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Abstract. In this note, we find all the solutions of the Diophantine equation
X2 + 5713% = y in positive integers x, y, a, b, n > 3 with x and y coprime.
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1. Introduction. The history of the Diophantine equation
x2~|—C=y”, x>1, y>1, n>3 (1.1)

is very rich. In 1850, Lebesgue [14] proved that the above equation has no solutions
when C = 1. 1In 1965, Chao Ko [11] proved that the only solution of the above equation
with C = —1isx =3, y = 2.J. H. E. Cohn [10] solved the above equation for several
values of the parameter Cin therange 1 < C < 100. A couple of the remaining values of
C in the above range were covered by Mignotte and De Weger in [18], and the remaining
ones in the recent paper [9]. In [20], all solutions of the equation x> + C = 2y” with
n > 3, coprime integers x and y and C = B> with B € {3,4, ..., 501} were found.

Recently, several authors became interested in the case when only the prime factors
of C are specified. For example, the case when C = p* with a fixed prime number p,
was dealt with in [1] and [13] for p = 2, in [2], [3] and [15] for p = 3, and in [4] and [6]
for p = 5. Partial results for a general prime p appear in [5] and [12]. All the solutions
when C = 293" were found in [16]. See also the recent survey [7] for more results of
this type. Not included in this survey is a result by the second and the third authors
concerning the solutions of the above equation for the case C = 27 5 (see [17]), as well
as Pink’s study [19] of the case C = 23" 5¢7¢,

Here, we continue this study with the equation

X 4+5130=y", x>1, y>1, ged(x,y)=1, n>3, a>0, b>0. (1.2)
Our main result is the following.
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THEOREM 1.1. The equation (1.2) has no solution except for:
n=3 (x,y.ab)=(70,17,0,1), (142,29,2,2);
n=4 (x,y,a,b)=(43,1,1).

2. The case n = 4. Here, we have the following result.

LEMMA 2.1. If n = 4, then the only solution to equation (1.2) is
(x,y,a,b)=(4,3,1,1). 2.1

Proof. Equation (1.2) can be written as

2 4
(iz) iy (l’) , 2.2)
Z z

where A is fourth-power free and defined implicitly by 5% 13° = 4z*. One can see that
A = 54 13" with a;, by € {0, 1, 2, 3}. Hence, the problem consists in determining the
{5, 13}-integer points on the totality of the 16 elliptic curves

v:=U*— 513", (2.3)

with a;, b; € {0, 1,2, 3}.

Recall that if S is a finite set of prime numbers, then an S-integer is rational number
a/b with coprime integers a and b > 0, where the prime factors of b are in S. We use
MAGMA to determine the {5, 13}-integral points on the above elliptic curves. We find

U, V,a1,b1)=(1,0,0,0),(3,4,1,1), (13, 156, 2, 2).

With the conditions on x, y and the definition of U, V, one can see that the only
corresponding solution is (x, y, @, b) = (4, 3, 1, 1). This concludes the proof. O

If (x, y, a, b, n) is a solution of the Diophantine equation (1.2) and d is any proper
divisor of n, then (x, y?, a, b, n/d) is also a solution of the same equation. Since n > 3
and we have already dealt with the case n = 4, it follows that it suffices to look at the
solutions 7 for which p | n for some odd prime p. In this case, we may certainly replace
n by p, and thus assume for the rest of the paper that n is an odd prime.

3. The case n > 5.
LEMMA 3.1. The Diophantine equation (1.2) has no solution with n > 5 prime.

Proof. We write the Diophantine equation (1.2) as x> + dz> = y”, where d =
1, 5,13, 65 according to the parities of the exponents a and b. Here, z = 5% 13# for
some nonnegative integers @ and B. Let IK = Q[i/d]. We factor the above equation in
K getting

(x +ivd 2)(x — i/d 2) = ). 3.1)

Since 5713” = 1 (mod4), it follows by considerations modulo 4 in equation (1.2) that x
is even. Since x and y are coprime, a standard argument shows that the ideals generated
by x + iy/dz and x — i\/dz are coprime in K. Hence, the ideal x + iy/dz is a pth power
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of some ideal in Ok. The class number of KK belongs to {1, 2, 8}. In particular, it is
coprime to p. Thus, by a standard argument, it follows that x + iy/dz is associated to
a pth power in Ok. Since the group of units in K is of order 2 or 4 (coprime to p), it
follows that we may assume that

