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Abstract

We consider the Volterra-Lotka equations for two competing species in which the
right-hand sides are periodic in time. Using topological degree, we show that conditions
recently given by K. Gopalsamy, which imply the existence of a periodic solution with
positive components, also imply the uniqueness and asymptotic stability of the solution.
We also give optimal upper and lower bounds for the components of the solution.

1. Introduction

The topological degree of a mapping has long been known to be a useful tool for
establishing the existence of fixed points of nonlinear mappings. The main
purpose of this paper is to show how the most basic properties of degree can be
used to establish the uniqueness, in a certain region, of the fixed point of a
mapping connected with a problem from mathematical biology.

Our main motivation comes from two recent papers of Gopalsamy [8], [9].
We consider the system of differential equations

u'(t) = u(t)[a(t)-b(t)u-c(t)v]

v'(t) = v(t)[d(t)-e(t)u-f(t)v] { • }

where the functions a(t),..., f(t) are continuous, positive functions of the time
/ e (-00, oo) and are assumed to be periodic with common period T > 0. This
system models the competition between two species in a r-periodic environment
([6], [8], [12]). We are interested in the existence of r-periodic solutions
col(«(r), v(t)) with both components positive. (Here col(£, 7j) denotes the column
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121 Periodic competing species problem 203

vector with components £ and 7j). In case a(t),...,f(t) are positive constants
a,...,/, it has long been known that a necessary and sufficient condition that
there exist an equilibrium point col(«0, V0), with w0 > 0 and vo> 0, which
attracts all solutions with initial values in the open first quadrant of the u,
u-plane is that

a > cd/f, d > ea/b.
(see, for example [13]).

In [8], K. Gopalsamy gave a partial extension of this result to the nonautono-
mous periodic case. To state Gopalsamy's result, we introduce the following
notations: If g is a continuous T-periodic function defined on (-oo, oo), we set

gM = max g(t), gL = ming(/).
i i

In [8], it was assumed that the growth rates a(t) and d{t) were continuous,
positive and T-periodic and that b(t), c(t), e{t), and f(t) were positive constants
b, c, e, and / respectively. Using results due to Krasnoselskii concerning
monotone operators which are strictly positive and concave with respect to cones,
it was shown that the conditions

aL > cdM/f, dL > eaM/b
imply the existence of an open rectangle $2 in the first quadrant of the u, u-plane
and a T-periodic solution col(w0(/), vo(t)) of (1.1) such that (uo(t), uo(O) e & f°r

all /, and all solutions of (1.1) with initial values in S tend to col(«0(0, i>0(0) a s

/ -» oo.
Recently in [9], Gopalsamy considered the system

ii;(O = « l ( o k ( O- L
for / = 1 , . . . , n where the functions a,, ctj{i, j = 1 , . . . ,«) are continuous, posi-
tive, and T-periodic. In [9] it was shown that the conditions

n

a,L> L c,jMajM/cJjL (1.3)

for / = 1 , . . . , n imply the existence of a T-periodic solution col(M10(r)> - • •, "no(O)
of (1.2) all of whose components are positive. In [9] it was also shown that if the
inequalities (1.3) hold and if, in addition,

n
ajjL> L aijU, 1 < y < « , (1.4)

i = i
•*j

then (1.2) has a unique T-periodic solution with all components positive, and this
solution is asymptotically stable and attracts all solutions whose components have
positive initial values.
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For the two-dimensional system (1.1), the conditions (1.3) and (1.4) become

and

bL>eM, fL>cM. (1.6)

Clearly the conditions (1.5) and (1.6) are independent, even in the constant
coefficient case. For example, if a = 3, b = c = 2, d = f = 1 and e = 1/3, then
the inequalities (1.5) hold, but the second inequality in (1.6) does not hold.

