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Abstract

In previous work the author has introduced a lambda calculus SLR with modal and linear

types which serves as an extension of Bellantoni–Cook’s function algebra BC to higher

types. It is a step towards a functional programming language in which all programs run in

polynomial time. While this previous work was concerned with the syntactic metatheory of

SLR in this paper we develop a semantics of SLR in terms of Chu spaces over a certain

category of sheaves from which it follows that all expressible functions are indeed in PTIME.

We notice a similarity between the Chu space interpretation and CPS translation which as

we hope will have further applications in functional programming.

Capsule Review

This paper presents a typed λ-calculus such that all definable first order functions are PTIME

computable, based on the concept of safe recursion by Bellantoni and Cook. This extends

previous work by the same author (Hofmann, (1998b, 1997)) on a simply typed λ-calculus

with a modal operator: linear types and a linear safe recursor are introduced. Using the

linear recursor simplifies the definition of some PTIME definable functions (example binary

addition).

In the past similar characteristics were based on rather explicit bounds and could not be

effectively used in a real programming language. The system suggested by the author differs

in that the resource constraints are achieved by a rather subtle typing system, including

combinators for limited forms of higher order recursion. One may hope that this research

leads to a natural programming language for resource bounded computations.

The system is analyzed using semantical techniques: first a presheaf model for the modal

calculus is reviewed and on top of this a semantics for the linear connectives using Chu spaces

is introduced. The Chu space semantics allows one to conclude that in certain situations a

higher-order functional can be used at most once. Using an instance of the linear recursor

can be reduced to safe recursion with parameters. The main result of this analysis is that the

first-order definable functions are in PTIME.

The techniques used (i.e. presheaves, Chu spaces) are unusual in the area. The paper

deserves special attention because it shows how semantical techniques can be used effectively

to analyze intensional properties of programs. It seems important to increase the awareness

of these techniques in an area where syntactical techniques (e.g. analysis of normal forms) are

dominant.
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1 Introduction

In (Hofmann 1998b) we have introduced a lambda calculus SLR which generalises

the Bellantoni–Cook (Bellantoni and Cook, 1992) characterisation of PTIME to

higher-order functions. The separation between normal and safe variables which is

crucial to the Bellantoni–Cook system has been achieved by way of an S4-modality

� on types. So �N is the type of normal natural numbers over which primitive

recursion is allowed and N is the type of safe natural numbers to which only basic

primitive functions may be applied. While in our earlier work (Hofmann, 1998b)

the syntactic properties of SLR were studied, this paper is devoted to a semantic

analysis of its strength. Notably, we prove that linear recursion with functional result

type does not lead beyond polynomial time. This is done by interpreting SLR in

a certain model of linear logic, namely a variant of so-called Chu spaces (Pratt,

1995; Lafont and Streicher, 1991), in which all type 1 functions are by definition

in PTIME. The desired result then follows by relating this interpretation to the

standard set-theoretic one by means of a certain logical relation.

The work described here is part of a research programme aimed at extending

the Bellantoni–Cook system and similar function algebra characterisations (see

Clote (1996) for a survey) to higher-order typed (“HOT”) functional programming

languages.

Since the first submission of this paper, considerable progress towards this goal

has been made by both Bellantoni et al. (1998) and Hofmann (1998c). These works,

which do not use Chu spaces but normalisation (Bellantoni et al., 1998) or linear

combinatory algebras (Hofmann, 1998c), substantially generalise the polynomial-

time conservativity to recursion with linear functional result types of an arbitrary

order. The method of Chu spaces, on the other hand, which is described in this paper,

seems to be limited to the case of first-order functional result types. Nevertheless,

we believe that the Chu space method could be more interesting from a functional

programming point of view, because of its similarities with CPS-transforms and

potential applicability to program transformation.

See section 9 for a discussion of other related work.

1.1 The system BC

Let us briefly recall Bellantoni–Cook’s system BC. Its purpose is to define exactly

the PTIME-functions on integers using composition and a certain form of primitive

recursion. Unlike Cobham’s system (Cobham, 1965), where every primitive recursive

definition must be annotated with an a priori bound on the growth rate of the

function to be defined, in BC no explicit mention is made of resource bounds. The

restriction to PTIME is achieved by separating the variables, i.e. argument positions,

into two zones: the normal ones over which primitive recursion is allowed and the

safe ones which can only serve as input to basic primitive functions such as case

distinction modulo 2. It is customary to note such a function as f(~x;~y) with the

normal variables before the semicolon and the safe variables after the semicolon.

The crucial point which prevents us from reverting to ordinary primitive recursion
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by using normal variables and ignoring the safe variables is that in a primitive

recursion a recursive call to the function being defined may only be performed via

a safe variable. This ensures in particular that one is not allowed to recur over the

result yielded by a recursive call.

It is this restriction which ensures that the time complexity of the definable

functions does not explode as is the case with unrestricted primitive recursion.

Applying this pattern to the familiar scheme of primitive recursion under which f(x)

may be defined in terms of f(x− 1) yields the elementary functions. In order to get

PTIME one must use the following scheme of recursion on notation which is a slight

variant of the original one1 used by Bellantoni–Cook:

From g(~x;~y) and h(~x, x;~y, y) define f(~x, x;~y) by

f(~x, 0;~y) = g(~x;~y)

f(~x, x;~y) = h(~x, x;~y, f(~x,
⌊
x
2

⌋
;~y)), if x > 0

So that safe and normal variables are kept properly distinct the composition scheme

is restricted in such a way that a term may be substituted for a normal variable only

if it does not depend upon safe variables:

From f(~x;~y) and ~u(~z; ) and~v(~z;~w) define g(~z;~w) by

g(~z;~w) = f(~u(~z; );~v(~z;~w))

The main result of Bellantoni and Cook (1992) is that these patterns together with

certain simple basic functions, notably constants, the constructors S0(; y) = 2y and

S1(; y) = 2y + 1, and case distinction define exactly the class of PTIME functions.

Before we continue let us look at a few simple examples. We introduce the

notations

|x| = dlog2(x+ 1)e
[x] = 2|x|

for length of x in binary notation and for the least power of 2 exceeding x.

A function of quadratic growth, namely sq(x; ) = [x]2 is defined by

sq(0; ) = 1

sq(x; ) = S0(S0(sq(
⌊
x
2

⌋
; )))

We have sq(x; ) = 4|x| where |x| = dlog2(x+1)e is the length of x in binary notation.

If we attempt to iterate sq to form a function of exponential growth rate like

exp(0; ) = 1

exp(x; ) = sq(exp(
⌊
x
2

⌋
; ))

then we violate the stipulation that recursive calls must happen via safe argument

positions only. So the definition of exp is ruled out in BC.

It is the purpose of the work described in this paper, and in earlier work (Hofmann,

1 In that scheme one has two recurrence functions h0 and h1 employed according to whether the recursion
variable is even or odd. This scheme can be defined in terms of the present one and a conditional
construct which we define later on.
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1997), to extend this framework to higher types, i.e. functions of arbitrary functional

type. Unlike Bellantoni–Cook’s system BCω (Bellantoni, 1992), which merely is a

simply-typed lambda calculus with two base types, we aim at a faithful generalisation

of the pattern of safe composition to higher types.

1.2 Modal types

It turns out that the right way to do this is by using a modal operator � on types

with the understanding that �A is the type of normal objects of type A. In particular,

�N is the type of normal integers, whereas N itself is the type of safe integers. Since

normal values may always be used in place of safe ones, there is a coercion function

unboxA : �A→A.

Safe recursion can then be formulated as a single higher-typed constant called a

recursor.

saferec : �N→N→(�N→N→N)→N

where f(x) = saferec(x, g, h) means f(0) = g and f(x) = h(x, f(
⌊
x
2

⌋
)) when x > 0. We

see that the second (recursive) argument of h is of type N so that h cannot recur over

this argument. Notice that in the presence of lambda calculus parameters need not

be explicitly mentioned in the type of the recursor. For example, if g : A→N and h :

A→�N→N then we can define f : A→�N→N by λa:A.λx:�N.saferec(x, g(a), h(a)).

How can we ever create an object of type �N to apply saferec? The idea is that

if an expression t : N contains only free variables of modal type, i.e. of the type �A
for some A then we should be allowed to form a term raise(t) of type �N. This

corresponds to the rule of necessitation in modal logic.

Such new term formers unbox and raise make terms less readable and complicate

programming. The system described in (Hofmann, 1998b) makes unbox an implicit

subtype coercion and avoids raise by restricting � to argument positions of function

types. In other words, rather than having a type operator �, we have two function

spaces A→B (ordinary function space) and �A→B (modal function space). The free

variables of a term are still grouped into two zones: modal and nonmodal ones. To

apply a function f : �A→B to a term t : A, one must check that t depends on modal

variables only. In function abstraction the “aspect” of a variable need not be given

explicitly, e.g. if g : N and h : �N→N→N we can write f = λx: N.saferec(x, g, h) and

the type �N→N will be inferred for f. More generally, if

f = λu: N→N.λx: N.saferec(u(x), g, h)

then f has the type �(N→N)→�N→N. The “type” �(N→N) refers to a function

which does not contain any free variables of nonmodal type. For example, we can

apply this f to S0, but not to λx: N.y, unless y is a modal variable.

