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Stratified Subcartesian Spaces

Tsasa Lusala and Jedrzej Sniatycki

Abstract. 'We show that if the family O of orbits of all vector fields on a subcartesian space P is locally
finite and each orbit in O is locally closed, then O defines a smooth Whitney A stratification of P. We
also show that the stratification by orbit type of the space of orbits M/G of a proper action of a Lie
group G on a smooth manifold M is given by orbits of the family of all vector fields on M/G.

1 Introduction

Stratification theory is based on the natural idea of dividing a singular space into
manifolds. It deals with study of topological spaces endowed with a partition by
smooth manifolds satisfying specific conditions. Many of the singular spaces appear-
ing in analysis have the structure of stratified spaces satisfying Whitney’s condition
B [11]], and the theory of stratified spaces is an important tool with a broad range of
applications; see [7] and references quoted there.

Sikorski’s theory of differential spaces is a tool in the study of the differential
geometry of a large class of singular spaces [9]]. A differential space P is said to be
subcartesian if every point p € P has a neighbourhood diffeomorphic to a subset
of a Euclidean space [1]]. In particular, an arbitrary subset P of R", with the ring of
smooth functions generated by restrictions to P of smooth functions on R", is sub-
cartesian.

Every subcartesian space has a canonical partition by smooth manifolds given by
orbits of the family of all vector fields on the space [I0]. The aim of this paper is
to discuss stratifications of subcartesian spaces and compare them with partitions by
orbits of the family of all vector fields. We show that the partition of a subcartesian
space P by the family O of orbits of all vector fields satisfies the frontier condition and
Whitney’s condition A. From this we conclude that if the family O is locally finite and
each orbit in O is locally closed, then O defines a smooth Whitney A stratification
of P. A locally finite family O of locally closed orbits of all vector fields need not
satisfy Whitney’s condition B. However, some smooth Whitney B stratifications are
given by orbits of all vector fields. We show that the stratification by orbit type of the
space of orbits M /G of a proper action of a Lie group G on a smooth manifold M is
given by orbits of the family of all vector fields on M/G.
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2 Decomposed Spaces

A decomposition of a topological space P is a partition of P by a locally finite family
D of smooth manifolds M C P such that each manifold M € D with its manifold
topology is a locally closed topological subspace of P, satisfying the following condi-
tion.

Condition 2.1 (Frontier Condition) For M,M’ € D, if M’ " M # @, then either
M’ =MorM' C M\M.

The pair (P, D) is called a decomposed space. Local finiteness of D means that, for
each point p € P, there exists a neighbourhood U of p in P intersecting only a finite
number of manifolds M € D. A subset M of a topological space P is locally closed if
for each x € M there exists a neighbourhood U of x in P such that M N U is closed
in U. If P is a manifold, an injectively immersed submanifold M of P is embedded if
and only if M is locally closed in P.

Decomposed spaces form a category with morphisms ¢: (P, D;) — (P2, D;)
given by continuous map ¢: Py — P, such that, for each M; € D, there exists
M, € D, such that o(M;) C M,, and the restriction of ¢ to M; is a smooth map
from M; to M,.

For a decomposed space (P, D), let Q be a topological subspace of P, and D, =
{MNQ| M e D}. Suppose that, for each M € D, M N Q is a submanifold of M
locally closed in Q, and the family Dy, is locally finite. Then Dy, satisfies the Frontier
Condition because, if M and M’ in D are such that (M’ N Q) N (M N Q) # &, then
M’'NM # &, and either M’ = M or M’ C M\ M, so that, either (M'NQ) = (MNQ)
or (M'NQ) C (MNQ). Therefore, (Q, D) is a decomposed space. In particular, if
Q is an open subset of P, then (U, Dy ) is a decomposed space.

Suppose (P, D) is a decomposed space, Q is a smooth manifold, and Dpyq =
{M x Q| M € D}. Then (P x Q,Dpyxq) is also a decomposed space, and the
projection map P x Q — P gives a morphism from (P x Q,Dpxq) to (P,D). A
decomposed space (P, D) is locally trivial if, for every point M € D and each x € M,
there exists an open neighbourhood U of x in P, a decomposed space (P’, D’) with
a distinguished point y € P’ such that the singleton {y} € D’, and an isomorphism
o: (U, Dy) — (P x (U ﬂM),@{,,X(UmM)), such that p(x) = y.

