i\sqrt{d}]$. We factor the above equation in \mathbb{K} getting

$$(x + i\sqrt{d} z)(x - i\sqrt{d} z) = y^p.$$
 (3.1)

Since $5^a 13^b \equiv 1 \pmod{4}$, it follows by considerations modulo 4 in equation (1.2) that x is even. Since x and y are coprime, a standard argument shows that the ideals generated by $x + i\sqrt{dz}$ and $x - i\sqrt{dz}$ are coprime in K. Hence, the ideal $x + i\sqrt{dz}$ is a pth power

THE DIOPHANTINE EQUATION
$$x^2 + 5^a \cdot 13^b = y^n$$
 177

of some ideal in $\mathcal{O}_{\mathbb{K}}$. The class number of \mathbb{K} belongs to $\{1, 2, 8\}$. In particular, it is coprime to *p*. Thus, by a standard argument, it follows that $x + i\sqrt{dz}$ is associated to a *p*th power in $\mathcal{O}_{\mathbb{K}}$. Since the group of units in \mathbb{K} is of order 2 or 4 (coprime to *p*), it follows that we may assume that

$$x + i\sqrt{dz} = \gamma^p \tag{3.2}$$

holds with some algebraic integer $\gamma \in \mathcal{O}_{\mathbb{K}}$. Finally, since the discriminant of \mathbb{K} is -4d, it follows that $\{1, i\sqrt{d}\}$ is a base for $\mathcal{O}_{\mathbb{K}}$. In conclusion, we can write $\gamma = u + i\sqrt{d}v$. Conjugating equation 3.2 and subtracting the two relations, we get

$$2i\sqrt{d}\ 5^{\alpha}\ 13^{\beta} = \gamma^p - \bar{\gamma}^p. \tag{3.3}$$

The right hand side of the above equation is a multiple of $2i\sqrt{d}v = \gamma - \bar{\gamma}$. We deduct that $v \mid 5^{\alpha} 13^{\beta}$, and that

$$\frac{5^{\alpha} \ 13^{\beta}}{v} = \frac{\gamma^{p} - \bar{\gamma}^{p}}{\gamma - \bar{\gamma}} \in \mathbb{Z}.$$
(3.4)

Let $\{L_m\}_{m\geq 0}$ be the sequence of general term $L_m = \frac{\gamma^m - \bar{\gamma}^m}{\gamma - \bar{\gamma}}$, for all $n \geq 0$. This is called a *Lucas sequence* and it consists of integers. For any nonzero integer k, we write P(k) for the largest prime factor of k. Equation (3.6) leads to the conclusion that

$$P(L_p) = P\left(\frac{5^{\alpha}13^{\beta}}{v}\right).$$
(3.5)

Recall that the Primitive Divisor Theorem for Lucas sequences implies that if $p \ge 5$, then L_p has a *primitive* prime factor except for finitely many pairs $(\gamma, \bar{\gamma})$ and all of them appear in Table 1 in [8]. These exceptional Lucas numbers are called *defective*. A primitive prime factor q has the properties (among others), that $q \nmid -4dv^2 = (\gamma - \bar{\gamma})^2$, and $q \equiv \pm 1 \pmod{p}$. More precisely, $q \equiv e \pmod{p}$, where $e = (\frac{-4d}{q})$. Here, and in what follows, $(\frac{a}{q})$ stands for the Legendre symbol of a with respect to the odd prime q.

Since $\mathbb{K} = \mathbb{Q}[i\sqrt{d}]$ with $d \in \{1, 5, 13, 65\}$, a quick inspection of Table 1 in [8] reveals that our number L_p cannot be defective. Thus, L_p must have a primitive divisor q. Clearly, $q \in \{5, 13\}$ and $q \equiv \pm 1 \pmod{p}$, where $p \ge 5$. Hence, the only possibility is q = 13, and we conclude that $p \mid 12$, 14. The only possibility is p = 7, and since $13 \equiv -1 \pmod{7}$, we must have that $(\frac{-4d}{13}) = -1$. Since $d \in \{1, 5, 13, 65\}$, we conclude that d = 5. Using now 3.3 with p = 7, we obtain

$$v(7u^6 - 175u^4v^2 + 525u^2v^2 - 125v^6) = 5^{\alpha} \ 13^{\beta}.$$
 (3.6)

Since u and v are coprime, we have the possibilities

$$v = \pm 5^{\alpha} \ 13^{\beta}, \ v = \pm 13^{\beta}, \ v = \pm 5^{\alpha}, \ v = \pm 1.$$
 (3.7)

The first two cases lead to the conclusion that $P(L_p) = P(5^{\alpha} 13^{\beta}/v) \le 5$, which is impossible since it leads again to the conclusion that L_p has no primitive divisors, so we look at the last two possibilities.