1.3 Linear recursion

The system from (Hofmann, 1998b) additionally contains linear function types,

which contain functions using their argument at most once (as far as this can be
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detected syntactically). The purpose of these linear types is that they allow one to

formulate a restricted version of safe recursion with functional result type which is

conservative, i.e. does not lead beyond PTIME.

In general, if we allow functional result type in a safe recursion then we can define

exponentiation.

Example 1.1

We have

g = S0 : N→N

h = λx: N.λu: N→N.(λy: N.u(u(y))) : �N→(N→N)→(N→N)

and the function f : �N→N→N defined by safe recursion with result type N→N,

i.e. f(0) = g, f(x) = h(x, f(
⌊
x
2

⌋
)) has exponential growth rate, namely we have

f(x, y) = 2[x] · y.

The reason for this growth is that u is called twice in the body of h. To rule this out

syntactically, we introduce a linear recursor

linrecA : �N→A→(�N→A(A)→A
for A = Nk→N. Here ( denotes the linear function space.

Informally, a function(al) is linear if it uses its argument at most once. This is

obviously not the case for the functional λx: N.λu: N→N.λy: N.u(u y) appearing in

the definition in Example 1.1 above. It has the type �N→(N→N)→(N→N) rather

than �N→(N→N)((N→N) as required by linrec and so this function cannot be

defined using linrec.

Its type-theoretic formulation requires a similar setup as we already have for

the modal function space. The variables are now associated with one out of four

“aspects” where an aspect is a pair (l, m) where l ∈ {linear, nonlinear} and m ∈
{modal, nonmodal}.

A variable of linear aspect can appear at most once in a term (see below for two

exceptions to this rule). If a variable appears more than once then it must be given

nonlinear aspect. A term e : B containing free variable x : A can be given type

A(B if e : B can be derived with x having linear aspect. If this is not possible then

the weaker type A→B must be assigned. For example, we have

λx:A.x : A(A

λf:A→B.λx:A.f x : (A→B)(A→B
λf:A(A.λx:A.f(f(x)) : (A(A)→A(A

λf:A→A.λg:A→A.λx:A.f(g x)

: (A→A)((A→A)→A→A
In the last example g is dubbed nonlinear although it appears only once. The reason

is of course that it appears as the argument of a nonlinear function.

Apart from counting the number of occurrences there are two further sources for

linearity brought about by the base type N. First, a variable of type N is linear by

definition. This is expressed by a subtyping N→A 6 N(A. (We always have the

subtyping A(B 6 A→B.).
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Secondly, we have the following case construct for integers. If e1 : N and e2 : A

and e3, e4 : N→A then we have caseAe1 zero e2 even e3 odd e4 : A with the intended

meaning that if e1 is zero then the result is e2, if e1 is 2n then the result is e3 n and if

e1 is 2n+ 1 then the result is e4 n. The important point is that if a variable appears

linearly in each branch of a case construct then it appears linearly in the whole case

expression although it makes up to three literal occurrences. We illustrate this by

giving more terms with their (principal) types.

divtwo = λx: N.caseNx

zero 0

even λy: N.y

odd λy: N.y : N→N

λx: N.λf: N→N.caseNx

zero f(x)

even f

odd f : N→(N→N)(N

To illustrate the fact that functions on integers are always linear we notice that

the last function of the previous suite gets type (A→A)((A→A)((A→A) in case

A = N for then f has in fact type N(N.

We also notice that by this convention the first-order safe recursor saferec from

above is subsumed under the linear recursor linrecA for A = N, i.e. k = 0.

In (Hofmann, 1998b) we used linrecN3→N to define an addition function add :

�N→N→N→N with the specification that add l x y c equals x̂+ ŷ+ (cmod 2) where

x̂ = xmod 2|l|. This is not an entirely trivial task because on the binary integers

addition must be defined using the algorithm for digit-wise addition with carry.

In particular, a naive attempt to define addition with ordinary safe recursion fails

because in the recursive call the carry bit may change.

add = λl: N.

linrecN→N→N→N l

(λx: N.λy: N.λc: N.cmod2)

(λu: N.λa: N→N→N→N.λx: N.λy: N.λc: N.

let carry = (x ∧ (y ∨ c)) ∨ ((¬x) ∧ (y ∧ c)) in

caseNx⊕ y ⊕ c
zero S0(a bx/2c by/2c carry)

even λu: N.S0(a bx/2c by/2c carry)

odd λu: N.S0(a bx/2c by/2c carry))

Here let . . . in is syntactic sugar for a β-expansion and the auxiliary functions

¬,∧, . . . are the indicated boolean functions of type N→N and N→N→N defined

using caseA. They only look at the last bit of a number. Finally, b−/2c and −mod 2

are quotient and remainder with respect to division by two also defined using caseN.

Notice that, although the function a makes two literal appearances in the body of

the third argument to linrec, the latter is still counted as a linear functional because

the appearances belong to different branches of a case construct.
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We see from this example that the main purpose of linear recursion is to provide

a user-friendly syntax for first-order recursion with substitution of parameters. If we

were to use first-order recursion with substitution, we would have to put together

the substitution functions using another case distinction.

Indeed, we will semantically reduce linear recursion to recursion with parameter

substitution which is known not to lead beyond polynomial time. If we would

provide an operator for recursion with parameter substitution, then we would have

to extract the substituting functions and put them into a separate position thus

leading to a much less readable syntax.

Linear recursion with second-order result type such as (N→N)→N also leads

beyond PTIME as can be seen from the following example:

Example 1.2

Let A be (N→N)→N and define g : A by λu: N→N.u 1 and h : �N→A(A by

λx: N.λF:A.λu: N→N.F(λz: N.u(u(z))))

Here we have f(x)(u) = u([x])(1) as can be seen by notational induction on x; hence

f(x)(S0) = 2[x].

Then f : �N→A defined by f(0) = g and f(x) = h(x, f(
⌊
x
2

⌋
)) satisfies f(x)(u) =

u([x])(1) as can be seen by notational induction on x; hence f(x)(S0) = 22|x| .

Notice that, again, a nonlinear use of a functional argument was the culprit. Indeed,

linear recursion with result types (N→N)(N stays within PTIME, but the methods

described in this paper do not allow us to prove this, see (Hofmann, 1998c).

The following example shows that linear recursion with result type �N→N must

also be forbidden:

Example 1.3

Let A = �N→N and define g : A by λy: N.y and h : �N→A(A by λx: N.λu:A.λy:

N.u(sq(y)) where sq : �N→N is given by sq(x) = [x]2. Then f : �N→A defined by

f(0) = g and f(x) = h(x, f(
⌊
x
2

⌋
)) satisfies f(x)(y) = y2|x| .

1.4 Semantics of SLR

Bellantoni–Cook’s proof that the system BC defines PTIME-functions is based on

the invariant that if f(~x;~y) is definable then f(~x;~y) is in PTIME and, moreover,

|f(~x;~y)| 6 p(|~x|) + max(|~y|) for some n-place polynomial p.

We have shown (Hofmann, 1997) how to lift this invariant to an invariant of

the purely modal fragment of SLR by using presheaves over the category of the

PTIME-functions which satisfy Bellantoni and Cook’s growth restrictions. In this

paper, we extend this method to the linear recursor with first-order result type.

The main idea is to use an interpretation in which a linear functional F of type

(N→N)(N is modelled as an element arg : N and a function rest : N→N such that

F(u) = rest(u(arg)). In this way, semantically, the linear recursion can be reduced

to recursion with ground result type and substitution of parameters.

The advantage of using linear recursion rather than recursion with parameter
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substitution right away is a pragmatic one. A recursor with substitution of parame-

ters

substrec : �N→(N→N)→(�N→N→N→N)→(�N→N→N)→N→N

with intended semantics

f(x, y) = substrec(x, g, h, u, y) ⇐⇒
f(0, y) = g(y)

f(x, y) = h(x, f(
⌊
x
2

⌋
, u(x, y)))

requires the user to isolate the substituting function u from the defining equations

for f. This requires code duplication if a case distinction is part of the definition of f

like in the addition example below. Furthermore, it leads to less readable programs

as the definition of f is split among the three components g, h, u.

So linear recursion – like any high-level programming construct – leads to shorter

and more intuitive programs.

2 Syntax

The basic type of SLR is N – the type of binary natural numbers. If A, B are

types so are A→B (function space), �A→B (modal function space), A(B (lin-

ear function space). To simplify the rules, we use a generic notation A
a−→ B

where a ∈ {nonlinear, linear} × {modal, nonmodal} \ {(linear,modal)} for any of

the three function spaces. Such a pair a is called an aspect. If, for example,

a = (modal, nonlinear) then A
a−→ B means �A→B.

The aspects are ordered componentwise by “nonlinear” 6 “linear” and “modal” 6
“nonmodal”. Notice that we do not use the fourth theoretically possible aspect

(linear,modal) which would correspond to “linear, modal”-functions. We assume

that every modal function is automatically nonlinear.

The subtyping relation between types is the least reflexive, transitive relation

closed under the following rules:

A′ 6 A B 6 B′ a′ 6 a

A
a−→ B 6 A′ a′−→ B′

N→A 6 N(A

Notice the contravariance of the first rule w.r.t. the ordering of aspects so that, for

example, A(B 6 A→B and A→B 6 �A→B. Types A and B are called equivalent

if A 6 B and B 6 A. Notice that N(A and N→A are equivalent.

The types Nk→N are defined by N0→N =def N and Nk+1→N =def N→Nk→N.