Decompositions of a topological space P can be partially ordered by inclusion. If
D, and D, are two decompositions of P, we say that D, is a refinement of D, and
write Dy > D,, if, for every M; € Dy, there exists M, € D, such that M; C M,.
We say that D is a minimal (coarsest) decomposition of P if it is not a refinement
of a different decomposition of P. Note that if P is a manifold, then the minimal
decomposition of M consists of a single manifold M = P. Similarly, we say that D is
a maximal (finest) decomposition of P if D’ > D implies D’ = D.

3 Stratified Spaces

Let A and B be subsets of a topological space P. If x € A N B, we say that A and B are
equivalent at x if there exists a neighbourhood U of x in P such that ANU = BNU.
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The equivalence class at x of a subset A of P containing x is called the germ of A at x
and denoted [A],.

A stratification of a topological space P is a map 8 that associates with each x € P
a germ 8, of a manifold embedded in P such that the following condition is satisfied.

Condition 3.1 (Stratification Condition) For every z € P there exists a neighbour-
hood U of z and a decomposition D of U such that for all y € U the germ 8, coincides
with the germ of the manifold M € D that contains y.

Every decomposition D of P defines a stratification § of P that associates with
every x € P the germ 8 at x of the manifold M € D that contains x.

Definition 3.2 Two decompositions D; and D, of P are equivalent if they define
the same stratification 8 of P.

Let 8 be a stratification of P. There is a unique decomposition D, of P by con-
nected manifolds that defines §. It is the finest element of the class of decomposition
of P corresponding to 8. From the point of view of this paper it is convenient to
identify 8 with Dy

4 Differential and Subcartesian Spaces

A differential structure on a topological space P is a family C°°(P) of functions on P
satisfying the following conditions.

Condition 4.1 (Differential Structure) (i)  The family of sets {f~'((a,b)) | f €
C°(P), and a, b € R} is a sub-basis for the topology of P.

(ii) Foreveryk € N, every fi,..., f € C¥(P), and F € C™(R*), the composition
F(fi,..., fr)isin C>°(P).

(iii) If a function f on P is such that, for every x € P, there exists an open neighbour-
hood U, of x in Q and a function f, € C>°(P) satisfying fiu, = fyu,, then f isin
C>(P).

A topological space endowed with a subring of continuous functions satisfying the
above conditions is called a differential space.

A homeomorphism ¢: P — Q of differential spaces is smooth if its pull-back ¢*
maps C*(Q) to C*®°(P). It is a diffeomorphism if it is invertible and ¢=': Q — Pis
smooth. A subcartesian space is a Hausdorff differential space P such that each point
x € P has a neigbourhood that is diffeomorphic to a subset of a Cartesian space RY.

We can adapt notions of decomposition and stratification of a topological space
to a differential space by requiring smoothness of all maps involved. Thus, a smooth
decomposition of a differential space P is a decomposition D of P as a topological
space such that, for each M € D, the inclusion map M — P is smooth. Similarly,
a smooth stratification of a differential space P is a smooth decomposition of P by
connected manifolds.

For each point p of a differential space P, a derivation of C°°(P) at p is a linear
map u: C*°(P) — R satisfying Leibniz’s rule

u(fif) = h(plu(fa) +u(f) folp) forall  fi, fo € C(P).
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The set of all derivations of C*°(P) at p is called the tangent space to P at p. It is de-
noted T),P. The tangent cone at p € P is the subset TgP of T,,P consisting of deriva-
tions at p that are given by differentiation along smooth curves in P passing through
p. In other words, u € T,Pisin TgP if there exists a smooth curve ¢: [0,1] — P
such that u(f) = % f(c(t))js=0- Reparametrization of curves gives rise to the cone
structure in Tg(P).

A (global) derivation of C*°(P) is a linear map X: C*>°(P) — C°°(P) satisfying
Leibniz’s rule

X(fif) = hX(L) +X(fi)f, forall fi, f € C=(P).

Let I be an interval in R with a non-empty interior. A smooth map ¢: I — P is an
integral curve of a derivation X if, for every t € I and f € C*>°(P),

4 £ (e(1)) = X()(e(r)).

