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Abstract. We consider one-parameter families of smooth circle cocycles over an ergodic
transformation in the base, and show that their rotation numbers must be log-Hölder
regular with respect to the parameter. As an immediate application, we get a dynamical
proof of the one-dimensional version of the Craig–Simon theorem that establishes that the
integrated density of states of an ergodic Schrödinger operator must be log-Hölder.

Key words: fiberwise rotation number, circle cocycle, Craig–Simon theorem
2020 Mathematics Subject Classification: 37E10, 37E45 (Primary); 81Q10 (Secondary)

1. Introduction
The rotation number of a homeomorphism or diffeomorphism of the circle was introduced
by Poincaré [Po] in 1885. Since then, this notion was extensively studied, e.g., see [KH,
§§11 and 12] for a modern exposition of the main results. In particular, in the case when the
circle diffeomorphism depends on a parameter a ∈ R

1, properties of the rotation number
ρ as a function of the parameter, ρ = ρ(a), is a classical topic in dynamical systems.

In many cases, the graph of the function ρ(a) turns out to be a ‘devil’s staircase’, with
many fascinating properties. It was shown that, under suitable conditions, the function
ρ(a) must be continuous, but in general, not Lipschitz [Arn, Her1], generically of bounded
variation [Bru], and Hölder continuous [Gr]. Hölder continuity of ρ(a) for families of
diffeomorphisms with a critical point was established in [GrS], see also [Kh]. Increasingly
refined results on the properties of ρ(a) appear up to this day [Mat].

Here, we consider the rotation number as a function of a parameter not for one circle
map, but for a cocycle over an ergodic transformation in a base, with smooth circle maps
on the fibers; we provide the formal setting in §2. It turns out that in this case, the rotation
number does not have to be a Hölder continuous function of the parameter, but must be
log-Hölder, see Theorem 2.5 below for the formal statement.
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2 A. Gorodetski and V. Kleptsyn

Our initial motivation for writing this paper came from an attempt to understand a
dynamical meaning of the famous Craig–Simon theorem from spectral theory [CS1, CS2],
and Theorem 2.5 can be interpreted as its nonlinear version. The Craig–Simon theorem
claims that the integrated density of states of an ergodic family of discrete Schödinger
operators must be log-Hölder continuous, and can be reformulated as a statement about
the rotation number of a projectivization of the Schrödinger cocycle that depends on
energy as a parameter. In this way, Theorem 2.5 provides a one-dimensional (1D)
version of the Craig–Simon theorem as an immediate corollary. The original proof of the
Craig–Simon theorem in [CS1, CS2] used very different arguments, and was based on the
so-called Thouless formula. A beautiful dynamical version of the Thouless formula was
derived recently in [BCDFK]. In particular, under suitable technical conditions, it implies
log-Hölder continuity of the rotation number for general affine one-parameter families of
projective cocycles, not just Schrödinder cocycles, see [BCDFK, Proposition 5.1], which
is also a partial case of Theorem 2.5.

In §2, we provide the setting and formulate and prove the main result, Theorem 2.5. In
§3, we give the background from spectral theory needed to formulate the Craig–Simon
theorem, and explain its relation to Theorem 2.5. Also, referring to known results in
spectral theory, we notice that Theorem 2.5 is essentially optimal.

2. Preliminaries and main result
2.1. Preliminaries. Suppose that M is a compact metric space, σ : M → M is a
homeomorphism, and μ is an ergodic invariant Borel probability measure supported on
M. Assume also that we are given a continuous map g· : M → Homeo+(S1), where
by Homeo+(S1), we denote the space of orientation-preserving homeomorphisms of the
circle, where S1 = R/Z denotes the circle. Then, one can consider an associated skew
product

F : (ω, x) �→ (σω, gω(x)).

Next, let us choose for every ω ∈ M a lift g̃ω : R → R of the map gω ∈ Homeo+(S1),

gω(π(x)) = π(g̃ω(x)),

where π : R1 → S1 is a natural covering map, in such a way that {g̃ω(0)} is a bounded
measurable (in ω) function (e.g. one can require gω(0) ∈ [0, 1) for all ω ∈ M). We then
can consider the associated lift of the skew product:

F̃ : (ω, x) �→ (σω, g̃ω(x)). (1)

Finally, let Gm,ω and G̃m,ω be the length m fiberwise compositions associated to these
skew products:

Fm(ω, x) = (σmω, Gm,ω(x)), F̃ m(ω, x) = (σmω, G̃m,ω(x)),

so that for m > 0, we have

G̃m,ω = g̃σm−1ω ◦ · · · ◦ g̃σω ◦ g̃ω.