The expressions of SLR are given by the grammar

e ::= x (variable)

| (e1 e2) (application)

| λx:A.e (abstraction)

| c (constants)

| caseAe1 zero e2 even e3 odd e4 (case distinction)

https://doi.org/10.1017/S0956796899003433 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003433


Semantics of linear/modal lambda calculus 255

where x ranges over a countable set of variables and c ranges over the set N ∪
{S0,S1, linrecA}. The type in caseA is arbitrary; the type A in linrecA must be of

the form Nk→N. The expressions are identified up to renaming of bound variables.

The type τ(c) of a constant is given by

τ(c) = N,when c is an integer constant

τ(S0) = τ(S1) = N→N

τ(linrecA) = �N→A→(�N→A(A)→A
A type assignment is a partial function from variables to pairs of aspects and types.

It is typically written as a list of bindings of the form x
a
:A. If Γ is a type assignment

we write dom(Γ) for the set of variables bound in Γ. If x
a
:A ∈ Γ then we write Γ(x)

for A and Γ((x)) for the aspect a.

A type assignment Γ is nonlinear if all its bindings are of nonlinear aspect. Two

type assignments Γ,∆ are disjoint if the sets dom(Γ) and dom(∆) are disjoint. If Γ

and ∆ are disjoint we write Γ,∆ for the union of Γ and ∆.

2.1 Typing rules

The typing relation Γ ` e : A between type assignments, expressions, and types is

defined inductively by the rules in figure 1. We suppose that all type assignments,

types, and terms occurring in such a rule are well-formed; in particular, if Γ,∆ or

similar appears as a premise or conclusion of a rule then Γ and ∆ must be disjoint

for the rule to be applicable. The typing rules described here are the affine ones from

(Hofmann, 1998b). Their syntactic metatheory is easier, however, they are a little

more difficult to justify semantically. Our purpose in introducing the truly linear

system in op. cit. was to demonstrate that the type checking algorithm also works

in this more difficult situation. The main result of (Hofmann, 1998b) is that typing

is decidable by a syntax-directed procedure in the following sense.

From a type assignment Γ and a term e we can compute a type assignment ∆ and

a type A such that

i. ∆ ` e : A

ii. dom(∆) ⊆ dom(Γ) and ∆(x) = Γ(x) for each x ∈ dom(∆)

iii. Whenever Θ ` e : B and dom(Θ) ⊆ dom(Γ) and Θ(x) = Γ(x) for each

x ∈ dom(Θ) then A 6 B and dom(∆) ⊆ dom(Θ) and Θ((x)) 6 ∆((x)) for each

x ∈ dom(Θ).

The last statement means that given the typing of the variables prescribed by Γ the

typing ∆ ` e : A is optimal in the sense that any other typing yields a weaker type

under stronger assumptions.

2.2 Set-theoretic semantics

The calculus SLR has an intended set-theoretic interpretation, which in particular

associates a function N→N to a closed term of type �N→N. The main result in

this paper is that all these functions are computable in polynomial time.
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x ∈ dom(Γ)

Γ ` x : Γ(x)
(T-Var)

Γ ` e : A A 6 B

Γ ` e : B
(T-Sub)

Γ, x
a
:A ` e : B

Γ ` λx:A.e : A
a−→ B

(T-Arr-I)

Γ,∆1 ` e1 : A
a−→ B Γ,∆2 ` e2 : A

Γ nonlinear

x
a′
: X ∈ Γ,∆2 implies a′ 6 a

Γ,∆1,∆2 ` (e1 e2) : B
(T-Arr-E)

Γ,∆1 ` e1 : N

Γ,∆2 ` e2 : A

Γ,∆2 ` e3 : N→A
Γ,∆2 ` e4 : N→A

Γ nonlinear

Γ,∆1,∆2 ` caseAe1 zero e2 even e3 odd e4 : A
(T-Case)

Γ ` c : τ(c) (T-Const)

Fig. 1. Typing rules.

To each type A we associate a set [[A]] by [[N]] = N and [[A
a−→ B]] = [[A]]→[[B]]

where → denotes set-theoretic function space. To each constant c we associate an

element [[c]] ∈ [[τ(c)]] by

[[n]] = n

[[S0]](v) = 2v

[[S1]](v) = 2v + 1

[[linrecA]](x, g, h) = f

where

f(0) = g

f(x) = h(x, f(
⌊
x
2

⌋
)), if x > 0

The interpretation of terms is w.r.t. an environment η which assigns values to
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variables:

[[x]]η = η(x)

[[λx:A.e]]η = λv∈ [[A]].[[e]]η[x7→v]
[[e1 e2]]η = [[e1]]η([[e2]]η)

[[caseA e1 zero e2 even e3 odd e4]]η =


[[e2]]η, if [[e1]]η = 0

[[e3]]η(v), if [[e1]]η = 2v

[[e4]]η(v), if [[e1]]η = 2v + 1

[[c]]η = [[c]]

3 Review of functor categories over concrete categories

Let C be a small concrete category with cartesian products (written ×) and terminal

object (written >). That C is concrete means that the functor G : C→Sets defined by

G(X) = C(>, X) and G(f)(x) = f ◦ x for f ∈ C(X,Y ), x ∈ G(X) is faithful; i.e. every

morphism in C is uniquely determined by its functional action on global elements.

Notice that G preserves cartesian products and terminal object up to isomorphism.

We denote by Ĉ the functor category SetsC
op

. An object of Ĉ assigns to each

object X ∈ C a set FX and to every morphism u ∈ C(X,Y ) a function Fu : FY→FX
in such a way that Fid (x) = x and Fu ◦ v(x) = Fv(Fu(x)) for each x ∈ FX and

u ∈ C(Y ,X), v ∈ C(Z, Y ). A morphism m ∈ Ĉ(F,G) assigns a function mX : FX→GX
to each X ∈ C in such a way that mY (Fu(x)) = Gu(mX(x)) for each x ∈ FX and

u ∈ C(X,Y ). The objects of Ĉ are called presheaves; the morphisms are called

natural transformations.

For each object X ∈ C we have the representable presheaf Y(X) ∈ Ĉ defined by

Y(X)Y = C(Y ,X) and Y(X)f(g) = g ◦ f. The assignment Y extends to a functor

Y : C→Ĉ – the Yoneda embedding – by Y(f)Z (g) = f ◦ g whenever f ∈ C(X,Y )

and g ∈ Y(X)Z = C(Z,X). The well-known Yoneda Lemma says that this functor

is full and faithful; indeed, if m : Y(X)→Y(Y ) then f =def mX(idX) ∈ C(X,Y ), and

we have m = Y(f). Notice that since mZ (g) = f ◦ g we have G(f) = m>. In view of

concreteness of C we can take this latter equation as the definition of f.

The Yoneda Lemma says more generally, that the natural transformations from

Y(X) to some presheaf F are in 1-1 correspondence with the elements of FX;

indeed, if m : Y(X)→F then mX(idX) ∈ FX and mY (f∈C(Y ,X)) = Ff(mX(idX)) by

naturality.

The functor category Ĉ forms an intuitionistic universe of sets, in particular it is

cartesian closed. On objects the product and exponential of two presheaves F,G ∈ Ĉ
are given by (F×G)X = FX×GX and (F ⇒ G)X = Ĉ(Y(X)×F,G). This means that

an element of (F ⇒ G)X assigns to each Y ∈ C and each morphism f ∈ C(Y ,X)

a function FY→GY in a natural way. In particular, from u ∈ (F ⇒ G)X we get a

function from FX to GX by application to the identity morphism. Notice here the

similarity to the treatment of implication in Kripke models. A terminal object is

given by >X = {0}.
It will greatly simplify the subsequent calculations if we exploit these properties

of Ĉ by using an informal typed lambda calculus with the objects and morphisms

of Ĉ as base types and constants in order to denote particular morphisms in Ĉ. For
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example, if f : A→B and g : C→D then

h(x:C) =def λy:A.〈f(y), g(x)〉
defines the evident morphism from C to A⇒ (B × D) constructed from f and g.

We will also use set-theoretic notation for equalisers, e.g. if f, g : A→B then

{x:A|f(x)=g(x)} denotes the equalizer of f and g in Ĉ given explicitly by

{x:A|f(x)=g(x)}X = {x∈AX |fX(x) = gX(x)}
The inclusion map from the equalizer into A is not written.

So, in fact, we use a dependently typed lambda calculus in the spirit of Martin-

Löf’s extensional type theories (Martin-Löf, 1984). This lambda calculus is referred

to as the internal language of Ĉ. Definitions and verifications in the internal language

are always with respect to some ambient “context presheaf” Γ. In the beginning

this context is the terminal object. Using phrases like “let x:A” the current context

Γ may be replaced by Γ× A. Or, if A depends on Γ then Σ(Γ, A) is used instead of

Γ× A where the elements of Σ(Γ, A)X are pairs (γ, a) where γ ∈ ΓX and a ∈ AX(γ).

Such temporary extensions can be discharged by phrases like “we have thus defined

an object of A⇒B”, or “we have thus shown ∀x:A. . . .”.

If X is an object of C and F ∈ Ĉ then we can define FX ∈ Ĉ by FXY = FY×X ,

FXf = Ff×idX .

Lemma 3.1

Let F ∈ Ĉ and X ∈ C. The presheaf FX defined by FXY = FY×X and FXf = Ff×idX is

isomorphic to the function space Y(X)⇒F .