We want to extend the notion of an integral curve to the case when I consists of a
single point, i.e., I = [a,a] for a € R. In this case the left-hand side of the above
equation is not defined. We consider a map c¢: I = [a,a] — P: a — c(a) to be an
integral curve of every derivation of C°°(P). With this definition, for every derivation
X of the differential structure C°°(P) of a subcartesian space P and every x € P, there
exists a unique maximal integral curve of X passing through x [10].

Definition 4.2 A derivation X of C°°(P) is a vector field on a subcartesian space P
if translations along integral curves of X give rise to a local one-parameter group of
local diffeomorphisms of P.

Let X be the family of all vector fields on P. For each X € X, we denote by exp tX
the local one-parameter group of local diffeomorphisms generated by translations
along integral curves of X. The orbit of X through a point x € Pis

Oy, ={(exptiXjo---oexpt,X,)(x) | n €N, (r1,...,t,) € R", Xp,...,X, € X}

For each x € P, the orbit O, of the family X of all vector fields on P is a manifold,
and the inclusion map O, < P is smooth [I0]]. The collection O of all orbits of X is
a partition of P by smoothly included manifolds.

Theorem 4.3 The partition O of a subcartesian space P by orbits of the family of all
vector fields on P is a smooth stratification of P if O is a locally finite, and each orbit
O € O is locally closed.

Proof By definition, orbits of the family of all vector fields are connected. Moreover,
for each orbit O € O, the inclusion map O < P is smooth. Hence, it suffices to show
that the family O satisfies the Frontier Condition. Suppose x € O’ N O with O’ # O.
We first show that O’ C O. Note that the orbit O is invariant under the family of
one-parameter local groups of local diffeomorphisms of P generated by vector fields.
Since x € O, it follows that, for every vector field X on S, exp(tX)(x) is in O if it is
defined. But, O’ is the orbit of X through x. Hence, O’ C 0. [ ]
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A smoothly decomposed diftferential space (P, D) is smoothly locally trivial if, for
every point M € D and each x € M, there exists an open neighbourhood U of x
in P, a smoothly decomposed differential space (P’, D’) with a distinguished point
y € P’ such that the singleton {y} € D’, and an isomorphism ¢: (U, Dy) —
(P x (UNM),Dy, «(Un) such that p(x) = y. It should be noted that a smoothly
decomposed differential space (P, D) may be locally trivial as a (topological) decom-
posed space but not smoothly locally trivial. The following example, taken from
Mather [8]], illustrates this situation.

Example 4.4 Consider F(x, y,z) = xy(x + y)(x + a(x)y) for a smooth one-to-one
function a(x) with values different from 0 and 1. The zero level S of F, given by

S ={(x,72) € R | xp(x + y)(y + al2)x) = 0},

is the union of four surfaces intersecting along the z-axis. It has eight 2-dimensional
strata: £x > 0, £y > 0, £(x+ y) > 0, and £(y + a(z)) > 0, and a 1-dimensional
stratum consisting of the z-axis.

For each z, the tangent cone to S at (0,0, z;) is the union of four planes x = 0,
y = 0,x+y = 0,and x+a(z)y = 0 intersecting along the z-axis. Projections of these
planes to the (x, y)-plane are four lines intersecting at the origin. If values of o are
different from 0 and 1, then all four lines are distinct and their cross-ratio is y(zy) =
1 + a(zg). By assumption, the function a(z) is one-to-one. Since the cross-ratio is
an invariant of linear transformations preserving the origin, all diffeomorphisms of S
preserve points on the z-axis. This implies that the stratification of S described above
is not locally trivial.

The argument above also implies that the z-axis is not an orbit of the family of
all vector fields on S. The partition of S by the family of orbits of all vector fields on
S consists of 2-dimensional orbits, which coincide with two dimensional strata, and
0-dimensional orbits {(0, 0, zy) } for each zy € R.

Let D be a smooth decomposition of a differential space P. We say that D admits
local extension of vector fields if, for each M € D each vector field X); on M and each
point x € M, there exists a neighbourhood V of x in M, and a vector field X on P
such that Xy = Xjjy. In other words, the vector field X is an extension to P of the
restriction of X, to V.

Theorem 4.5 Every smooth locally trivial decomposition of a subcartesian space P
admits local extensions of vector fields.