The following statement is well known (e.g. see [Her, §5], [R], or [GK, Appendix A]).
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log-Hölder continuity of the rotation number 3

PROPOSITION 2.1. There exists a number ρ ∈ R such that for μ-almost every (a.e.)
ω ∈ M and every x ∈ R, the limit

lim
n→∞

1
n
(G̃n,ω(x) − x) (2)

exists and is equal to ρ.

The number ρ from Proposition 2.1 is called the rotation number. Notice that the
rotation number ρ depends on the choice of lifts g̃ω.

Remark 2.2. It can happen that the lifts {g̃ω} cannot be taken continuous in ω. At the same
time, in the case when {gω} are projectivizations of the transfer matrices of a Schrödinger
cocycle defined by a continuous potential, the lifts {g̃ω} can always be chosen continuously
in ω (since any Schrödinger cocycle is homotopic to a constant one).

Remark 2.3. Some of the assumptions in Proposition 2.1 can be essentially relaxed.
For example, one can start with a probability space (M, μ) and a measure-preserving
transformation σ instead on a measure-preserving homeomorphism of a compact metric
space. To keep the presentation more transparent, we are not trying to give the statements
in the most general form.

Let us now consider the dependence of the rotation number on a parameter. Namely,
assume now that we are given a continuous family g·,· : J × M → Homeo+(S1) of maps
as above; here, J ⊆ R

1 is a closed interval of parameters. Then, we can consider their lifts
g̃a,ω : R → R to be chosen continuously in parameter a ∈ J . The corresponding skew
products Fa and F̃a as well as the fiberwise compositions Gn,a,ω and G̃n,a,ω then can be
defined in the same way as before.

An important note is that the increments of the images G̃n,a′,ω(x) − G̃n,a,ω(x) do not
depend on a particular choice of lifts g̃a,ω. Moreover, this increment is continuous in ω

and x (and in fact is a well-defined function of the point x on the circle, not only on the
real line). Also, dividing by n and passing to the limit, one gets that the difference of the
corresponding rotation numbers ρ(a′) − ρ(a) does not depend on the choice of lifts g̃a,ω,
thus getting the following important note.

Remark 2.4. Even though the rotation number ρ depends on a particular choice of the
lifts g̃a,ω, the differences of rotation numbers ρ(a′) − ρ(a) do not. In particular, different
choice of lifts g̃a,ω leads to a shift of the rotation number ρ(a) by a constant, and intervals
in the space of parameters where ρ is constant are independent of the choice of the lifts.

2.2. Main result. Here is the main result of this paper.

THEOREM 2.5. Assume that the cocycle in equation (1) smoothly depends on the
parameter a ∈ J and satisfies the following:
(1) the range of parameters is a closed interval J ⊂ R, and for some uniform (in x ∈ R,

ω ∈ M, a ∈ J ) constant C > 0, one has∣∣∣∣∂g̃a,ω(x)

∂a

∣∣∣∣ ≤ C;
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4 A. Gorodetski and V. Kleptsyn

(2) if we set Mω = max{2, maxx∈R, a∈J |∂g̃a,ω(x)/∂x|}, then∫
M

log Mω dμ(ω) < ∞.

Then, the rotation number as a function of the parameter is log-Hölder continuous,
that is, there exists R > 0 such that for any a, a′ ∈ J with |a − a′| ≤ 1/2, we have

|ρ(a′) − ρ(a)| ≤ R(log |a′ − a|−1)−1. (3)

Remark 2.6. The restriction on the modulus of continuity given by equation (3) is optimal,
and cannot be improved without restriction of the class of cocycles under consideration.
See the last paragraph of §3 for details. At the same time, for some specific classes of
cocycles, one can expect a better modulus of continuity of the fibered rotation number.
For example, for random linear cocycles under some natural assumptions, the rotation
number is known to be Hölder continuous, e.g. see [BCDFK, Remark 1.3]. For the random
Schrödinger operators, this corresponds to Hölder continuity of the integrated density of
states [L]. Also, it is interesting to notice that log-Holder modulus of continuity naturally
appears in other contexts related to random linear cocycles, see [Mon].

