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Abstract. In this note, we find all the solutions of the Diophantine equation
x2 + 5a 13b = yn in positive integers x, y, a, b, n ≥ 3 with x and y coprime.
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1. Introduction. The history of the Diophantine equation

x2 + C = yn, x ≥ 1, y ≥ 1, n ≥ 3 (1.1)

is very rich. In 1850, Lebesgue [14] proved that the above equation has no solutions
when C = 1. In 1965, Chao Ko [11] proved that the only solution of the above equation
with C = −1 is x = 3, y = 2. J. H. E. Cohn [10] solved the above equation for several
values of the parameter C in the range 1 ≤ C ≤ 100. A couple of the remaining values of
C in the above range were covered by Mignotte and De Weger in [18], and the remaining
ones in the recent paper [9]. In [20], all solutions of the equation x2 + C = 2yn with
n ≥ 3, coprime integers x and y and C = B2 with B ∈ {3, 4, . . . , 501} were found.

Recently, several authors became interested in the case when only the prime factors
of C are specified. For example, the case when C = pk with a fixed prime number p,
was dealt with in [1] and [13] for p = 2, in [2], [3] and [15] for p = 3, and in [4] and [6]
for p = 5. Partial results for a general prime p appear in [5] and [12]. All the solutions
when C = 2a 3b were found in [16]. See also the recent survey [7] for more results of
this type. Not included in this survey is a result by the second and the third authors
concerning the solutions of the above equation for the case C = 2a 5b (see [17]), as well
as Pink’s study [19] of the case C = 2a 3b 5c 7d .

Here, we continue this study with the equation

x2 + 5a 13b = yn, x ≥ 1, y ≥ 1, gcd(x, y) = 1, n ≥ 3, a ≥ 0, b ≥ 0. (1.2)

Our main result is the following.
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THEOREM 1.1. The equation (1.2) has no solution except for:
n = 3 (x, y, a, b) = (70, 17, 0, 1), (142, 29, 2, 2);
n = 4 (x, y, a, b) = (4, 3, 1, 1).

2. The case n = 4. Here, we have the following result.

LEMMA 2.1. If n = 4, then the only solution to equation (1.2) is

(x, y, a, b) = (4, 3, 1, 1). (2.1)

Proof. Equation (1.2) can be written as

(
x
z2

)2

+ A =
(

y
z

)4

, (2.2)

where A is fourth-power free and defined implicitly by 5a 13b = Az4. One can see that
A = 5a1 13b1 with a1, b1 ∈ {0, 1, 2, 3}. Hence, the problem consists in determining the
{5, 13}-integer points on the totality of the 16 elliptic curves

V2 = U4 − 5a1 13b1 , (2.3)

with a1, b1 ∈ {0, 1, 2, 3}.
Recall that ifS is a finite set of prime numbers, then anS-integer is rational number

a/b with coprime integers a and b > 0, where the prime factors of b are in S. We use
MAGMA to determine the {5, 13}-integral points on the above elliptic curves. We find

(U, V, a1, b1) = (1, 0, 0, 0), (3, 4, 1, 1), (13, 156, 2, 2).

With the conditions on x, y and the definition of U, V , one can see that the only
corresponding solution is (x, y, a, b) = (4, 3, 1, 1). This concludes the proof. �

If (x, y, a, b, n) is a solution of the Diophantine equation (1.2) and d is any proper
divisor of n, then (x, yd, a, b, n/d) is also a solution of the same equation. Since n ≥ 3
and we have already dealt with the case n = 4, it follows that it suffices to look at the
solutions n for which p | n for some odd prime p. In this case, we may certainly replace
n by p, and thus assume for the rest of the paper that n is an odd prime.

3. The case n ≥ 5.

LEMMA 3.1. The Diophantine equation (1.2) has no solution with n ≥ 5 prime.

Proof. We write the Diophantine equation (1.2) as x2 + dz2 = yp, where d =
1, 5, 13, 65 according to the parities of the exponents a and b. Here, z = 5α 13β for
some nonnegative integers α and β. Let � = �[i

√
d]. We factor the above equation in

� getting

(x + i
√

d z)(x − i
√

d z) = yp. (3.1)

Since 5a13b ≡ 1 (mod4), it follows by considerations modulo 4 in equation (1.2) that x
is even. Since x and y are coprime, a standard argument shows that the ideals generated
by x + i

√
dz and x − i

√
dz are coprime in �. Hence, the ideal x + i

√
dz is a pth power
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of some ideal in O�. The class number of � belongs to {1, 2, 8}. In particular, it is
coprime to p. Thus, by a standard argument, it follows that x + i

√
dz is associated to

a pth power in O�. Since the group of units in � is of order 2 or 4 (coprime to p), it
follows that we may assume that

x + i
√

dz = γ p (3.2)

holds with some algebraic integer γ ∈ O�. Finally, since the discriminant of � is −4d,
it follows that {1, i

√
d} is a base for O�. In conclusion, we can write γ = u + i

√
dv.