Proof Let X)s be a vector field on M € D. Given x;, € M, let U be a neighbourhood
of xy in M admitting an isomorphism ¢: U — (M N U) x P’ for some smoothly
decomposed differential space (P, D’) such that {p(xy)} € D’. Let exp(tXys) be
the local one-parameter group of local diffeomorphisms of M generated by X, and
Xmnu)xpr be a derivation of C*°((M NU) x P’) defined by

Xy xp M) (x, y) = L h(exp(tXar)(x), ¥)ji—o-
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foreveryh € C*°((MNU) x P')and each (x,y) € (M NU) x P’. Since X(pmnu)xp
is defined in terms of a local one-parameter group (x,y) — (exp(tXp)(x),y) of
diffeomorphisms, it is a vector field on (M N U) x P'.

We can use the inverse of the diffeomorphism p: U — (M NU) X P’ to push
forward Xnu)xps to a vector field Xy = ;' Xmnu)xp on U. Choose a func-
tion fy € C°°(P) with support in U and such that fo(x) = 1 for x in some neigh-
bourhood Uy of xy contained in U. Let X be a derivation X of C*°(P) extending
foXu by zero outside U. In other words, for every f € C*°(P), if x € U, then
(XN (x) = folx)(Xu f)(x), and if x ¢ Uy, then (Xf)(x) = 0. Clearly, X is a vector
field on P extending the restriction of X to M N Up. [ |

Theorem 4.6 Let D be a decomposition of a subcartesian space P admitting local
extensions of vector fields, then the partition O of P by orbits of the family of all vector
fields on P is a stratification of P. If all manifolds in D are connected, then D is a
refinement of O. Moreover, if D is minimal in the class of decompositions by connected
manifolds, then D = O.

Proof Let D be a decomposition of P admitting local extensions of vector fields.
Since every vector field X); on a manifold M € D extends locally to a vector field on
P, it follows that M is contained in an orbit O € O.

Every orbit O € O is a union of manifolds in the decomposition D. Since D is
locally finite, it follows that, for each x € P, there exists a neigbourhood U of x in
P that intersects only a finite number of manifolds in D. Hence, U intersects only a
finite number of orbits in O.

Since manifolds in D are locally closed, for each M € D and each x € M, there
exists a neighbourhood U of x in P such that M N U is closed in U. Without loss of
generality, we may assume that there is only a finite number of manifolds M; = M,
M,, ..., My in D such that M; NU # & fori =1, ..., k. Since manifolds in D form
a partition of P, it follows that U = Ule M; N U. We may also assume that each
M; NU is closed in U.

Let O be the orbit in O that contains M = M;. We can relabel the manifolds
M, ..., M so that

k k I
onu=onUmnu=yonmMnu=UMnuU
i=1 i=1 i=1

for some [ < k. Since M; NU is closed in U for eachi = 1, ..., it follows that ONU
is also closed in U. Hence, orbits O € O are locally closed.

Taking into account Theorem[4.3] we see that O is a stratification of P. If all man-
ifolds in D are connected, then each M € D is contained in an orbit in O and D
is a refinement of O. If D is minimal in the class of decompositions by connected

manifolds, then it cannot be a refinement of a different decomposition. Hence,
D=0. ]

5 Whitney Conditions

In his analysis of stratifications, Whitney introduced two conditions on a triple
(M, M’, x) of C'-submanifolds M and M’ of a manifold W, and x € M’ [11]]. Strat-
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ifications satisfying Whitney’s condition A are called Whitney A stratifications. Sim-
ilarly, stratifications satisfying Whitney’s condition B are called Whitney B stratifica-
tions.

Since we are dealing here with subcartesian spaces, we assume that M and M’ are
C°°-submanifolds of RY, and M’ is in the closure M of M. Let (x,) be sequence of
points in M € D converging to x € M’ € D such that the sequence of tangent
spaces Ty, M converges to a space D in the Grassmannian of m-planes in RV, where
m = (dim M).

Condition 5.1 (Whitney Condition A) T,M’ C D.

Condition 5.2 (Whitney Condition B)  If y,, is a sequence of points in M’ converging
to x and the sequence of lines (x,.y,) converges to a line L through x, then L C D.