Remark 2.7. Instead of assuming smoothness of the maps g̃a,ω(x), one can assume that
they are Lipschitz, and replace |dg̃a,ω(x)/dx| by the Lipschitz constant in the definition
of Mω.

2.3. Proof of the main result.

Proof. Fix a′, a ∈ J , and set δ = C|a′ − a|. It suffices to show that equation (3) holds for
all a, a′ ∈ J that are sufficiently close to each other. Therefore, without loss of generality,
we can assume

δ < 0.1 and |a′ − a| < C. (4)

Take any initial point x0 = x′
0 ∈ R, for instance, x0 = x′

0 = 0. Consider the sequences
of its iterates associated to some ω ∈ � and two different parameter values a, a′ ∈ J , for
n ≥ 1,

xn = G̃n,a,ω(x0) = g̃a,σn−1(ω)(xn−1),

x′
n = G̃n,a′,ω(x0) = g̃a′,σn−1(ω)(x

′
n−1)

(to simplify the notation, we do not indicate the dependence on ω explicitly).
Then, for μ-a.e. ω ∈ M, we have

ρ(a′) − ρ(a) = lim
n→∞

1
n
(x′

n − xn). (5)

To prove equation (3), we can assume without loss of generality that ρ(a′) > ρ(a), as
the other case differs only by interchanging a and a′. The following lemma compares the
evolution of distances between the two orbits (considered for the same ω).

LEMMA 2.8. For any n = 1, 2, . . . and any integer j, the following holds:

x′
n − xn − j ≤ δ + Mσn−1ω · max(0, x′

n−1 − xn−1 − j). (6)
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FIGURE 1. Action of maps g̃a,σn−1(ω) and g̃a′ ,σn−1(ω).

Proof. Consider the point y := g̃a,σn−1(ω)(x
′
n−1). Applying the Lagrange theorem, due to

the choice of C, we then have

|x′
n − y| = |g̃a′,σn−1(ω)(x

′
n−1) − g̃a,σn−1(ω)(x

′
n−1)| ≤ C · |a′ − a| = δ.

Thus, to establish equation (6), it suffices to show that

y − xn − j ≤ Mσn−1ω · max(0, x′
n−1 − xn−1 − j). (7)

However, we have

y − xn − j = g̃a,σn−1(ω)(x
′
n−1) − g̃a,σn−1(ω)(xn−1) − j

= g̃a,σn−1(ω)(x
′
n−1 − j) − g̃a,σn−1(ω)(xn−1),

where the second equality uses the fact that g̃a,σn−1(ω) commutes with integer shifts (see
Figure 1).

If x′
n−1 − xn−1 − j ≤ 0, then due to the monotonicity of g̃a,σn−1(ω),

y − j = g̃a,σn−1(ω)(x
′
n−1 − j) ≤ g̃a,σn−1(ω)(xn−1) = xn,

and equation (7) holds. Otherwise, we again apply the Lagrange theorem:

y − xn − j = dg̃a,σn−1(ω)

dx

∣∣∣∣
ξ

· ((x′
n−1 − j) − xn−1) ≤ Mσn−1ω · max(0, x′

n−1 − xn−1 − j),

where ξ ∈ R is a point between x′
n−1 − j and xn−1. This completes the proof of

Lemma 2.8.

The conclusion of this lemma immediately implies the following corollary.

COROLLARY 2.9. Denote dn,j := δ + max(0, x′
n − xn − j). Then,

dn,j ≤ Mσn−1ω · dn−1,j .

Consider now the sequence of the first moments nj when the orbit associated to a′ goes
j full turns ahead of the one associated to a:

nj = min{n ≥ 0 | x′
n ≥ xn + j}.

This sequence is well defined for μ-a.e. ω ∈ M due to equation (5) and the assumption
ρ(a′) > ρ(a). We have the following lemma.
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LEMMA 2.10. For every j ≥ 0,

log
1
2δ

≤
nj+1∑

l=nj +1

log Mσl−1(ω).

Proof. Applying Corollary 2.9, we get

dnj+1,j ≤
( nj+1∏

l=nj +1

Mσl−1(ω)

)
dnj ,j .

However, dnj+1,j ≥ 1 by definition, while dnj ,j ≤ 2δ due to Lemma 2.8. Taking the
logarithm concludes the proof.