The major part of this paper is to show how the topological degree can be used
to prove that the conditions (1.5) alone imply the existence of a unique T-periodic
solution of (1.1) whose components are positive, which is asymptotically stable and
which attracts all solutions with components which are initially positive. This is done
in three steps: First, it is shown that if F: R2 -* R2 is the time T-map or Poincare
map associated with (1.1) and / is the identity map, then there are numbers
k1 > 0 and k2 > 0 such that for all sufficiently small 8 > 0, the degree of the
mapping I — F with respect to the open rectangle {(£, i])\8 < i- < kv 8 < 77 <
k2] and the point (0,0) is equal to 1. Next, it is shown that if co\(u0(t), vo(t)) is
any T-periodic solution of (1.1) with both components positive, then the char-
acteristic multipliers ax and a2 associated with this periodic solution satisfy
0 < oij < 1 and 0 < a2 < 1. This implies that such a solution is locally asymptoti-
cally exponentially stable, and that the Jacobian of / — F at the fixed point of F
corresponding to this solution is (1 - ax)(l - a2). Since this implies that the local
index of / — F at a fixed point of F in the rectangle described above is equal to
1, by a basic result of degree theory, there is a unique fixed pont of F in the
rectangle. Finally, the uniqueness of the fixed point in the rectangle is shown to
imply that the corresponding 7-periodic solution attracts all solutions having
both components positive at the same time.

In [12] de Mottoni and Schiaffino considered the system (1.1) where the
functions a(t),..., f(t) were assumed to be continuous and T-periodic but only
b(t), c(t), e{t) and f(t) were assumed to be positive for all t. It was assumed
that the averages of a(t) and d{t) were positive. It was shown by de Mottoni and
Schiaffino that there exist unique positive T-periodic functions p(t) and q{t)
such that

p'(t) + a(t)p(t) = b(t), q'(t) + d(t)q(t)=f(t). (1.7)

If one sets x(t) = p(t)u(t) y(t) = q(t)v(t) where col (u(f), «(0) is a solution
of (1.1) then

x'(t) = x(t)G(t)[l-x(t)-g(t)y(t)},

y'(t)=y(t)H(t)[l-y(t)-h(t)x(t)}, K ' >
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where

G{t) = b{t)/p{t), H{t)=f{t)/q{t), (1.9)

t) , . q(t)e(t) . ,

J- h { t ) - J U U (110)

Studying the system (1.8), de Mottoni and Schiaffino used a theorem proved in
[12] to show that if g(t) < 1 and h(t) < 1, then there is a unique T-periodic
stable solution of (1.8), with both components positive, which attracts all solu-
tions which start in the open first quadrant.

To show that the theorem of de Mottoni and Schiaffino does not include the
one stated above, we consider the following example of (1.1):

u' = u[l - ( 2 + cos?)" - 0.9u]
v' = v[l - 0.9u - v]

Here a(t) = d(t) = f(t) = 1, c(t) = e(t) = 0.9, b(t) = 2 + cost. It follows that

"L ~ cMdM/fL = 1 - 0.9 > 0,

dL ~ eMaM/bL = 1 - 0.9 > 0,

so conditions (1.5) are satisfied. The unique, positive, T-periodic functions p{t)
and q(t) such that

O = p'(t) + a(t)p(t)-b(t)

O = q'(t)+d(t)q(t)-f(t)

are

/>(/) = 2+(l/2)(cosr + sin0, q(t) = l.

Therefore, if g(t) = p(t)c(t)/q(t)b(t), then g(ir/2)= 9/8 > 1 so the condi-
tions of de Mottoni and Schiaffino fail.