Let e = (ey,...,eN) be the canonical basis of RN. Each orthonormal basis b =
(by,...,by) in RY is of the form b = eA for a unique A € O(N). An orthonormal
basis b = (by,...,by) in RY is said to be adapted to an m-dimensional subspace D
if the first m vectors (by, . . ., by,) in b form a basis of D. The class of all bases of RY
adapted to D is given by an element v € O(N)/(O(N) x O(N — m)). Using the
bijection A +— b = eA between O(N) and the space of orthonormal bases on RV,
one can identify the set of all m-dimensional subspaces of RN with the Grassmannian
O(N)/O(N) x O(N — m).

Let D, be a sequence of m-dimensional subspaces of RN. For each n, we denote
by v, € O(N)/(O(N) x O(N — m)) the class of bases in RN adapted to D,. The
sequence of subspaces D,, is said to be convergent to an m-dimensional subspace D if
the sequence -, converges in O(N)/(O(N) x O(N — m)) to 7y representing the class
of all bases in D.

Assume that D, converges to D. For each n, we can choose a matrix A, € O(N)
such that b, = eA, is adapted to D,,. Since O(N) is compact, there exists a convergent
subsequence A,,. Let A = limy_,oc Ay. Then b = eA = limg,oo by, If b =
(by,...,bn) then, for each i = 1,..., N, the sequence b,,; of i-th vectors in b,, =
(b1, - - - byN) converges to b;.

Let u, € D, be a convergent sequence of vectors in R and u = lim,_ o t,.
For each n, we can express u, in terms of the basis b, = (b, ..., b,n) obtaining
U, = alb, + -+ + ab,y. Since the basis b, is orthonormal, for eachi = 1,...,N,
we have @/, = u,, - by,;, where - denotes the canonical scalar product in RN. Hence,

lim a, = lim (uy, - byi) = (lim w,) - (lim by,;) = u - b;.
k— o0 k— o0 k— o0 k— o0

Therefore, u = (u- by)by + -+ -+ (u - by)by € D because b = (by,...,by) is a basis

in D.
Conversely, if u = a'b,+- - -+aby isavector in D, then u,, = a'b, 1+ - -+a" b, N
is in D,, because b,, = (by,1,...,byn) is a basis in in D,,,. Moreover, the sequence

uy,, € D, converges to 1. Hence we have justified the following observation.

Remark 5.3 Suppose that a sequence D, of m-dimensional subspaces of RN con-
verges to an m-dimensional subspace D. Then every convergent sequence of vectors

https://doi.org/10.4153/CMB-2011-026-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-026-3

700 T. Lusala and J. Sniatycki

u, € D, hasalimitin D and vectors in D are limits of convergent sequences of vectors
in D,,.

Proposition 5.4 The partition of a subcartesian space P by the family O of orbits of
all vector fields on P satisfies Whitney’s condition A.

Proof Let O’ and O be orbits in O, x € O’ N O, and let (x,) be sequence of points in
M converging to x such that the sequence of tangent spaces T, O converges to D in the
Grassmannian of m-planes in RV, where m = dim M. First, we need to show that ifa
sequence (x,) of points in O converges to x € O’ such that the spaces T, O converge
to D, C TyP, then T,O’ C D,. Since P is subcartesian, we may assume without loss
of generality that x has a neighbourhood U in P that can be identified with a subset of
RY. Each Ty, O can be identified with the corresponding m-dimensional subspace D,
of RN, where m = dim O. Similarly, we identify D, C T,P with an m-dimensional
subspace D of RN. By assumption, the sequence D,, converges to D.

Letk = dimO’, m = dim O, and let X, ..., Xi, Xk+1, - - - , Xim be vector fields on
Psuch that X (x), . .., Xi(x) is a basis for T,O" and X, . . ., Xy, Xj+1, - - - , X give rise
to a frame in T(O N U) for some neighbourhood U of x in P. Without loss of gen-
erality, we may assume that U is the neigbourhood of x introduced in the preceding
paragraph and that all points of the sequence x, in O converging to x are contained

inONU.

For each i = 1,...,m, the vector field X; is continuous so that X;(x) =
lim,,_, o0 X;(x,). Since (X;(x),...,Xx(x)) is a frame for T,O’, it follows that ev-
ery vector u € T,O' is of the form u = a'X;(x) + --- + a*Xi(x). Let u, =
alXi(x,) + - - + dXp(x,) € T,,0. Then u = lim,_, oo U, and Remark [5.3] implies
that u € D,. Hence, T,O’ C Dy, which implies Whitney’s condition A. [ ]

In general, the family O of orbits of all vector fields on a subcartesian space P need
not satisfy Whitney’s condition B.