Proof

We have (Y(X)⇒F)Y ∼= Ĉ(Y(Y )×Y(X), F) ∼= Ĉ(Y(Y ×X), F) ∼= FY×X ∼= FXY . q

To simplify notation we will treat the isomorphisms guaranteed by the above as

identities. Similarly, we will identify the set of global elements Ĉ(>, F) with the set

F> in view of Y(>) ∼= >. So, for example, in order to define a global element of

presheaf Y(X)⇒Y(Y )⇒F we may simply provide an element of FY×X .

One could formally achieve equality between Y(X)⇒F and FX by defining func-

tion spaces G⇒F in Ĉ by case distinction on whether G is equal to Y(X) for some X

or not, taking FX in the former case. We prefer, however, not to do this and to view

the convention as a shorthand for more verbose definitions in which isomorphisms

are inserted in various places.

4 The category of polymax functions

Definition 4.1

A function f : Nm ×Nn→N is (m, n)-polymax if it is in PTIME and there exists an

m-variate polynomial p such that

|f(~x,~y)| 6 p(|~x|) + max(|~y|)
for each ~x ∈ Nm and ~y ∈ Nn.
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The category B has pairs (m, n) of natural numbers as objects; a B-morphism

from (m, n) to (1, 0) consists of an m-ary PTIME-function; a B-morphism from (m, n)

to (0, 1) consists of an (m, n)-polymax function. A morphism from (m, n) to (m′, n′)
consists of m′ morphisms from (m, n) to (1, 0) and n′ morphisms from (m, n) to (0, 1).

We view such a morphism as a function from Nm+n to Nm′+n′ .

It follows by an easy calculation that this is indeed a category, i.e. that the set-

theoretic composition of two B-morphisms is a B-morphism again. We may write

a morphism in B((m, n) , (m′, n′)) in the form (~u,~v) where ~u consists of m′ PTIME-

functions of arity m and ~v consists of n′ (m, n)-polymax functions. We write 〈〉 for

the empty vector, thus in the above situation (~u, 〈〉) is a morphism from (m, n) to

(m′, 0). It is also easy to see that B has a terminal object, viz. (0, 0) and cartesian

products given on objects by (m, n)× (m′, n′) = (m+ m′, n+ n′).
Notice also that, since morphisms of B are particular functions, the category B is

concrete.

The following shows that polymax functions are closed under simultaneous safe

recursion on notation and thus provides a slight generalisation of one direction of

the central result in Bellantoni and Cook (1992).

Proposition 4.2

Let m, n, k be natural numbers and let~g ∈ B((m, n) , (0, k)),~h ∈ B((m+1, n+k) , (0, k)).

The function(s) ~f : Nm+1 ×Nn→Nk defined by

~f(~x, 0;~y) = ~g(~x;~y)
~f(~x, x;~y) = ~h(~x, x;~y,~f(~x,

⌊
x
2

⌋
;~y)) if x > 0

is in B((m+ 1, n) , (0, k)).

Proof

Let pg and ph be polynomials such that max |~g(~x;~y)| 6 pg(|~x|) + max |~y| and

max |~h(~x, x;~y,~u)| 6 ph(|~x|, |x|) + max(|~y|, |~u|).
We have

max |~f(~x, x;~y)| 6 |x| · ph(|~x|, |x|) + pg(|~x|) + max(|~y|)
so the obvious Turing machine computing f runs in polynomial time and f is

polymax bounded. q

The following proposition shows closure of polymax functions under simultaneous

safe recursion with safe parameter substitutions. The case k = 1 appears also in

Bellantoni (1992).

Proposition 4.3

Let m, n, k be natural numbers and let~g ∈ B((m, n) , (0, k)),~h ∈ B((m+1, n+k) , (0, k)),

and ~u ∈ B((m+ 1, n) , (0, n)). The function(s) ~f : Nm+1 ×Nn - Nk defined by

~f(~x, 0;~y) = ~g(~x;~y)
~f(~x, x;~y) = ~h(~x, x;~y,~f(~x,

⌊
x
2

⌋
;~u(~x, x;~y))) if x > 0

is in B((m+ 1, n) , (0, k)).
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Proof

Define~v ∈ B((m+ 2, n) , (0, n)) (using Prop. 4.2) by

~v(~x, x, 0;~y) = ~y

~v(~x, x, y;~y) = ~u(~x,
⌊
x

2|y|
⌋

;~v(~x, x,
⌊
y
2

⌋
;~y)) if y > 0

As y varies from 0 to x the function ~v(~x, x, y;~y) takes on the parameter values on

which ~f is called recursively in the course of the computation of ~f(~x, x;~y).

Now consider the function(s)

~F(~x, x, y;~y) =~f(~x,
⌊ x

2|x|−|y|
⌋

;~v(~x, x,
⌊ x

2|y|
⌋

;~y))

Routine calculations now show that

i. if |y| > |x| then F(~x, x, y;~y) = f(~x, x;~y),

ii. ~F(~x, x, 0;~y) =~g(~x;~v(~x, x, x;~y))

iii. F(~x, 0, y;~y) = g(~x;~y)

iv. if |y| 6 |x| then F(~x, x, y;~y) =~h(~x,
⌊

x
2|x|−|y|

⌋
;~v(~x, x,

⌊
x

2|y|
⌋

;~y),~F(~x, x,
⌊
y
2

⌋
;~y)).

v. if |y| > |x| then F(~x, x, y;~y) = F(~x, x,
⌊
y
2

⌋
;~y)

Notice that, (v) follows directly from (i).

Now, using the fact that characteristic functions for the relations |y| > |x| and

|y| > |x| with x, y normal are polymax we find that clauses (ii)–(v) give rise to a

definition of F by safe recursion on notation on y (without any substitution of

parameters. Once we have defined F we can recover f using the special case of (i)

where y = x. q

5 Presheaves over polymax functions

Our aim is to interpret the calculus SLR in the functor category B̂ in such a way that

terms of type �N→N, say, will be interpreted as morphisms from Y(1, 0) to Y(0, 1)

hence, by the Yoneda lemma, as PTIME functions. (Notice here that the functions

in B((1, 0) , (0, 1)) are in 1-1 correspondence with the PTIME-functions.) For the

linearity-free fragment this has already been achieved in (Hofmann, 1997), so we

will only briefly review this construction and then focus on the issue of linearity.

We will write N for the functor Y(0, 1). Notice that N(m,n) consists of the (m, n)-

polymax functions. Since B has cartesian products the characterisation of function

spaces in Lemma 3.1 applies to the present situation, and we obtain in particular

that the function space N⇒F in B̂ is isomorphic to the functor FN defined by

FN
(m,n) = F(m,n+1).

5.1 Definition by cases

The category of all presheaves is not quite yet suitable for our purposes as it does

not behave well w.r.t. case distinction. Consider the constant presheaf 2 given by

2(m,n) = {0, 1}. As follows from naturality every morphism in B̂ from N to 2 must

be constant. In particular, there can be no morphism which would perform case

distinction, e.g. be 0 on even numbers and 1 on the odd ones. Intuitively speaking,
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the reason for this is that N does not consist of natural numbers, but rather of

N-valued functions defined on Nm ×Nn where (m, n) is the “current stage”. The

existence of a morphism parity : N - 2 which is 0 on even numbers and 1 on

the odd ones would mean that every such function either yields even values only or

yields odd values only. This is obviously not the case. What we can say, however, is

that for every such function there exists a finite partition of its domain such that in

each patch it yields either even or odd values.

A well-known category-theoretic concept, namely the notion of sheaf, allows us

to cater for such local case distinctions.

Definition 5.1

Let (m, n) be an object of B. A cover of (m, n) consists of a morphism t ∈
B((m, n) , (0, 1)) with range {0, 1}. In other words, every m+n-ary PTIME-computable

function with range {0, 1} is a cover.

A presheaf F ∈ B̂ is a sheaf if for each (m, n) and every cover t ∈ B((m, n) , (0, 1))

and elements f0, f1 ∈ F(m,n) there exists a unique element f ∈ F(m,n) such that for

every u : B((m, n) , (m, n)) such that t ◦ u is constant, we have Fu(f) = Fu(fi).

Notice that it would suffice to require the latter property for those u which are the

identity on some t−1(i) for i = 0, 1 and constant outside. The general case would

then follow by the functor laws.

We say that f is obtained by pasting f0, f1.

We could define a more general notion of cover which uses functions with a

range of the form {0, . . . , n − 1} and accordingly, n elements f0, . . . , fn−1 as “input”

to pasting. However, it is easy to see that the resulting notion of sheaf agrees with

the present one. This is for the same reason as generalised case distinction can be

defined from binary if-then-else.

One can show that a sheaf in our sense is a sheaf for a suitable Grothendieck

topology on B (see Moerdijk and MacLane (1992) for an accessible account of

Grothendieck topologies.) It follows from this fact that the subcategory Sh(B) of B̂
consisting of the sheaves is closed under products, function, spaces and equalisers,

and that these are constructed in the same way as for presheaves.

Proposition 5.2

The representable presheaf N = Y((0, 1)) is a sheaf.

Proof

Let t ∈ B((m, n), (0, 1)) be a cover and let f0, f1 ∈ N(m,n) be polymax-functions. We

define f ∈ B((m, n), (0, 1)) by

f(~x;~y) = ft(~x;~y)(~x;~y)

The verification is left to the reader. q

The reason for the introduction of sheaves is the following.