Conjugating equation 3.2 and subtracting the two relations, we get

2i
√

d 5α 13β = γ p − γ̄ p. (3.3)

The right hand side of the above equation is a multiple of 2i
√

dv = γ − γ̄ . We deduct
that v | 5α 13β , and that

5α 13β

v
= γ p − γ̄ p

γ − γ̄
∈ �. (3.4)

Let {Lm}m≥0 be the sequence of general term Lm = γ m−γ̄ m

γ−γ̄
, for all n ≥ 0. This is called

a Lucas sequence and it consists of integers. For any nonzero integer k, we write P(k)
for the largest prime factor of k. Equation (3.6) leads to the conclusion that

P(Lp) = P
(

5α13β

v

)
. (3.5)

Recall that the Primitive Divisor Theorem for Lucas sequences implies that if p ≥ 5,
then Lp has a primitive prime factor except for finitely many pairs (γ, γ̄ ) and all of
them appear in Table 1 in [8]. These exceptional Lucas numbers are called defective. A
primitive prime factor q has the properties (among others), that q � −4dv2 = (γ − γ̄ )2,
and q ≡ ±1 (mod p). More precisely, q ≡ e (mod p), where e = (−4d

q ). Here, and in
what follows, ( a

q ) stands for the Legendre symbol of a with respect to the odd prime q.
Since � = �[i

√
d] with d ∈ {1, 5, 13, 65}, a quick inspection of Table 1 in [8]

reveals that our number Lp cannot be defective. Thus, Lp must have a primitive divisor
q. Clearly, q ∈ {5, 13} and q ≡ ±1 (mod p), where p ≥ 5. Hence, the only possibility
is q = 13, and we conclude that p | 12, 14. The only possibility is p = 7, and since
13 ≡ −1 (mod 7), we must have that (−4d

13 ) = −1. Since d ∈ {1, 5, 13, 65}, we conclude
that d = 5. Using now 3.3 with p = 7, we obtain

v(7u6 − 175u4v2 + 525u2v2 − 125v6) = 5α 13β. (3.6)

Since u and v are coprime, we have the possibilities

v = ±5α 13β, v = ±13β, v = ±5α, v = ±1. (3.7)

The first two cases lead to the conclusion that P(Lp) = P(5α 13β/v) ≤ 5, which is
impossible since it leads again to the conclusion that Lp has no primitive divisors, so
we look at the last two possibilities.
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Case 1: v = ±5α.

In this case, the Diophantine equation (3.6) is

7u6 − 175u4v2 + 525u2v2 − 125v6 = ±13β. (3.8)

Dividing both sides of the above equation by v6, we obtain the elliptic equations

7X3 − 175X2 + 525X − 125 = D1Y 2, (3.9)

where

X = u2

v2
, Y = 13β1

v3
, β1 = �β/2�, D1 = ±1, ±13.

• In the case D1 = ±1 (changing X to −X when D1 = −1), we have to find the
{5}-integer points on the elliptic curves

7X3 + η175X2 + 525X + η125 = Y 2, η ∈ {−1, 1}. (3.10)

We multiply both sides of equation (3.10) by 72 to obtain

U3 + η175U2 + 3675U + η6125 = ±V2, (3.11)

where (U, V ) = (η7X, 7Y ) are {5}-integer points on the above elliptic curve. We use
MAGMA to determine all these points. We find only (U, V ) = (21, 56), for η = 1. This
gives us (X, Y ) = (3, 8) which does not lead to a solution of (1.2).

• When D = ±13, we multiply 3.9 by 72 133 and obtain the elliptic curve

U3 + η2275U2 + 621075U + η13456625 = V2, η ∈ {−1, 1}, (3.12)

where

U = η91X, V = 1183Y,

for which we need again its {5}-integer points. In the same way, for η = −1, we
find (U, V ) = (91, 9464), (679, 42392) so (X, Y ) = (1, 8), (97/13, 6056/169). This is
inconsistent with the definition of X and Y .

Case 2: v = ±1.
Here, we obtain the following Thue-Mahler equations

7u6 − 175u4 + 525u2 − 125 = 5α 13β. (3.13)

By the same method, we can rewrite the above equation as

7X3 − 175X2 + 525X − 125 = D1Y 2, (3.14)

where

X = u2, Y = 5α1 13β1 , α1 = �α/2�, β1 = �β/2�, D1 = ±1, ±5, ±13, ±65.

When D1 = ±1, ± 13, we get again the two curves shown at (3.10) and (3.12),
respectively, except that now we need only their integer points.
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• When D1 = ±5, we then multiply both sides of equation (3.14) by 72 133 and get
the two elliptic curves

U3 + η2275U2 + 621075U + η13456625 = V2, η ∈ {−1, 1}, (3.15)

where U = η91X, V = 1183Y , and we need their integer points. Here also we use
MAGMA to find, for η = −1, the integral point (U, V ) = (91, 9464) so (X, Y ) =
(u2, 5α1 13β1 ) = (1, 8), which has does not lead to integer solutions α1 and β1.

• Finally, for the case D = ±65, we multiply both sides of equation (3.14) by
72 53 133 to obtain

U3 + η11375U2 + 15526875U + η1682078125 = V2, η ∈ {−1, 1}, (3.16)

where U = 455X, V = 29575Y, whose integer points we need to compute. We
determine two such integral points for η = 1 and nine of them for η = −1 using
MAGMA. None of them leads to a solution of (1.2). This completes the proof of the
lemma.