Example 5.5 (Spiral) Let S be the closure of the spiral defined by r = e~ in R?.
That is S = Sy U S;,where Sy = {(0,0)} and S; = {(e ™’ cosf,e ?sinf) | 6 € R}.
The slope of §; at 6 is

(e ?sinf)’ —ePsinf+e?cosd
My = = - .
o (e%cosf)’ —efcosl —e?sinf
The sequence of points x, = (e2™ cos(27n), e~ *™(sin27n)) = (e~2™,0) con-
verges to the origin. Moreover, the slope of S at x, is ., = —1, which implies that
the sequence T,S; converges to a line y = —x.

For each n, the line L, joining x, to the origin 0 = (0, 0) is the y-axis. Hence, the
sequence L, converges to the y-axis that is not contained in lim,_, o Tx,S;. Thus, our
spiral does not satisfies Whitney’s condition B.

Nevertheless, there are several Whitney B stratifications which are given by the
family O of orbits of vector fields on a subcartesian space.
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Example 5.6 (Whitney’s cusp) Whitney’s cusp S C R? is the zero level set of
F(x,y,z) = y* + x> — z2x2. In other words,

§S= {(xa)/,Z) S R3 | yz +x° — 22 = 0}'

Since F € C*°(R?), the implicit function theorem implies that S is a smooth manifold
in a neighbourhood of every point (x, y, z) in S such that DF(x, y, z) # 0. But,

DF(x, y,z) = (3x* — 2xz%)dx + 2ydy — 2zx*dz.
Hence, DF(x, y,z) = 0 on the z-axis
S ={(x,y,2) €R’ | x=y =0},
and S, = S\S; is a smooth manifold. The Hessian of F is
D’F(x, y,z) = (6x — 22°)dx* + 2dy* — 2x*dz — 8xzdxdz.
It has rank 2 on
SE={(x,y,2) €R* |x=y=0, +z>0}

and rank 1 at the origin Sp = {(0,0,0)}.
The function F is invariant under the action of R on R? given by

O: R xR — R: (t,(x,5,2) — (e¥x, ey, ¢'2)

generated by a vector field

X= Zx% + 3)/6% +z%.

This action is transitive on S} and S;. Moreover, since the Hessian of a smooth
function on a manifold is well defined on the set of critical points of the function, it
follows that every diffeomorphism of R? to itself which leaves F invariant preserves
the origin. This implies that the decomposition S = S, US] US; U S; is the partition
given by the family of orbits of all smooth vector fields on S. It is of interest to note
that this partition is a stratification of S satisfying Whitney’s conditions A and B.

6 Orbits of a Proper Group Action on a Manifold

In this section we prove that the stratification by orbit type of the space of orbits of
a proper action of a Lie group G on a manifold P is given by the family O of orbits
of all vector fields on the orbit space R = P/G with the differential structure C*°(R)
given by the ring C>°(P)¢ of G-invariant smooth functions on P. This results shows
that the ring C>°(P)® encodes information about the stratification structure of the
orbit space P/G.
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We consider here a proper action

®: GxP—=P:(g,p)— (g, p)=D(p) =gp

of a connected Lie group on a manifold P. Properness of ® means that, for every
convergent sequence (p,) in P and a sequence (g,) in G such that the sequence (g, p,)
is convergent, the sequence (g,) has a convergent subsequence (g,, ) and

kli{lolo(g"kp"k) - (kli{lolognk> (kli{lolo P”k) ’

For p € P, the orbit of G through p is the set Gp = {gp | ¢ € G}. LetR = P/G
denote the space of G-orbits in P with the quotient topology, and let p: P — R: p —
Gp be the canonical projection. Since the action ® is proper, the orbit space R is a
subcartesian space with the ring C*°(R) of smooth functions on R given by

C®(R)={f €C'(R) | p*f € C™(P)},

and the projection map p: P — R is smooth [4].

The orbit space R = P/G of a proper action of a Lie group is stratified by orbit
type . Since ® is proper, for each p € P, the isotropy group G, = {g € G| gp = p}
of p is compact. For each compact subgroup H C G, Py = {p € P | G, = H} is the
set of all points in P of isotropy type H. Similarly,

Py = {p € P| G, is congruent to H}

is the set of all points in P of orbit type H. Both Py and Py are local submanifolds
of P. This means that connected components of Py and Py are submanifolds of P.
Connected components of the projection of Py to R are smooth manifolds. They
are strata of the stratification of R by orbit type. For more details, see [6].