Proposition 5.3

Let C be a sheaf. There exists a morphism

ifzC : N× C × C - C
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such that

ifzC(0, c0, c1) = c0

and such that for every nonzero global element x : > - N we have

ifzC(x, c0, c1) = c1

Moreover, ifzC is natural in C in the sense that if f : C - D is a morphism

between sheaves then

f(ifzC(n, c0, c1)) = ifzD(n, f(c0), f(c1))

Proof

Notice that we only specify the behaviour of ifzC when the first argument is a global

element. Let us now define a morphism ifzC with the required properties. Assume

(m, n) and f ∈ N(m,n) and c0, c1 ∈ C(m,n). The function t ∈ B((m, n) , (0, 1)) defined by

t(~x;~y) =

{
0, if f(~x;~y) = 0

1, otherwise

defines a cover on (m, n). We define (ifzC)(m,n)(f, c0, c1) as the unique element c ∈ C(m,n)

such that t ◦ u = i ∈ {0, 1} implies Cu(c) = ci.

Naturality of the thus defined family of maps (ifzC)(m,n) is a direct consequence

of uniqueness of pasting. (Going both sides of the naturality square yields elements

satisfying the requirement of a pasting.) The desired property of ifzC is also a

consequence of uniqueness: if f is constantly 0 so is t and then c0 itself is a pasting

thus equal to c. Similarly, if f is constantly 1. Finally, this line of argument also

establishes naturality of ifzC in C . q

5.2 A comonad on B̂

We have a functor � : B̂→B̂ defined by (�F)(m,n) = F(m,0) and (�F)(~u,~v) = F(~u,0). If

f : F→G is a morphism in B̂ then �f : �F→�G is given by (�f)(m,n) = f(m,0).

It is easily seen that this is indeed a functor. More specially, it extends to a

comonad on B̂ and restricts to Sh(B). The notion of comonad is dual to the more

well-known concept of a monad defined, for example, by Moggi (1991). All comonads

arising in this paper are of a very special form, namely an endofunctor F : C→C
on some category C such that F ◦ F = F together with a natural transformation

ε : F→Id called a co-unit such that F(ε) = id.

In the particular case at hand, the co-unit is the natural transformation unbox :

�→Id given by (unboxF )(m,n) = Fπ where π ∈ B((m, n) , (m, 0)) is the projection on

the first component. Obviously, we have � ◦� = � and �(unbox) = id.

The fact that � is a comonad allows us to lift a morphism f : �F→G to a

morphism f� : �F→�G, in fact, we have f� = �(f) in view of �� = �. Notice

that � is not a strong comonad, i.e. there is in general no way of lifting a morphism

f : H × �F→G to a morphism from H × �F to �G. Also notice how the lifting

operation corresponds to the rule of necessitation found in modal logic.

The comonad � has the further property that it commutes with cartesian products

in the sense that �(A× B) = �A×�B and �πi = πi for i = 1, 2.
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Readers not familiar with the notion of a comonad need only remember the

definition of � and the definition and typing of unbox.

Now consider the sheaf �N. We have �N(m,n) = N(m,0) = B((m, 0) , (0, 1)) ∼=
B((m, n) , (1, 0)); where the last step follows from the definition of polymax functions:

a (m, 0)-polymax function is the same as an m-ary PTIME-function. This means that

�N is isomorphic to the sheaf Y(1, 0) and Lemma 3.1 gives (�N⇒F)(m,n)
∼= F(m+1,n).

Again, we will treat this isomorphism as an identity.

This allows us to lift recursion on notation (Proposition 4.2) and recursion on

notation with substitution of parameters to global elements

saferec(k) : > - �N⇒A⇒(�N⇒A⇒A)⇒A
substrec(k) : > - �N⇒

(A⇒ N)⇒
(�N⇒ A⇒ N⇒ N)⇒

(A⇒ A)⇒ A⇒ N

where A = Nk .

We have shown (Hofmann, 1997) that in this way one obtains a model of the

linearity-free fragment of SLR which can be used to show that all definable functions

of type �Nn→N are in PTIME.

6 Chu spaces

The notion of Chu space has been introduced by Michael Barr as a canonical

example of a ∗-autonomous category (a certain model of linear logic). Afterwards,

it has been recognised (notably by Vaughan Pratt) that Chu spaces provide an

abstract model of duality between objects and attributes into which many concepts

like topological spaces and lattices of open sets or vector spaces and linear forms

can be embedded in a natural way.

Here we want to put forward the use of Chu spaces as a generalised continuation-

passing-style (CPS) transformation. Although we do this with a very specific ap-

plication in mind, we hope that by introducing this concept into the functional

programming community more applications will be found.

The starting question here is the following.

“What benefit can we extract from the knowledge that a function(al) is linear?”

One answer will be provided by the Chu space interpretation we are going to

give. Namely, it will allow us to deduce that if we are given a linear functional

F : (A(N)(N, where A is arbitrary and where F possibly depends on parameters

then we can effectively come up with an element arg : A and a “continuation”

rest : N→N (both also depending on possible parameters of course) such that for

every u : A→N it holds that

F(u) = rest(u(arg(u)))

As stated in the introduction, this will allow us to reduce higher type recursion with

linear step function to first-order recursion with parameter substitution.
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The idea behind the Chu space interpretation is that every type A gets interpreted

as a “space of values” or denotations |[[A]]| and a “space of continuations” |[[A]]|∗
and, finally, a function δA : |[[A]]| × [[A]]∗→R where R is some object of “responses”.

The analogy with CPS transformation stems from the observation that there we

translate every type either into a set of denotations [[A]] and define the set of

continuations as [[A]]→R, or we translate every type A into a set of continuations

and recover denotations as functions from continuations to responses. In the Chu

space interpretation we can as it were arbitrarily choose both continuations and

denotations as long as we say how to apply a continuation to a denotation to yield

a response (that’s the purpose of the map δ.)

Such Chu spaces are usually formed w.r.t. the category of sets, i.e. |[[A]]| and [[A]]∗

are sets; δA is a function. However, they can be formed w.r.t. other categories as well

as long as these support cartesian products, function spaces, and equalisers. The last

requirement (equalisers) hampers a view of an interpretation in a category of Chu

spaces as a syntactic translation. Notice, conversely, that the CPS translation, which

is usually presented as a syntactic translation, can also be seen as interpretation in

an appropriate model.

If one insists on using syntax to construct Chu spaces one would first have to

conservatively embed the target calculus into a system with equationally defined

subset types.

We could adopt here such a strategy with the target language being the a version

of SLR with first-order safe recursion with parameter substitution; a system of which

we already know that it captures PTIME by interpretation in the functor category B̂.

It is more direct, however, to use Chu spaces over the category Sh(B) directly,

since it supports all the required structure. The object of responses we use is R = N.

Definition 6.1

A Chu-space (over Sh(B)) is a triple A = (|A|, A∗, δA) where |A|, A∗ are objects of

Sh(B) and δA : |A| × A∗→N. We call |A| and A∗ the value space and continuation

space of A. The map δA is called the evaluation map.

If A,B are Chu-spaces then a morphism from A to B is a pair f = (|f|, f∗) where

|f| : |A|→|B| and f∗ : B∗→A∗ such that the following diagram called adjointness

condition commutes:

|A| × B∗ |f| × B
∗
- |B| × B∗

|A| × A∗

|A| × f∗
?

δA
- N
?

δB

Here – following common practice – we denote the identity at some object X by

that object itself rather than by idX . Again, |f| is called the value map; f∗ is called

the continuation map of f.

The composition of morphisms is given componentwise by |f ◦ g| = |f| ◦ |g| and

(f ◦ g)∗ = g∗ ◦ f∗.
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Note that we can express the adjointness condition using the internal language

by requiring that for all a: |A| and β:B∗ we have δB(|f|(a), β) = δA(a, f∗(β)).

6.1 Examples of Chu spaces

It is known that Chu spaces form a symmetric monoidal closed category (Pratt,

1995). We only give here the constructions on objects associated with this fact; the

definition of the morphism parts such as currying, as well as the verifications are

then routine and left to the reader.

To define particular Chu spaces we make use of the informal typed lambda calculus

described above. To ease understanding the first few examples will, however, be given

together with explicit definitions employing “categorical combinators”.

The Chu space N is defined by |N| = N and N∗ = (N⇒N) where N on the

right hand side refers to Sh(B) of course. The mapping δN is simply the evaluation

map N × (N⇒N)→N. Alternatively, we can define δN using the internal language

of Sh(B) by δN(n, ν) = ν(n).

The linear function space A(B is a bit more complicated: Its value space is

defined in the internal language as the following subset type.

|A(B| = {(|f|, f∗) | |f| : |A|⇒|B|, f∗ : B∗→A∗,
∀a: |A|.∀β:B∗.δB(|f|(a), β) = δA(a, f∗(β))}

Explicitly, we define it as the following pullback in Sh(B):

|A(B| - |A|⇒|B|

B∗⇒A∗
?

f
- (|A|×B∗)⇒N

?

g

where f and g are maps constructed in the obvious way from δA and δB by currying

and some wiring.

Intuitively, |A(B| is the set of morphisms from A to B. This intuition is somewhat

misleading, though, since the homset Chu(A,B) is an actual set, whereas |A(B| is a

sheaf.