We are now ready to complete the proof of Theorem 2.5. Namely, for every μ-regular
point ω ∈ M, we have

1
n

n∑
l=1

log Mσl−1(ω) →
∫
M

log Mω′ dμ(ω′)

as n → ∞. In particular, for all sufficiently large values of n ∈ N, we have

1
n

n∑
l=1

log Mσl−1(ω) < 2
∫
M

log Mω′ dμ(ω′).

Hence, for all large enough j ∈ N,

j

nj

log
1
2δ

≤ 1
nj

( n1∑
l=1

log Mσl−1(ω) +
n2∑

l=n1+1

log Mσl−1(ω) + · · · +
nj∑

l=nj−1+1

log Mσl−1(ω)

)

= 1
nj

nj∑
l=1

log Mσl−1(ω) < 2
∫
M

log Mω′ dμ(ω′).

By definition of {nj }, we have j ≤ |x′
nj

− xnj
| ≤ j + 1, and hence

1
nj

|x′
nj

− xnj
| ≤ 2j

nj

≤
(

4
∫
M

log Mω′ dμ(ω′)
)(

log
1
2δ

)−1

.

Taking into account equation (5), this implies that

|ρ(a′) − ρ(a)| ≤
(

4
∫
M

log Mω′ dμ(ω′)
)(

log
1
2δ

)−1

. (8)

Finally,

log
1
2δ

= log |a − a′|−1 − log 2C >
1
2

log |a − a′|−1
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log-Hölder continuity of the rotation number 7

once |a − a′| < e−4C ; hence, for such a, a′, the estimatein equation (8) implies

|ρ(a′) − ρ(a)| ≤ R (log |a′ − a|−1)−1,

where R = 8
∫
M log Mω′ dμ(ω′).

Due to compactness of J, the same inequality holds also if we remove the assumption
of a, a′ being sufficiently close, possibly with a larger value of constant R. This completes
the proof of Theorem 2.5.

3. The Craig–Simon theorem on log-Hölder regularity of the IDS
In this section, we explain that an application of Theorem 2.5 to the Schrödinger cocycle
of the corresponding 1D ergodic Schrödinger operator immediately implies that the inte-
grated density of states must be log-Hölder regular; therefore, providing a purely dynami-
cal proof of the classical Craig–Simon result in spectral theory [CS2, Theorem 5.2]. For the
modern presentation of all the necessary background in the theory of ergodic Schrödinger
operators, see [DF1, DF2].

To define an ergodic family of discrete Schrödinger operators, let us consider a homeo-
morphism σ of a compact metric space M, an ergodic invariant Borel probability measure
μ on M, and a measurable function f : M → R. One associates a family of discrete
Schrödinger operators on the line as follows. For ω ∈ M, the potential Vω : Z → R is
given by Vω(n) = f (σnω) and the operator Hω in 
2(Z) acts as

[Hωφ](n) = φ(n + 1) + φ(n − 1) + Vω(n)φ(n). (9)

Since σ : (M, μ) → (M, μ) is ergodic, one should expect any σ -invariant measurable
spectral characteristic to be almost surely constant. In particular, there is a well-defined
almost sure spectrum [Pa], etc. An important quantity associated with such a family of
operators, {Hω}ω∈M, is given by the integrated density of states, which is defined as
follows; compare [AS, CFKS] or [DF1, §4.3]. Define the measure dN by

∫
g(λ) dN(λ) =

∫
〈δ0, g(Hω)δ0〉 dμ(ω). (10)

The integrated density of states (IDS), N, is then given by

N(E) =
∫

χ(−∞,E](λ) dN(λ). (11)

The terminology is explained by the fact that

N(E) = lim
n→∞

#{eigenvalues of Hω,[1,n] ≤ E}
n

for μ-a.e. ω ∈ �, (12)

where Hω,[1,n] denotes the restriction of Hω to the interval [1, n] with Dirichlet boundary
conditions. It is a basic result that the IDS is always continuous [AS, Pa], [DF1, Theorem
4.3.6]; see [DS2] for a very short proof that also works in higher dimensions. For specific
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8 A. Gorodetski and V. Kleptsyn

models, explicit moduli of continuity can be established. For example, for the free
Laplacian, we have

N(E) =

⎧⎪⎪⎨
⎪⎪⎩

0, E ≤ −2,
1
π

arccos
(

− E

2

)
, −2 < E < 2,

1, E ≥ 2,

which is Hölder continuous. For the Anderson model (that is, for Schrödinger operators
with (independent and identically distributed (iid) random potentials), it is known that
the IDS must be Hölder continuous [L], and under additional assumptions of regularity
of the distribution that defines the potential, stronger results are available [Ki, KS, ST].
In particular, in the case of compactly supported distribution with polynomially decaying
Fourier transform, one can show that the IDS must be C∞, see [CK]. For the Fibonacci
Hamiltonian, the IDS must be Hölder continuous [DG1], while it is not always the case for
operators with Sturmian potentials, see [Mun] for details. Hölder continuity of the IDS in
the case of quasiperiodic potentials was established in [GS].