Theorem 6.1 The stratification of R = P/G by orbit type coincides with the partition
of R by the family O of orbits of all vector fields on R.

Proof Theorem implies that it suffices to prove that the stratification of R by
orbit types is minimal, and it admits local extensions of vector fields, Minimality of
R has been proved by Bierstone [2}3]]. See also Duistermaat [5]. Hence, it remains to
prove that the orbit type stratification of R admits local extensions of vector fields.

Let M be a stratum of the stratification of R by orbit type and Xy, a smooth vector
field on M. We want to show that, for each x € M, there exists a neighbourhood
V C M and a vector field X on R such that the restrictions to V of X and X} coincide.

Since the action of G on P is proper, for each p € p~!(x), there exists a slice ¥ for
the action of G at p. That is, 3 is a submanifold of P containing p, invariant under
the action of G,, and satisfying the following conditions

(6.1) T,P = T,% & T,(Gp),
(6.2) Ty P =Ty + Ty (Gp')forall p’ € X,
(6.3) Forp’ € Yandg € G,ifgp’ € %, theng € G,.
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Given a slice X2, the set

U Gp'={gp' | p' €X,g€G}
p’'eX

is a G-invariant neighbourhood W of Gp in P. Its projection W = p(W) to R is an
open neighbourhood of x in R.

Let M be the connected component of PG, that contains p. As we have already
stated, M is a submanifold of P. Moreover, M = p(Z\7I ). The intersection M N W is
an open submanifold of M.

Claim M N Y is a submanifold of 3 diffeomorphic to M N W.

Proof Condition (6.3) states that if p’ and gp’ are in X, then g € G,,. Moreover, p’
and gp’ in M implies that Gy = Ggpr = G,. Hence, g € G, implies that g € G,
and gp’ = p’. Thus, M N ¥ intersects fibres of the projection map p: P — R in at
most single points. Therefore, the restriction y of the projection map p to MNXisa
bijection of MN3 onto MNW. To show that x: MNY — MNW is a diffeomorphism
it suffices to show that ;1 and p~! are smooth.

The space C*(M N ) is generated by restrictions to M N Y of smooth functions
on P. On the other hand, C*°(M N W) is generated by restrictions to M N W of
functions in C*°(R) = {p. f | f € C>*(P)®}.

First, we show that u: MNY — MNW is smooth. Consider a function fmnw €
C>®(M N W). We need to show that u* farnw € C>(M N ). For each point x’ €
MNW, there exists a neighbourhood U of x’ in MNW and a function p, f € C*°(R)
such that the restriction of p, f to U coincides with the restriction to U of fynw. For
each p'’ € u=Y(U), we have

W frw (P = funw (u(p’") = pu f(u(p’")) = f(p anz(P

since f is G-invariant. Hence, p* fyinw restricted to u~!(U) coincides with the re-
striction to 1~ }(U) of f € C°°(P)C. Since this result is valid for each x’ € M NW, it
follows that p* fynw € C*° (]\71 NX). However, farnw is an arbitrary smooth function
on M NW. Hence, p: MNY — MNW is smooth.

Next, we want to show that 4 ~': MNY — MNW is smooth. Consider a function
fiins In C>®(M N'Y). We need to show that fiims © w1 is in C>°(M N W). Given
g € M N, there exists a compactly supported function fx on X that coincides with
f#ins on a neighbourhood U of gin M N X. Let f5; be the G, invariant function on
Y obtained by averaging fx. over G,. Then, leﬁ = leﬁ because U € M N Y, and all

points in M N ¥ have isotropy group G,. Let f5 be a function on W defined by

(6.4) fiw(gp') = fu(p’) forall p’ € XandgecG.

The function fy; is well defined by equation (64) and is G-invariant because f5; is
Gp-invariant. If g’p’ = g’ p’’, with p” and p"" in %, then p’ = (g’)~'g”’p’’ implies
that (¢')"'¢"" € G, and

fw@'p) =) = £g"N7'¢"p") = (") = fFp"").
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Moreover, for every ¢,¢’ € G,and p’ € &,
fa(g@'p") = f(ge'p") = folp’) = fa(&'p").