Through elementary means, we show that if conditions (1.5) hold, then the
unique r-periodic col(w0(0, i>o(0) of (1.1) with uo(t) > 0 and vo(t) > 0 for all t
satisfies

aJh ~ CMdM < u <t\ <
 OM/M - CLdL

bMfL - eLcM ^U°K '" bLfM - eMcL '
bLdL ~ eMa

"fl \ * / bMfL - eLcM

for all t. Obviously, these bounds are optimal, as can be seen by considering the
autonomous case. Recently our colleague, Shair Ahmad has considered the system
(1.1) where the functions a(t),..., f{t) are merely assumed to be continuous and
bounded above and below by positive constants on an interval of the form
t0 < t < oo.
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Using different methods, he has shown that if conditions (1.5) hold, where gL

and gM denote infg(/) and supg(f) respectively for t > /0, then (1.5) has a
solution col(«0(0, ^o(O) whose components have the same upper and lower
bounds given above for t0 < t < oo.

In the final section we show our main result concerning the system (1.1) can be
used to improve a result due to C. Cosner and the second author in [4], which
deals with a model which allows spatial dependence and diffusion.

2. Comparison theorems

Let us assume that the functions a(t),..., f(t) appearing in (1.1) are continu-
ous, positive, and T-periodic. If u(t) is a nonnegative solution u'{t) = u(t)[a(t)
- b(t)u(t)] and v(t) is a nonnegative solution of v'(t) = v(t)[d(t) - f(t)v(t)],
then both col(u(r), 0) and col(0, v(t)) are solutions of the system (1.1). From the
uniqueness theorem, it follows that the closed first quadrant in the (u, v) plane is
invariant with respect to the system (1.1), in the sense that if co\(u(t), v(t)) is a
solution with uo(t) > 0 for some t0, then u(t) > 0 and v(t) > 0 on the domain
of co\(u(t), v(t)). The same argument shows that the open first quadrant is also
invariant.

LEMMA 2.1. / / co\(uk(t), vk(t)) is a solution of (1.1) for k = 1,2, with u^O) >
M2(0) > 0 and v2(0) > u,(0) > 0, then u^t) > u2(t), v2{t) > vx(t) for all t e
[0, oo) as long as both solutions col(Mj(f), v2(t)), col(w2(/), v2(t)) are defined. The
above inequalities are strict ifu^O) > u2(0) and v2(0) > Uj(0).

PROOF. Since solutions of (1.1) are continuous with respect to initial conditions,
it suffices to prove the result under the stronger assumptions

By continuity, the inequalities

«i(0>«2(0. «2(0>«i(0 (2-1)
will hold for t sufficiently small and positive. If (2.1) does not hold for all t > 0
in the domain of col(wA:(/), vk(t)) k = 1,2, there exists i > 0 such that (2.1) holds
for 0 < t < i and either: (a) u^t) = u2(i) or (b) vx(t) = v2(i). Suppose (a)
holds. By continuity we must have vx(i) < o2(t), and so, by the uniqueness
theorem for differential equations, v^i) < v2(i). By invariance of the open first
quadrant, ux(t) = u2(t) > 0. Since ux(t) - u2(t) > 0 on [0,/) we must have
u[(t) - u'2(t) < 0. On the other hand, from (1.1) we have that

(0 - ^(0] > 0.
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This contradiction shows that case (a) is impossible and a similar argument
proves the same for case (b). By previous remarks, the lemma is proved.

Given a continuous T-periodic function g(t) defined on (-00, 00) we let gM

denote the maximum value of g(t) and gL denote the minimum value of g(t). In
addition to assuming that the functions a(t),..., f(t) are continuous, positive,
and r-periodic we shall assume in the following that

<*L > cMdM/fL, (2.2)
dL > eMaM/bL- (2.3)

In the following kx and k2 will denote numbers such that kx > aM/bL,
k2 > dM/fL and dL > eMkx, aL > cMk2.

Let S > 0 be chosen so 8 < kx, S < k2, and

aL - cMk2 - bMS > 0, (2.4)

dL-eMkl-fM8>0. (2.5)

LEMMA 2.2. / / col(u*(r), v+(t)) and co\(u^(t),v*(t)) denote the solutions of
(1.1) which satisfy the initial conditions w*(0) = kx, f#(0) = S

«,(0) = 8, v*(0) = k2,

then

u,(t) < u*(t), vm(t) < o*(t), (2.6)

ii*(0)> u*(t) > u*(t + T), (2.7)

«*(0) < t»*(0 < «,(/ + r ) , (2.8)

«,(0) < «,(/) < «*(/ + T), (2.9)

«*(0) > «*(0 > «,»(/ + r ) , (2.10)

for all t > 0.