The space of continuations for A(B is |A| × B∗. The evaluation map is given by

δA(B((|f|, f∗), (a, β)) = δB(|f|(a), β) (= δA(a, f∗(β)))

From now on, we omit the explicit definitions.

The tensor product A⊗B is the most complicated construction we will encounter.

We have

|A⊗ B| = |A| × |B|
(A⊗ B)∗ = {(α, β) | α: |B|⇒A∗, β: |A|⇒B∗, ∀a: |A|.

∀b: |B|.δA(a, α(b)) = δB(b, β(a))}
δA⊗B((a, b), (α, β)) = δA(a, α(b)) (= δB(b, β(a)))

If f : A→C and g : B→D are morphisms between Chu spaces then we define f⊗g :
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A⊗B→C⊗D by |f⊗g|(a, b) = (|f|(a), |g|(b)) and (f⊗g)∗(γ, δ) = (f∗ ◦ γ ◦ |g|, g∗ ◦ δ ◦ |f|).
The verifications are by straightforward equality reasoning.

There is also a neutral element for the tensor product: the Chu space I defined

by |I | = {0}, I∗ = N, δI (0, n) = n. We have I ⊗ A ∼= A⊗ I ∼= A.

Proposition 6.2

These settings endow Chu with the structure of a symmetric monoidal closed category

in the sense that there are coherent isomorphisms I⊗A ∼= A, A⊗(B⊗C) ∼= (A⊗B)⊗C ,

A⊗ B ∼= B ⊗ A, and Chu(A⊗ B,C) ∼= Chu(A,B(C).

6.2 Nonlinearisation

For Chu space A we define its nonlinearisation !A by |!A| = |A| and (!A)∗ = |A|⇒N.

The evaluation map δ!A is given by ordinary evaluation, i.e. δ!A(a, α) = α(a). Notice

that !N = N. Nonlinearisation is actually a functor with morphism part given

by |!f| = |f| and (!f)∗(α) = α ◦ |f|. It extends to a comonad on Chu with counit

derelictA : !A→A given by |derelictA|(a) = a and derelict∗A(α) = λa.δA(a, α). As with

� we have !!A = !A and !derelictA = id!A. Let A,B be Chu spaces and consider the

function space !A(B. An element of |!A(B| consists of a function |f| : |A|→|B|
and a function f∗ : B∗→(|A|⇒N) such that

f∗(β)(a) = δB(|f|(a), β)

for all a : |A| and β : B∗. But now, f∗ is uniquely determined by this requirement so

that the only relevant component is |f|. The space of continuations is the same as

for A(B, namely (!A(B)∗ = |A| × B∗. Thus, !A(B is canonically isomorphic to

the Chu space A⇒B defined by

|A⇒B| = |A|⇒|B|
(A⇒B)∗ = |A| × B∗
δA⇒B(f, (a, β)) = δB(f(a), β)

We note that A⇒B is not cartesian function space. Indeed, the category of Chu spaces

has cartesian products given by |A× B| = |A| × |B| and (A× B)∗ = A∗ + B∗. These,

however, lack a right adjoint.

6.3 Modality

Finally, we extend the comonad � to Chu spaces by

|�A| = �|A|
(�A)∗ = �A⇒ N

δ�A(a, α) = α(a)

If f : A→B then |�f| = �|f| and (�f)∗ = f∗.
The co-unit unboxA:�A→A is given by |unboxA|(a)=unbox|A|(a) and unbox∗A(α)=

λa.δA(unboxA(a), α). As in B̂ we have �� = � and �unboxA = unboxA so � is

again a comonad. We also notice that !�A = �!A = �A.
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Proposition 6.3

Let A,B be Chu spaces.

i. If A = !A then Chu(A,B) ∼= B̂(|A|, |B|), moreover, |A(B| ∼= |A| ⇒ |B| in this

case.

ii. If !A = A and !B = B then A⊗ B ∼= !(A⊗ B).

iii. The set of global elements of Chu space A, i.e. the Chu space morphisms from

I to A are in 1-1 correspondence with global elements of |A|, i.e. elements of

A(0,0).

Proof

(i) The continuation part of a morphism f : !A - B is uniquely determined by

its value part |f| : |A| - |B| by the adjointness condition. Namely, for β : B∗ we

have f∗(β) = λx: |A|.δB(|f|(x), β).

By the same argument the first projection |A(B| - |A ⇒ B| extends to an

isomorphism whose inverse sends f : |A| ⇒ |B| to the pair (f, f∗) where f∗(β) =

λx: |A|.δB(f(x), β).

(ii) Here we notice that if !A = A and !B = B then (A⊗B)∗ consists of two functions

u : |A| ⇒ (|B| ⇒ N) and v : |B| ⇒ (|A| ⇒ N) such that for each a : |A| and b : |B|
we have u(a)(b) = v(b)(a). Hence, u and v are one and the same function and thus

(A⊗ B) ∼= !(A⊗ B).

(iii) This follows from part (i) in view of I = !I . q

6.4 Affine Chu spaces

Let A be a Chu space. To define projections A⊗ B→A for each B it is sufficient to

have a morphism discardA : A→I . We will see that all the Chu spaces which are of

interest to us admit such a morphism. To define it inductively we also need global

elements of the Chu spaces of interest. This motivates the following definition.

Definition 6.4

A Chu space A is called affine if it has I as a retract, i.e. if there are morphisms

elemA : I→A and discardA : A→I such that discardA ◦ elemA = idI .

If B is affine and A is arbitrary then we have a projection πA,B : A⊗B→A obtained

by composing idA⊗ discardB : B→I with the isomorphism A⊗ I ∼= A. Similarly, we

obtain a second projection π′B,A : B ⊗ A→A.

Unfortunately, these projections do not necessarily form a natural transformation,

i.e. if both B and B′ are affine, f : A→A′ and g : B→B′ then it need not be the case

that πA′ ,B′ ◦(f ⊗ g) = f ◦ πA,B . Notice, however, that |πA,B |(a, b) = a, so the naturality

equation holds for the respective value maps.

Proposition 6.5

The Chu space N is affine. If A,B are affine so are A(B, A⇒ B, �A, A⊗ B, !A.

Proof

Define |discardN| = 0 and (discardN)∗(n) = λx.n; define |elemN| = 0 and

(elemN)∗(ν) = ν(0). This establishes that N is affine. The other claims follow from

I ∼= I(I ∼= I ⊗ I ∼= !I ∼= �I . q
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6.5 Linear N-valued functionals

The whole point about Chu spaces is that they make precise the intuition that a

(affine) linear function uses its argument (at most) once. In particular, if F : (A ⇒
N) - (A ⇒ N) is a map between Chu spaces then there are B̂-morphisms

arg : |A|→|A| and rest : |A|→N⇒ N such that

|F |(u)(a) = rest(a)(u(arg(a)))

Indeed, these functions can be obtained as the two components of λa:|A|.F∗(a, id)

where id is the identity function viewed as an element of N∗ = (N⇒ N).

More generally, we can characterise the linear function space (A ⇒ N)(N as

follows.

Definition 6.6

Let A be a Chu space. The Chu space Lin(A) of linear N-valued functionals on

A(N is defined by

|Lin(A)| = |A| × (N⇒ N)

Lin(A)∗ = |A(N| × (N⇒ N) (= ((A(N)(N)∗)
δLin(A)((arg, rest) , (u, ν)) = ν(rest(u.1(arg)))

Here u.1 refers to the first component of u : |A(N| hence u.1 : |A| ⇒ N.

Proposition 6.7

The Chu space Lin(A) is functorial in A and as such naturally isomorphic to

(A(N)(N. The value part of the isomorphism sends (arg, rest) to λu.rest(u.1(arg)).

Proof

The continuation part of the isomorphism is simply the identity. It is obvious from

the definition that this defines a morphism between Chu spaces. To see that it is an

isomorphism we define a morphism ψ : ((A(N)(N) - Lin(A) as follows.

Let (|F |, F∗) be an “element” (i.e. a formal variable towards the definition of a

morphism) of (A(N)(N. This means that |F | : |A(N| ⇒ N and F∗ : N∗ ⇒
(A(N)∗ = (N⇒N)⇒ (|A| × (N⇒N)) and

ν(|F |(u)) = δA(N(F∗(ν) , u) = F∗(ν).2(u.1(F∗(ν).1))

for u : |A(N| and ν : N∗ = N⇒N. This follows from the definition of linear

function space. Now setting ν equal to the identity gives us

|F |(u) = rest(u.1(arg))

where rest = F∗(id).2 and arg = F∗(id).1.

Therefore, putting

|ψ|((|F |, F∗)) = F∗(id)

ψ∗(u, ν) = (u, ν)

yields the desired inverse. q
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7 Interpretation of SLR in the category of Chu spaces

We are now ready to define an interpretation of SLR judgements in the category

Chu. To each aspect a we associate a functor Fa : Chu→Chu by

Fa(X) = X, if a = (nonmodal, linear)

Fa(X) = !X, if a = (nonmodal, nonlinear)

Fa(X) = !�X, if a = (modal, nonlinear)

We also define a natural transformation εa : Fa→Id as an appropriate composition

of unbox and derelict.