Since fx, is compactly supported, it follows that there is a G-invariant open set V in
P containing the support of f and such that the closure of V' is in W. Therefore,
there exists an extension of f to a smooth function f on P that f vanishes on the
complement of V. Moreover, f € C>(P)C because fi is G-invariant. For each
p’ € U, we have

fiins o 1 (p(p") = fians (') = f(p") = puf(p(p").

Hence, fi;y, © 1~ ' restricted to an open neighbourhood U = p(U) = u(U) of p(q)
in M N W coincides with the restriction to U of p,. f € C°*°(R). Since it holds for
every point p(q) € M NY, it follows that (1™ 1)* fi7y = finmor™ ' € CX(MNI).
Hence, n~': MN'Y — M N Y is smooth.

This completes the proof of the claim. ]

Continuing with the proof of Theorem[6.1] consider a smooth vector field Xj; on
M. For each x € M, consider p € p~'(x) and let M be the connected component of
p~1(M) containing p. Let 3 be a slice at p for the action of Gon P, and W = p(X).
We have shown that p: MNY > MNWisa diffeomorphism Let fynw be a
compactly supported smooth function on M N W such that fy~w(x’) = 1 for all
x' in a neighbourhood of x in M N W. The product fynw Xy is a vector field on
M N'W which can be pushed forward by p=': MN'W — M N X to a vector field
wi  (funw Xu) on MNY. Letc: t — c(t) be an integral curve of u ' (furw Xu)-
Since c(t) is contained in M, for each ¢ € G, we have gc(t) = c(t). Hence, c is
invariant under the action of G,. This implies that y Y fvanw Xar) s Gp-invariant.
That is, for each g € G,

TP o p, ' (fuarwXar) © @1 = pu ' (frurw Xn)-

Since p, Y(funw Xar) is compactly supported in a neighbourhood of p = 1 ~!(x)
in M N %, it can be extended by zero to a vector field X5, on ¥. Note that Xy, is
G,-invariant, since, for each ¢ € G, and p’ € ¥, either (&I) p’ € M N X or (€.2)
pé¢MNEIEI) p’ € MNX, then

T(I)g OXE © égfl(pl) = chg © N;l(fMﬂWXM) © q)gfl(P/)
= py " (furwXm)(p") = Xs(p").
If©2) p’ ¢ MNXandg~'p’ € MNY, then Gg—1,» = G, and g € G, implies that
g € Gy = Gy—1,y sothat g7'p’ = g(¢g7'p’) = p’ and we have contradiction with
the assumption that p’ ¢ M N X. Hence, g~!p’ ¢ M N X. In this case X5 (p’) =
Xs(g7'p’) =0,and

Td, 0 X5 0Py 1(p) = T®y 0 X (g™ 'p’) = TP,(0) = 0 = Xz (p').

https://doi.org/10.4153/CMB-2011-026-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-026-3

Stratified Subcartesian Spaces 705

In any case,
T®, 0 Xx(p') = Xs(gp")
forallg e Gyand p’ € &
We can extend Xy to a G-invariant vector field Xy on W by setting

Xi(gp") = T®(Xs(p"))

for every g € Gand p’ € X. It is well defined since, if gp’ = ¢’p’’ for p’, p"’ € %,
theng~'¢’ € G, and

TPy (Xs(p")) = TR TRy 100 (Xs(p")) = Te(Xs(Dy-1g/(p")).

Ifp" € Y N M, then

11

Gy =G, and @ (p') =g 'g'p"" =p" and Xy(gp') =Xy('p").

Ifp'" ¢ SN Mandg~'g’ € G, then
p'¢XNM and Xg(gp') =0=Xz(g'p").

Finally, we can extend X to a G-invariant vector field X on P, by setting X(p’) =
X (p') for p’ € W and X(p'’) = 0for p”’ ¢ W. Since X is G-invariant, it restricts to
a derivation of C>°(P)® which is equivalent to a derivation of C*°(R). This derivation
is a vector field on R because it comes from a vector field on P.

Thus, the stratification of R by orbit type admits local extensions of vector fields.
Since it is also minimal, Theorem[A.6limplies that it coincides with the partition of R
by the family O of orbits of all vector fields on R. ]
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