X+ idz = y? (3.2)

holds with some algebraic integer y € O. Finally, since the discriminant of I is —4d,
it follows that {1, i\/d} is a base for Ok. In conclusion, we can write y = u + i /dv.
Conjugating equation 3.2 and subtracting the two relations, we get

2i/d 5% 13F = y? — P, (3.3)

The right hand side of the above equation is a multiple of 2i/dv = y — 7. We deduct
that v | 5% 13#, and that

5136 yr_pp
_r=-r ez (3.4)
v Yy —Vv

Let {Ly}n=0 be the sequence of general term L,, = Z=L=, for all n > 0. This is called
a Lucas sequence and it consists of integers. For any nonzero integer k, we write P(k)

for the largest prime factor of k. Equation (3.6) leads to the conclusion that

P(L,) =P (Saiyg) . 3.5)

Recall that the Primitive Divisor Theorem for Lucas sequences implies that if p > 5,
then L, has a primitive prime factor except for finitely many pairs (y, ) and all of
them appear in Table 1 in [8]. These exceptional Lucas numbers are called defective. A
primitive prime factor ¢ has the properties (among others), that ¢ { —4dv> = (y — 7)?,
andg = =+1 (mod p). More precisely, g =e (mod p), where e = (#). Here, and in
what follows, (i—’]) stands for the Legendre symbol of a with respect to the odd prime g.

Since K = Q[i/d] with d € {1, 5,13, 65}, a quick inspection of Table 1 in [8]
reveals that our number L, cannot be defective. Thus, L, must have a primitive divisor
gq. Clearly, g € {5,13} and ¢ = +1 (mod p), where p > 5. Hence, the only possibility
is ¢ = 13, and we conclude that p | 12, 14. The only possibility is p = 7, and since
13=-1 (mod 7), wemusthavethat(#) = —1.Sinced € {1, 5, 13, 65}, we conclude
that d = 5. Using now 3.3 with p = 7, we obtain

v(7u® — 175u*v? + 525170 — 1250°%) = 5% 135, (3.6)
Since u and v are coprime, we have the possibilities

v=45%13%, v=2413%, v=245 v==+I. (3.7
The first two cases lead to the conclusion that P(L,) = P(5* 13f /v) <5, which is

impossible since it leads again to the conclusion that L, has no primitive divisors, so
we look at the last two possibilities.
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Case 1: v = £5%.
In this case, the Diophantine equation (3.6) is
Tu® — 175u*v? + 5251707 — 1250 = +£13F, (3.8)

Dividing both sides of the above equation by v%, we obtain the elliptic equations

7X* —175X% + 525X — 125 =D, Y7, (3.9)
where
w? 138
X==, Y=—r pi=1p/2, Di=4+I £13.
v v

e In the case D} = =1 (changing X to —X when D; = —1), we have to find the
{5}-integer points on the elliptic curves

7X3 +n175X% + 525X + 0125 = Y2, ne{-1,1}. (3.10)
We multiply both sides of equation (3.10) by 72 to obtain
U3 + nl75U% + 3675U + n6125 = £ V2, (3.11)

where (U, V) = (n7X,7Y) are {5}-integer points on the above elliptic curve. We use
MAGMA to determine all these points. We find only (U, V) = (21, 56), for n = 1. This
gives us (X, Y) = (3, 8) which does not lead to a solution of (1.2).

e When D = 413, we multiply 3.9 by 7? 133 and obtain the elliptic curve

U? + 227507 + 621075U + n13456625 = V72, ne{—1,1}, (3.12)
where
U=n9lX, V =1183Y,

for which we need again its {5}-integer points. In the same way, for n = —1, we
find (U, V) = (91, 9464), (679, 42392) so (X, Y) = (1, 8),(97/13,6056/169). This is
inconsistent with the definition of X and Y.

Case 2: v = +£1.
Here, we obtain the following Thue-Mahler equations

Tu® — 175u* + 5251 — 125 = 5% 13, (3.13)
By the same method, we can rewrite the above equation as
7X3 —175X% + 525X — 125 =D, Y?, (3.14)
where
X =u’, Y=513% « =|a/2], Bi=|B/2], D ==+l £5, £13, +65.