Case 1: $v = \pm 5^{\alpha}$.

In this case, the Diophantine equation (3.6) is

$$7u^6 - 175u^4v^2 + 525u^2v^2 - 125v^6 = \pm 13^{\beta}.$$
 (3.8)

Dividing both sides of the above equation by v^6 , we obtain the elliptic equations

$$7X^3 - 175X^2 + 525X - 125 = D_1Y^2, (3.9)$$

where

$$X = \frac{u^2}{v^2}, \quad Y = \frac{13^{\beta_1}}{v^3}, \quad \beta_1 = \lfloor \beta/2 \rfloor, \quad D_1 = \pm 1, \ \pm 13$$

• In the case $D_1 = \pm 1$ (changing X to -X when $D_1 = -1$), we have to find the {5}-integer points on the elliptic curves

$$7X^{3} + \eta 175X^{2} + 525X + \eta 125 = Y^{2}, \qquad \eta \in \{-1, 1\}.$$
(3.10)

We multiply both sides of equation (3.10) by 7^2 to obtain

$$U^{3} + \eta 175U^{2} + 3675U + \eta 6125 = \pm V^{2}, \qquad (3.11)$$

where $(U, V) = (\eta 7X, 7Y)$ are {5}-integer points on the above elliptic curve. We use MAGMA to determine all these points. We find only (U, V) = (21, 56), for $\eta = 1$. This gives us (X, Y) = (3, 8) which does not lead to a solution of (1.2).

• When $D = \pm 13$, we multiply 3.9 by $7^2 13^3$ and obtain the elliptic curve

$$U^{3} + \eta 2275U^{2} + 621075U + \eta 13456625 = V^{2}, \qquad \eta \in \{-1, 1\},$$
(3.12)

where

$$U = \eta 91X, \quad V = 1183Y,$$

for which we need again its {5}-integer points. In the same way, for $\eta = -1$, we find (U, V) = (91, 9464), (679, 42392) so (X, Y) = (1, 8), (97/13, 6056/169). This is inconsistent with the definition of X and Y.

Case 2: $v = \pm 1$.

Here, we obtain the following Thue-Mahler equations

$$7u^6 - 175u^4 + 525u^2 - 125 = 5^{\alpha} \ 13^{\beta}.$$
(3.13)

By the same method, we can rewrite the above equation as

$$7X^3 - 175X^2 + 525X - 125 = D_1Y^2, (3.14)$$

where

$$X = u^2$$
, $Y = 5^{\alpha_1} \ 13^{\beta_1}$, $\alpha_1 = \lfloor \alpha/2 \rfloor$, $\beta_1 = \lfloor \beta/2 \rfloor$, $D_1 = \pm 1, \pm 5, \pm 13, \pm 65$.

When $D_1 = \pm 1$, ± 13 , we get again the two curves shown at (3.10) and (3.12), respectively, except that now we need only their integer points.

178

• When $D_1 = \pm 5$, we then multiply both sides of equation (3.14) by $7^2 \, 13^3$ and get the two elliptic curves

$$U^{3} + \eta 2275U^{2} + 621075U + \eta 13456625 = V^{2}, \qquad \eta \in \{-1, 1\},$$
(3.15)

where $U = \eta 91X$, V = 1183Y, and we need their integer points. Here also we use MAGMA to find, for $\eta = -1$, the integral point (U, V) = (91, 9464) so $(X, Y) = (u^2, 5^{\alpha_1} 13^{\beta_1}) = (1, 8)$, which has does not lead to integer solutions α_1 and β_1 .