It now remains to deal with the case n = 3. �

4. The case n = 3.

LEMMA 4.1. When n = 3, then the only solutions to equation (1.2) are

(x, y, a, b) = (70, 17, 0, 1), (142, 29, 2, 2). (4.1)

Proof. Equation (1.2) can be rewritten as
(

x
z3

)2

+ A =
(

y
z2

)3

, (4.2)

where A is cube-free and defined implicitly by 5a 13b = Az6. One can see that A =
5a1 13b1 with a1, b1 ∈ {0, 1, 2, 3, 4, 5}. We thus get

V2 = U3 − 5a1 · 13b1 , (4.3)

with a1, b1 ∈ {0, 1, 2, 3, 4, 5}, and we need to determine all the {5, 13}-points on the
above 36 elliptic curves. Here, we use again MAGMA to determine all the {5, 13}-
integral points on the above elliptic curves. We find

(U, V, a1, b1) = (1, 0, 0, 0), (17, 70, 0, 1), (13, 0, 0, 3), (5, 10, 2, 0), (65, 520, 2, 2),

(29, 142, 2, 2), (169, 2028, 2, 4), (5, 0, 3, 0), (65, 0, 3, 3),

(365, 5850, 4, 2), (10289, 1126892, 4, 3).

As the numbers x and y are coprime positive integers, the above solutions
lead to only two solutions for the original equation, namely (x, y, a, b) =
(70, 17, 0, 1), (142, 29, 2, 2). This concludes the proof. �

5. Comments on the limitation of the method. The method used in this paper
to deal with the case C = 5a 13b will work for other values of C = pa1

1 . . . pak
k , where

p1, . . . , pk are fixed primes provided that three conditions are satisfied. Write C = dz2,
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where d is squarefree and let � = �[i
√

d]. Note that d can take at most 2k values
according to the parities of the exponents ai for i = 1, . . . , k.

The first necessary condition is that any solution (x, y, d, z, n) of x2 + dz2 = yn with
n ≥ 3 and coprime integers x and y leads to a factorization (x + i

√
dz)(x − i

√
dz) = yn

in O�, where the two factors appearing in the left hand side are coprime. This is
always the case when y is odd, but it is not the case when y is even. In particular,
if either 2 | C or C 	≡ 7 (mod8), then this condition will be satisfied. In our example,
k = 2, p1 = 5, p2 = 13, so the condition C 	≡ 7 (mod8) is satisfied. This condition is
not satisfied, say, for the equation x2 + 3a · 5b = yn when a and b are both odd.

The next necessary condition is that the class number of � is not divisible by
a prime p ≥ 5. For example, when k = 1, p1 = 47 and C = 47a with a odd, then
� = �[i

√
47] has class number 5. In this case, our general approach fails when n = 5,

so the particular equation x2 + 47a = y5 should be solved by different means. Writing
a = 10α + a1, where α is a nonnegative integer and a1 ∈ {0, 1, . . . , 9}, we get

X2 + 47a1 = Y 5,

where X = x/475α, Y = y/472α, so we need to determine all {47}-integer points on 10
curves of genus 2, and this is a harder problem.

Finally, for the last necessary condition, note that assuming that n = p ≥ 5 is
a prime, then the only allowable values for p resulting upon applying the theory
of primitive divisors of Lucas numbers for which the associated Lucas number Lp

is not defective are the ones such that p | pi ± 1 for some i = 1, . . . , k. In turn, by
a method similar to the one used in this paper, this leads to an equation of the
form F(U, W ) = L, where both W and L are S-units for S = {p1, . . . , pk} and F is
a homogeneous polynomial of degree (p − 1)/2. Thus, the last necessary condition is
that we can find all the solutions of these last equations. In case p = 7, F is of degree
3, so writing L = D1V2, where D1 is squarefree, it follows that all the solutions to
the above equations can be seen as S-integer points on a collection of at most 2k+1

elliptic curves, which are, in fact, all quadratic twists of the same one (here, a factor of
2 accounts for the sign of D1, and 2k for the number of positive square free values of
|D1|), and this is easy. When p > 7, this is no longer the case. Of course, the resulting
equations are Thue-Mahler equations even when p > 7, but finding all their solutions
is no longer accomplished in such a quick way as in the case when p = 7.
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17. F. Luca and A. Togbé On the equation x2 + 2a · 5b = yn, Int. J. Number Theory, to

appear.
18. M. Mignotte and B. M. M. de Weger, On the Diophantine equations x2 + 74 = y5 and

x2 + 86 = y5, Glasgow Math. J. 38 (1996), 77–85.
19. I. Pink, On the diophantine equation x2 + 2α · 3β · 5γ · 7δ = yn, Publ. Math. Debrecen

70/1–2 (2006), 149–166.
20. Sz. Tengely, On the Diophantine equation x2 + a2 = 2yp, Indag. Math. (N.S.) 15 (2004),

291–304.

https://doi.org/10.1017/S0017089507004028 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507004028