Many spectral properties of the operator in equation (9), including the integrated density
of states, can be expressed in terms of the corresponding Schrödinger cocycle. To define
it, for each ω ∈ M and E ∈ R, introduce the transfer matrix

AE(ω) =
(

E − f (ω) −1,
1 0,

)
,

and consider the SL(2, R) cocycle

(σ , AE) : M × R
2 → M × R

2, (ω, v̄) �→ (σ (ω), AE(ω)v̄),

usually called a Schrödinger cocycle corresponding to the family in equation (9). Each
linear map AE(ω) induces a projective map that we will denote by gE,ω : RP1 → RP

1.
It is not hard to see that in the case of bounded function f, if |E| � 1, then the cocycle in
equation (1) is uniformly hyperbolic. In this case, one can choose the lifts g̃E,ω in such a
way that the rotation number ρ(E) of the corresponding cocycle is equal to 0 for E � 1
and to 1/2 for E � −1. For a measurable function f, one can choose lifts in such a way
that ρ(E) → 0 as E → +∞ and ρ(E) → 1/2 as E → −∞. In either case, the integrated
density of states N(E) can be expressed via the rotation number [DS1]:

N(E) = 1 − 2ρ(E).

Together with Theorem 2.5, this immediately gives a purely dynamical proof of the
following statement.

THEOREM 3.1. (Theorem 5.2 from [CS2]) In the setting above, if the function
f : M → R

1 is such that
∫
M

log(1 + |f (ω)|) dμ < ∞,
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log-Hölder continuity of the rotation number 9

then the integrated density of states N(E) is log-Hölder continuous, that is, for any
compact J ⊂ R, for some C > 0, and any E1, E2 ∈ J with |E1 − E2| ≤ 1/2, one has

|N(E1) − N(E2)| ≤ C(log |E1 − E2|−1)−1.

A multidimensional version of this statement was provided in [CS1]. In both [CS1]
and [CS2], the Thouless formula is used as the main tool. The Thouless formula relates
the integrated density of states of an ergodic family of Schrödiger operators and the
Lyapunov exponent of the corresponding Schrödinger cocycle; in the nonlinear setting of
Theorem 2.5, one of the parts of this formula, the Lyapunov exponent, is just not defined.
Notice that the original results [CS1, CS2] deal with bounded potentials only, but in [CS1],
the authors make a remark that their method can be adapted to the case when the function
log(1 + |f |) belongs to the space L1.

An analog of Theorem 3.1 for CMV matrices was provided in [FO]. Also, in many
models, the regularity of Lyapunov exponent of the corresponding linear cocycle is related
to the regularity of the integrated density of states, and the former was heavily studied, e.g.
see [BJ, DK, DKP], just to give a few examples.

The question whether Theorem 3.1 is optimal was heavily discussed in spectral theory
of ergodic Schrödinger operators. It turned out that the modulus of continuity of the
integrated density of states in general cannot be improved. It was shown that even
for the Anderson model, the integrated density of states does not have to be Hölder
continuous with a given power [Hal]. Also, [Cr, Theorem 5] essentially claims that
for any continuous increasing function N(E) on [0, 1] with N(0) = 0, N(1) = 1 that is
α-log-Hölder continuous with any α > 1, that is, just slightly more regular than allowed
by Theorem 3.1, there exists a family of almost periodic Schrödinger operators with an
integrated density of states given by the function N(E). Finally, in [KG], the limit periodic
potentials were used to show that Theorem 3.1 is sharp, and an estimate in Theorem 3.1
cannot be replaced by any better modulus of continuity. Later examples in other special
classes of ergodic Schrödinger operators were constructed as well. So, in [DKS], an
example in the class of random Schrödinger cocycles was constructed, and in [ALSZ]—in
the class of quasiperiodic operators. In particular, these results imply that the modulus of
continuity in Theorem 2.5 is also optimal.
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