To each type A we associate a Chu space [[A]] by

[[N]] = N

[[A1
a−→ A2]] = Fa([[A1]])([[A2]]

Notice that [[A ⇒ B]] ∼= [[A]] ⇒ [[B]] and [[�A ⇒ B]] ∼= �[[A]] ⇒ [[B]] in view of

Prop. 6.3.

A type assignment Γ = x1
a1
: A1, . . . , xn

an
: An gets interpreted as the tensor product

[[Γ]] =def Fa1
([[A1]])⊗ . . .⊗ Fan ([[An]])

A derivation of a judgement Γ ` e : A gets interpreted as a morphism

[[Γ ` e : A]] : [[Γ]] - [[A]]

Before actually defining this interpretation let us warn readers that we will not prove

that the interpretation is independent of the chosen typing derivation. Neither will

we prove that it enjoys one or the other substitution property, or that it validates

equational theory between terms whatsoever. We foresee no serious obstacle against

establishing such results; the reason is merely that we do not need them.

All we are interested in is to establish a relationship between the set-theoretic

semantics and the Chu space interpretation, which establishes that the set-theoretic

semantics stays within polynomial time.

7.1 Constants

An integer constant n (under some type assignment Γ) is interpreted as the com-

position of discard[[Γ]] : [[Γ]]→I with the global element of N corresponding to the

constant using Chu(I,N) ∼= N(0,0).

To interpret the functional constants S0 and S1 we compose discard[[Γ]] with the

set-theoretic functions λx∈N.2x and λx∈N.2x+1 lifted to global elements of N⇒ N

using the isomorphisms

Chu(I,N⇒ N) ∼= B̂(1,N⇒ N) ∼= N(0,1)

7.2 Variables

A variable Γ ` x : Γ(x) where x ∈ dom(Γ) is interpreted as the appropriate

projection function, followed by a counit. More precisely, if

[[Γ]] = [[Γ1]]⊗ FΓ((x))([[Γ(x)]])⊗ [[Γ2]]
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then [[Γ ` x : Γ(x)]] is obtained as follows

[[Γ1]]⊗ FΓ((x))([[Γ(x)]])⊗ [[Γ2]]
discard[[Γ1]]⊗id[[Γ(x)]]⊗discard[[Γ2]]- I ⊗ FΓ((x))([[Γ(x)]])⊗ I ∼=

FΓ((x))([[Γ(x)]])
εa- [[Γ(x)]]

7.3 Subsumption

By induction on the definition of subtyping we define coercion morphisms ιA,A′ :

[[A]]→[[A′]] for any two types A,A′ with A 6 A′. The definition of ιA,A′ is by induction

on the derivation of A 6 A′ using as basic ingredients identity, composition, the

isomorphism !X(Y ∼= X ⇒ Y , the counits unbox and derelict, and the morphism

part of the(-functor. For example, the coercion from [[N⇒ A]] to [[�N(B]] when

A 6 B is defined as the composition

[[N⇒ A]] = N⇒ [[A]] = N([[A]]
unboxN(ιA,B- �N([[B]] = [[�N(A]]

7.4 Abstraction

If Γ, x
a
:A ` e : B then

f := [[Γ, x
a
:A ` e : B]] : [[Γ]]⊗ [[x

a
:A]] - [[B]]

The transpose of f along the adjunction ⊗ a ( yields a morphism from [[Γ]] to

[[A
a−→ B]] which serves as the interpretation of λx:A.e.

7.5 Application

Suppose that f1 : [[Γ]]⊗[[∆1]] - [[A
a−→B]] and that f2 : [[Γ]]⊗[[∆2]] - [[A]] are

the interpretations of Γ,∆1 ` e1 : A
a−→ B and Γ,∆2 ` e2 : A, respectively. We may

assume that Γ is nonlinear and that all bindings in Γ,∆2 have an aspect smaller than

a. This last requirement shows that Fa([[Γ,∆]]) ∼= [[Γ,∆]] by Proposition 6.3. Since Γ

is nonlinear we have ![[Γ]] ∼= [[Γ]] and the diagonal map |[[Γ]]| - |[[Γ]] ⊗ [[Γ]]|
extends to a Chu space morphism by Proposition 6.3 thus allowing us to define a

wiring map

w : [[Γ,∆1,∆2]] - [[Γ,∆1]]⊗ [[Γ,∆2]]

We obtain the interpretation of e1 e2 as the following morphism

[[Γ,∆1,∆2]]
w- [[Γ,∆1]]⊗ [[Γ,∆2]]

f1⊗Fa(f2)- [[A
a−→ B]]⊗ Fa[[A]] ∼=

∼= (Fa[[A]]([[B]])⊗ Fa[[A]]
eval- [[B]]

where eval is the evaluation map.

7.6 Case distinction

We could interpret case distinction directly, but it considerably simplifies the notation

if we merely show the interpretation of the following three special cases from which

all instances of case distinction are obviously definable.
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– The conditional defined explicitly by

cond(e1, e2, e3) =def caseAe1 zero e2 even λx: N.e3 odd λx: N.e3

– The division by two divtwo : N→N from section 1.3.

– The parity function

parity : N→N

defined by

parity = λx: N.caseNx zero 0 even 0 odd 1

The interpretation of the latter two functions is analogous to the interpretation of

the constructors S0,S1 and follows immediately from the fact that Chu(N,N) ∼=
B((0, 1), (0, 1)).

To interpret the conditional we assume an arbitrary instance, i.e.

Γ,∆1 ` e1 : N

Γ,∆2 ` e2 : A

Γ,∆2 ` e3 : A

where the common type assignment Γ is nonlinear.

Let f1, f2, f3 be the interpretations of e1, e2, e3.

Let us use the notation

f : [[Γ]]⊗ [[∆1]]⊗ [[∆2]] - N

for the interpretation of Γ,∆1,∆2 ` Cond(e1, e2, e3) : N which we are going to

construct now.

The value component |f| of f is to be a Sh(B)-morphism from |[[Γ]]| × |[[∆1]]| ×
|[[∆2]]| to |[[A]]|.

We obtain it by plugging the value components of f1, f2, f3 into an appropriate

instance of the morphism ifz from Proposition 5.3. More precisely,

|f|(γ, δ1, δ2) = ifz|[[A]]|(|f1|(γ, δ1) , |f2|(γ, δ2) , |f3|(γ, δ2))

It remains to define the continuation component f∗. It takes the form of a Sh(B)-

morphism from [[A]]∗ to ([[Γ]]⊗ [[∆1]]⊗ [[∆2]])∗.
According to the definition of continuation parts of tensor products this means

that we have to define three morphisms

f∗Γ : [[A]]∗ × |[[∆1]]| × |[[∆2]]| - [[Γ]]∗

f∗∆1
: [[A]]∗ × |[[Γ]]| × |[[∆2]]| - [[∆1]]∗

f∗∆2
: [[A]]∗ × |[[Γ]]| × |[[∆1]]| - [[∆2]]∗

These are to satisfy

δΓ(f∗Γ(α, d1, d2) , g) = f∗Γ(α, d1, d2)(g)
(I)
= δ∆1

(f∗∆1
(α, g, d2) , d1)

(II)
= δA(α , |f|(g, d1, d2))
(III)
= δ∆2

(f∗∆2
(α, g, d1) , d2)
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for g : |[[Γ]]|, d1 : |[[∆1]]|, d2 : |[[∆2]]|, α : [[A]]∗. Notice that the non-supercsripted

equality follows from the fact that Γ is nonlinear.

We have to our disposal the continuation parts of f1, f2, f3 which take the form

f∗1 : |[[Γ]]| × [[N]]∗ - [[∆1]]∗

f∗2 : |[[Γ]]| × [[A]]∗ - [[∆2]]∗

f∗3 : |[[Γ]]| × [[A]]∗ - [[∆2]]∗

and satisfy the following equations:

δ∆1
(f∗1(g, ν) , d1)

(A)
= ν(|f1|(g, d1))

δ∆2
(f∗2(g, α) , d2)

(B)
= δA(α, |f2|(g, d2))

δ∆2
(f∗3(g, α) , d2)

(C)
= δA(α, |f3|(g, d2))

We make the following definitions:

f∗Γ(α, d1, d2) = λg: |[[Γ]]|.δ∆1
(f∗∆1

(α, g, d1) , d1)

f∗∆1
(α, g, d2) = f∗1(g, λn.δ[[A]]∗(α, ifz|[[A]]|(n, |f2|(g, d2), |f3|(g, d2))))

f∗∆2
(α, g, d1)) = ifz[[∆2]]∗(|f1|(g, d1), f∗2(g, α), f∗3(g, α))

Now equation (I) is direct from the definition of f∗1 . Equation (II) follows from

equation (A). For equation (III), the most complicated one, we calculate as follows:

δ∆2
(f∗∆2

(α, g, d1) , d2)

= δ∆2
(ifz[[∆2]]∗(|f1|(g, d1), f∗2(g, α), f∗3(g, α)) , d2)

= ifzN(|f1|(g, d1), δ[[∆2]](f
∗
2(g, α), d2), δ[[∆2]](f

∗
3(g, α), d2)) Nat’ty of ifz

= ifzN(|f1|(g, d1), δ[[A]](α, |f2|(g, d2)), δ[[A]](α, |f3|(g, d2))) Eqn. (B) and (C)

= δ[[A]](α, ifz|[[A]]|(|f1|(g, d1), |f2|(g, d2), |f3|(g, d3))) Nat’ty of ifz

= δ[[A]](α, |f|(g, d1, d2))

7.7 Linear recursion

Let A be Nk→N. To interpret linrecA we seek a global element of the Chu space

�N⇒ [[A]]⇒ (�N⇒ [[A]]([[A]])⇒ [[A]]

Now Proposition 6.7 (Nk ⇒ N)((Nk ⇒ N) ∼= Nk ⇒ Lin(Nk)

gives this is isomorphic to

�N⇒ [[A]]⇒ (�N⇒ Nk ⇒ Lin(Nk))⇒ [[A]]

Expanding the definitions a global element of the above Chu space amounts to a

global element of the following sheaf in Sh(B):

�N⇒ (Nk ⇒ N)⇒ (�N⇒ Nk ⇒ (Nk × (N⇒ N))⇒ Nk ⇒ N

Now up to isomorphism this coincides with the “type” of the recursor with parameter

substitution substrec(k) from section 5.2 and it is this recursor composed with the

described chain of isomorphisms which we use as interpretation for linrecA.
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8 Relating the interpretations

To finally deduce the desired result that all functions definable in SLR are PTIME

we must relate the Chu space interpretation of SLR to its intended set-theoretic

meaning. Let us introduce the notations [[−]]Chu and [[−]]Sets for these interpretations.