When D; = +1, +13, we get again the two curves shown at (3.10) and (3.12),
respectively, except that now we need only their integer points.
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e When D; = +5, we then multiply both sides of equation (3.14) by 7> 13* and get
the two elliptic curves

U? + 227507 + 621075U + 13456625 = V2, nef{—1,1}, (3.15)

where U = n91X, V' =1183Y, and we need their integer points. Here also we use
MAGMA to find, for n = —1, the integral point (U, V') = (91,9464) so (X, Y) =
(%, 5113#1) = (1, 8), which has does not lead to integer solutions oy and S;.

e Finally, for the case D = £65, we multiply both sides of equation (3.14) by
77 53133 to obtain

U? + n11375U% 4+ 15526875U + 1682078125 = V2, nef{—1,1}, (3.16)

where U = 455X, V =29575Y, whose integer points we need to compute. We

determine two such integral points for n = 1 and nine of them for n = —1 using
MAGMA. None of them leads to a solution of (1.2). This completes the proof of the
lemma.

It now remains to deal with the case n = 3. O

4. The case n = 3.

LEMMA 4.1. When n = 3, then the only solutions to equation (1.2) are
(x,y,a,b)=1(70,17,0,1), (142,29, 2,2). 4.1)

Proof. Equation (1.2) can be rewritten as

X 2 y 3
<2—3> +A4= (;> , 4.2)

where 4 is cube-free and defined implicitly by 5913 = A4z One can see that 4 =
54 135 with a;, b; € {0, 1,2, 3, 4, 5}. We thus get

Vi= U -5 13", (4.3)

with a1, b € {0, 1, 2, 3,4, 5}, and we need to determine all the {5, 13}-points on the
above 36 elliptic curves. Here, we use again MAGMA to determine all the {5, 13}-
integral points on the above elliptic curves. We find

U, V,a,b1)=(1,0,0,0),(17,70,0, 1), (13,0, 0, 3), (5, 10, 2, 0), (65, 520, 2, 2),
(29,142,2,2),(169, 2028, 2, 4), (5, 0, 3, 0), (65, 0, 3, 3),
(365, 5850, 4, 2), (10289, 1126892, 4, 3).
As the numbers x and y are coprime positive integers, the above solutions

lead to only two solutions for the original equation, namely (x,y,a,b)=
(70,17,0, 1), (142,29, 2, 2). This concludes the proof. O

5. Comments on the limitation of the method. The method used in this paper
to deal with the case C = 5¢13" will work for other values of C = p{'...p{*, where
D1, - .., pr are fixed primes provided that three conditions are satisfied. Write C = dz?,
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where d is squarefree and let K = Q[i\/d]. Note that d can take at most 2¥ values
according to the parities of the exponents ¢; fori=1, ..., k.

The first necessary condition is that any solution (x, y, d, z, n) of x> + dz* = y" with
n > 3 and coprime integers x and y leads to a factorization (x + i/dz)(x — iy/dz) = )"
in Ok, where the two factors appearing in the left hand side are coprime. This is
always the case when y is odd, but it is not the case when y is even. In particular,
if either 2 | C or C # 7 (mod8), then this condition will be satisfied. In our example,
k=2,p1 =5, p =13, so the condition C # 7 (mod8) is satisfied. This condition is
not satisfied, say, for the equation x> 4+ 3¢ - 5 = y” when @ and b are both odd.

The next necessary condition is that the class number of K is not divisible by
a prime p > 5. For example, when kK =1, p; =47 and C = 47% with a odd, then
K = Q[i+v/47] has class number 5. In this case, our general approach fails when n = 5,
so the particular equation x> + 47 = »° should be solved by different means. Writing
a = 10« + a;, where « is a nonnegative integer and ¢; € {0, 1, ..., 9}, we get

X447 = Y3,

where X = x/47°%, Y = y/47°*, so we need to determine all {47}-integer points on 10
curves of genus 2, and this is a harder problem.

Finally, for the last necessary condition, note that assuming that n=p > 5 is
a prime, then the only allowable values for p resulting upon applying the theory
of primitive divisors of Lucas numbers for which the associated Lucas number L,
is not defective are the ones such that p | p; =1 for some i =1, ..., k. In turn, by
a method similar to the one used in this paper, this leads to an equation of the
form F(U, W) = L, where both W and L are S-units for S = {p;, ..., px} and F is
a homogeneous polynomial of degree (p — 1)/2. Thus, the last necessary condition is
that we can find all the solutions of these last equations. In case p = 7, F is of degree
3, so writing L = D; V2, where D, is squarefree, it follows that all the solutions to
the above equations can be seen as S-integer points on a collection of at most 2¢+!
elliptic curves, which are, in fact, all quadratic twists of the same one (here, a factor of
2 accounts for the sign of D;, and 2* for the number of positive square free values of
|D1]), and this is easy. When p > 7, this is no longer the case. Of course, the resulting
equations are Thue-Mahler equations even when p > 7, but finding all their solutions
is no longer accomplished in such a quick way as in the case when p = 7.
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