• Finally, for the case $D = \pm 65$, we multiply both sides of equation (3.14) by $7^2 5^3 13^3$ to obtain

$$U^{3} + \eta 11375U^{2} + 15526875U + \eta 1682078125 = V^{2}, \qquad \eta \in \{-1, 1\}, \qquad (3.16)$$

where U = 455X, V = 29575Y, whose integer points we need to compute. We determine two such integral points for $\eta = 1$ and nine of them for $\eta = -1$ using MAGMA. None of them leads to a solution of (1.2). This completes the proof of the lemma.

It now remains to deal with the case n = 3.

4. The case n = 3.

LEMMA 4.1. When n = 3, then the only solutions to equation (1.2) are

$$(x, y, a, b) = (70, 17, 0, 1), (142, 29, 2, 2).$$
 (4.1)

Proof. Equation (1.2) can be rewritten as

$$\left(\frac{x}{z^3}\right)^2 + A = \left(\frac{y}{z^2}\right)^3,\tag{4.2}$$

where A is cube-free and defined implicitly by $5^a \, 13^b = Az^6$. One can see that $A = 5^{a_1} \, 13^{b_1}$ with $a_1, b_1 \in \{0, 1, 2, 3, 4, 5\}$. We thus get

$$V^2 = U^3 - 5^{a_1} \cdot 13^{b_1}, \tag{4.3}$$

with $a_1, b_1 \in \{0, 1, 2, 3, 4, 5\}$, and we need to determine all the $\{5, 13\}$ -points on the above 36 elliptic curves. Here, we use again MAGMA to determine all the $\{5, 13\}$ -integral points on the above elliptic curves. We find

$$(U, V, a_1, b_1) = (1, 0, 0, 0), (17, 70, 0, 1), (13, 0, 0, 3), (5, 10, 2, 0), (65, 520, 2, 2), (29, 142, 2, 2), (169, 2028, 2, 4), (5, 0, 3, 0), (65, 0, 3, 3), (365, 5850, 4, 2), (10289, 1126892, 4, 3).$$

As the numbers x and y are coprime positive integers, the above solutions lead to only two solutions for the original equation, namely (x, y, a, b) = (70, 17, 0, 1), (142, 29, 2, 2). This concludes the proof.

5. Comments on the limitation of the method. The method used in this paper to deal with the case $C = 5^a \, 13^b$ will work for other values of $C = p_1^{a_1} \dots p_k^{a_k}$, where p_1, \dots, p_k are fixed primes provided that three conditions are satisfied. Write $C = dz^2$,

where d is squarefree and let $\mathbb{K} = \mathbb{Q}[i\sqrt{d}]$. Note that d can take at most 2^k values according to the parities of the exponents a_i for i = 1, ..., k.

The first necessary condition is that any solution (x, y, d, z, n) of $x^2 + dz^2 = y^n$ with $n \ge 3$ and coprime integers x and y leads to a factorization $(x + i\sqrt{dz})(x - i\sqrt{dz}) = y^n$ in $\mathcal{O}_{\mathbb{K}}$, where the two factors appearing in the left hand side are coprime. This is always the case when y is odd, but it is not the case when y is even. In particular, if either $2 \mid C$ or $C \not\equiv 7 \pmod{8}$, then this condition will be satisfied. In our example, $k = 2, p_1 = 5, p_2 = 13$, so the condition $C \not\equiv 7 \pmod{8}$ is satisfied. This condition is not satisfied, say, for the equation $x^2 + 3^a \cdot 5^b = y^n$ when a and b are both odd.

The next necessary condition is that the class number of K is not divisible by a prime $p \ge 5$. For example, when k = 1, $p_1 = 47$ and $C = 47^a$ with *a* odd, then $\mathbb{K} = \mathbb{Q}[i\sqrt{47}]$ has class number 5. In this case, our general approach fails when n = 5, so the particular equation $x^2 + 47^a = y^5$ should be solved by different means. Writing $a = 10\alpha + a_1$, where α is a nonnegative integer and $a_1 \in \{0, 1, \dots, 9\}$, we get

$$X^2 + 47^{a_1} = Y^5$$

where $X = x/47^{5\alpha}$, $Y = y/47^{2\alpha}$, so we need to determine all {47}-integer points on 10 curves of genus 2, and this is a harder problem.