Let G : Chu→Sets be the functor which sends Chu-space A to |A|(0,0) and similarly

morphism f : A→B to |f|(0,0). Note that G(A) ∼= Chu(I, A).

If f ∈ G(A(B) and a ∈ G(A) we define app(f, a) as the application of the first

component of f to a. More precisely, f comes as a pair (|f|, f∗) where |f| ∈ (|A| ⇒
|B|)(0,0). We obtain app(f, a) by applying |f| to a.

We have G(A) = G(�A) = G(!A) hence G([[A
a−→ B]]Chu) = G([[A]]Chu([[B]]Chu)

and G(A⊗ B) = G(A)×G(B). Furthermore, G(N) ∼= N.

Now, for each SLR-type A we define a relation

RA ⊆ G([[A]]Chu)× [[A]]Sets

by

xRNy ⇐⇒ x = y

fRA
a−→Bg ⇐⇒ ∀x∈G([[A]]Chu).∀y∈[[A]]Sets. xRAy ⇒ app(f, x)RBg(y)

Theorem 8.1

Let Γ = x1
a1
: A1, . . . , xn

an
: An be a type assignment and assume Γ ` e : A. If xi ∈

G([[Ai]]
Chu) and yi ∈ [[Ai]]

Sets are such that xiR
Aiyi for each i = 1 . . . n then

G([[e]]Chu)(x1, . . . , xn) R
A [[e]]Sets(y1, . . . , yn)

Proof

By induction on the derivation of Γ ` e : A. All cases except e = linrecA are

immediate. So let us prove that [[linrecA]]ChuRτ(linrecA)[[linrecA]]Sets where

τ(linrecA) = �N⇒ A⇒ (�N⇒ A(A)⇒ A

and A = Nk ⇒ N. Assume that

x ∈ G(�N) ∼= N(0,0)
∼= N

g ∈ G(A) ∼= N(0,k)

h ∈ G(�N⇒ A(A) ∼=
G(�N⇒ Nk ⇒ Lin(Nk)) ∼=
G(�N⇒ Nk ⇒ (Nk ×N⇒ N)) ∼=
Nk

(1,k) ×N(1,k+1)

y ∈ G(Nk) ∼= Nk

and assume furthermore that

x′ ∈ N
g′ ∈ Nk→N
h′ ∈ N→(Nk→N)→(Nk→N)

y′ ∈ Nk

such that xRx′, gRg′, hRh′, yRy′ with the appropriate superscripts to R. Replacing

x, g, h, y by their transpositions along the isomorphisms indicated above and denoting
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the components of h by ~h1, h2 these assumptions amount to x = x′, g = g′, y = y′,
and

h′(z, u,~w) = h2(z,~w, u(~h1(z,~w)))

for each z ∈ N, u ∈ N(0,k), and ~w ∈ Nk .

We must show that f(x) = f′(x′) where f, f′ : N→Nk→N are given by

f(0, ~w) = g(~w)

f(z,~w) = h2(z,~w, f(
⌊
z
2

⌋
,~h1(z,~w))), if x > 0

f′(0, ~w) = g′(~w)

f′(z,~w) = h′(z, λ~w.f(
⌊
z
2

⌋
, ~w), ~w)

This follows by induction on z while maintaining the additional invariant that

λ~w.f(z,~w) ∈ N(0,k). q

Corollary 8.2

If ~x:�Nm,~y: Nn ` e : N then its set-theoretic interpretation is a polynomial time

computable function.

Proof

We have f = |[[` e : �Nm→Nn→N]]| : �Nm × Nn - N. From the Yoneda

Lemma we know that f(0,0) : Nm ×Nn→N is an (m, n)-polymax function (namely

f(m,n) applied to the identity function). Theorem 8.1 on the other hand, tells us that

[[e]]Sets = f. q

9 Related work

There are several related approaches from some of which this work draws inspiration

and over some of which it improves. The most important, apart from Bellantoni–

Cook’s work, are Leivant and Marion’s (1997) work on tiered recursion, Caseiro’s

(1997) “don’t double criticals” systems, and Girard’s (1995) light linear logic. We

discuss these in order further down. Also related in the sense that category-theoretic

methods are used to characterise complexity classes is Otto’s work (Otto, 1995).

The difference to the present work is that categories are employed to describe the

syntax as opposed to the semantics of systems of safe or tiered recursion. It appears

that using Otto’s presentation or an appropriate generalisation to higher order

our results could be phrased more directly, e.g. without going through the rather

laborious definition of an interpretation function. The disadvantage would then be

that categories are then needed in the statement not only in the proof of the main

result.

9.1 Tiered predicative recursion

Leivant and Marion’s (1993) work is based on a hierarchy of copies of natural

number types N0, N1, N2, . . . If x : Nk then x is said to have tier k. In a primitive

recursion the output of the function to be defined must be of a lower tier than the

argument on which one recurs. It is shown that already two tiers suffice to represent

all PTIME-functions, but natural definitions which are based on a composition

https://doi.org/10.1017/S0956796899003433 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003433


Semantics of linear/modal lambda calculus 275

of several auxiliary functions may require arbitrarily high tiers. So, when writing

an auxiliary function one has to decide in advance which tier to assign to the

arguments. It may well be that one could design a “tier inference scheme” for the

Leivant-Marion system which would translate Bellantoni-Cook types to Leivant-

Marion types, but the details remain to be worked out.2 Leivant and Marion have

also studied primitive recursion with first-order functional result type (Leivant and

Marion, 1997), but reach the class PSPACE in this way. The reason is that the

restrictions they impose rule out nested applications like in example 1.1 but still

allow to call the recursive argument more than once so that typical PSPACE-

complete functions such as evaluation of quantified boolean formulas (encoded as

integers) can be programmed. It appears that by adding linearity to the Leivant–

Marion framework one can also obtain a PTIME primitive recursion with first-order

result type.

9.2 Caseiro’s systems

Caseiro (1997) studies an extension of the Bellantoni–Cook framework to arbitrary

first-order data structures such as lists or trees. She notices that in the presence of

binary constructors (like node in the case of binary trees) arbitrary duplication of

safe arguments must be avoided. Accordingly, several sets of conditions to avoid

dangerous duplication of arguments are designed, and it is shown that the resulting

systems yield PTIME definitions. Unlike the present work, Caseiro’s systems are

purely first-order. A disadvantage of her systems is that the syntactic conditions are

fairly complex to state, and look rather ad hoc. We believe that through the use

of a type system based on modality and linear logic one could obtain a smoother

formulation of Caseiro’s work and integrate parts of it with the present work. See

(Hofmann, 1998a) for an attempt in this direction.

9.3 Light Linear Logic

Girard’s Light Linear Logic (LLL) (Girard, 1995; Asperti, 1998) is a modification of

his linear logic with restricted nonlinearisation (!A(A is no longer derivable) and an

extra modality §. It is shown that this system admits cut elimination in PTIME, and

therefore all lambda terms typeable in this system can be reduced to normal form (by

some strategy) in polynomial time. In particular, it is shown that certain functions

on Church numerals can be typed: letting int be the type ∀X.!(X(X)(§(X(X),

i.e. a linear logic decoration of the usual type of polymorphic tally integers in system

F, then multiplication can be given the type int(int(§§int and more generally, for

every (unary) PTIME function there exists a term of type int(§kint for some k. A

similar characterisation exists for integers in binary notation. It is not clear, however,

whether natural algorithms such as bitwise addition with carry can be represented

in LLL.

The major advantage of LLL is that it contains polymorphic functions and – via

2 The long version of (Hofmann, 1998c) contains such a system.
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impredicative encoding – arbitrary inductive datatypes like lists or trees. Its main

disadvantage is its rather complex syntax and the lack of a semantic justification.

Furthermore, although all polynomial time functions are expressible in LLL, the

pragmatics, i.e. expressibility of particular algorithms, is unexplored, and superficial

evidence suggests that the system would need to be improved in this direction so as

to compete with systems based on safe recursion.

As LLL matures it might, however, supersede the present approach and also the

work of Caseiro and Leivant-Marion. It remains to be seen whether the methods

described in this paper and in (Hofmann, 1998c) could be used for such further

development of LLL.
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