Finally, for the last necessary condition, note that assuming that $n = p \ge 5$ is a prime, then the only allowable values for p resulting upon applying the theory of primitive divisors of Lucas numbers for which the associated Lucas number L_p is not defective are the ones such that $p | p_i \pm 1$ for some i = 1, ..., k. In turn, by a method similar to the one used in this paper, this leads to an equation of the form F(U, W) = L, where both W and L are S-units for $S = \{p_1, ..., p_k\}$ and F is a homogeneous polynomial of degree (p - 1)/2. Thus, the last necessary condition is that we can find all the solutions of these last equations. In case p = 7, F is of degree 3, so writing $L = D_1 V^2$, where D_1 is squarefree, it follows that all the solutions to the above equations can be seen as S-integer points on a collection of at most 2^{k+1} elliptic curves, which are, in fact, all quadratic twists of the same one (here, a factor of 2 accounts for the sign of D_1 , and 2^k for the number of positive square free values of $|D_1|$), and this is easy. When p > 7, this is no longer the case. Of course, the resulting equations are Thue-Mahler equations even when p > 7, but finding all their solutions is no longer accomplished in such a quick way as in the case when p = 7.

REFERENCES

1. S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation $x^2 + 2^k = y^n$, *Internat. J. Math. Math. Sci.* **20** (1997), 299–304.

2. S. A. Arif and F. S. Abu Muriefah, The Diophantine equation $x^2 + 3^m = y^n$, *Internat. J. Math. Math. Sci.* **21** (1998), 619–620.

3. S. A. Arief and F. S. Abu Muriefah, On a Diophantine equation, *Bull. Austral. Math. Soc.* **57** (1998), 189–198.

4. F. S. Abu Muriefah and S. A. Arif, The Diophantine equation $x^2 + 5^{2k+1} = y^n$, *Indian J. Pure Appl. Math.* **30** (1999), 229–231.

5. S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation $x^2 + q^{2k+1} = y^n$, *J. Number Theory* **95** (2002), 95–100.

6. F. S. Abu Muriefah, On the diophantine equation $x^2 + 5^{2k} = y^n$, *Demonstratio Mathematica* **319** (2) (2006), 285–289.

7. F. S. Abu Muriefah and Y. Bugeaud, The Diophantine equation $x^2 + c = y^n$: a brief overview, *Rev. Colombiana Math.* **40** (2006), 31–37.

8. Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, (Appendix by M. Mignotte), *J. reine angew. Math.* **539** (2001), 75–122.

9. Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell equation, *Composition Math.* **142** (2006), 31–62.

10. J. H. E. Cohn, The Diophantine equation $x^2 + c = y^n$, Acta Arith. **65** (1993), 367–381.

11. C. Ko, On the Diophantine equation $x^2 = y^n + 1$, $xy \neq 0$, Sci. Sinica 14 (1965), 457–460.

12. M. Le, An exponential Diophantine equation, Bull. Austral. Math. Soc. 64 (2001), 99-105.

13. M. Le, On Cohn's conjecture concerning the Diophantine equation $x^2 + 2^m = y^n$, Arch. *Math. (Basel)* **78** (2002), 26–35.

14. V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation $x^m = y^2 + 1$, Nouv. Annal. des Math. 9 (1850), 178–181.

15. F. Luca, On a Diophantine Equation, Bull. Austral. Math. Soc. 61 (2000), 241-246.

16. F. Luca, On the equation $x^2 + 2^a \cdot 3^b = y^n$, Int. J. Math. Math. Sci. **29** (2002), 239–244. **17.** F. Luca and A. Togbé On the equation $x^2 + 2^a \cdot 5^b = y^n$, Int. J. Number Theory, to appear.

18. M. Mignotte and B. M. M. de Weger, On the Diophantine equations $x^2 + 74 = y^5$ and $x^2 + 86 = y^5$. Glasgow Math. J. **38** (1996), 77–85.

 $x^{2} + 86 = y^{5}$, Glasgow Math. J. **38** (1996), 77–85. **19.** I. Pink, On the diophantine equation $x^{2} + 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 7^{\delta} = y^{n}$, Publ. Math. Debrecen **70/1–2** (2006), 149–166.

20. Sz. Tengely, On the Diophantine equation $x^2 + a^2 = 2y^p$, *Indag. Math.* (*N.S.*) **15** (2004), 291–304.