PROOF. Since M*(0) > u«(0) and v*(0) > f«(0), (2.6) is a consequence of
Lemma 2.1. We have

du*(0)/dt = M*(0)[a(0) -

<

and from (2.5)

- e(0)«*(0) -

>om(0)[dL-eMkl-fM8]>0.

Similarly, dv*(0)/dt < 0, and from (2.7) we infer that du,(0)/dt > 0. From what
has been shown, it follows that for / sufficiently small and positive

«*(0) > u*(t), vm(0) < o*(t). (2.11)
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If, contrary to the claim, these inequalities did not hold for all / > 0, there would
exist i > 0 such that (2.11) holds on [0, i) and either: (a)u*(i) = M*(0) or (b)
u , (0 = u*(0). If (b) held, then u*(i) < «*(0) = k1 and v\(i) < 0. But

so we have a contradiction. Similarly, if (a) held, then <;«(/) > i>*(0) > 0 and we
have the contradictory inequalities

du*{i)/dt > 0 and

du*(i)/dt = u*(i)[a(t) - b(i)u*(<) - c(t)v*(i)]

<u*(i)[a(i)-b(i)aM/bL] <0

so (a) is impossible. Therefore, both inequalities in (2.11) hold for all / > 0.
By T-periodicity of a{t),..., f(t) we see that

coi(M*(0, MO) = coi(«*(r + r ) , «*(/ + r))
is a solution of (1.1). By (2.11), w*(0) > u*(T) = wf(0) and u,(0) < v*(T) =
t)1#(0). Therefore, by Lemma 2.1, we see that u*(t) > M*(/) = u*(t + T),

o*(t)< «„(*) = «*(r+ T),

for all t > 0. Together with (2.11), this proves (2.7) and (2.8).
The proofs of (2.9) and (2.10) which make use of (2.4) are entirely similar and

therefore omitted.
Given (r, s) e R2 we let co\(u(t,r,s), v(t,r,s)) denote the solution of (1.1)

such that M(0, r, s) — r, v(0, r, s) = s.
By the uniqueness theorem of differential equations and the r-periodicity of

the system (1.1) in t, u(t + T, r,s) = u(t, r, s), v(t + T, r, s) = v(t, r, s) if and
only u(T, r,s) = r, u(T, r,s) = s. For this reason we study the mapping F:
R2 -» R2 defined by

F(r,s) = (r- u(T,r,s),s - o(T,r,s)).

LEMMA 2.3. If D denotes the open rectangle in the r, s-plane consisting of points
(r, s) such that 8 < r < kv 8 < s < k2, then d&g(F, D,0) = 1 where deg(F, D,0)
denotes the Brouwer degree of F with respect to D and 0 = (0,0).

PROOF. Let col(«*(/), U*(0)
 and col(«*(0»w*(0) be the solutions of (1.1)

defined in Lemma 2.2. If

K,(0) = 8 < r < kx = ii*(0),

u*(0) = 8 < s < k2 = u*(0),

https://doi.org/10.1017/S0334270000005300 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005300


Periodic competing species problem 209

then, according to Lemma 2.1 and Lemma 2.2, we have

8 = ii,(0) < « , ( r ) < u(T, r,s) < u*{T) < «*(0) = kx

and 5 = v*(0) < v*(T) < v{T, r,s) < v*(T) < v*(0) = k2. This shows that the
mapping (r, s) -> («(T, r, s), v(T, r, s)) maps the closure of D into D. Let (rl5 i j
be a definite point in D. Since D is convex, it follows that if (r, 5) belongs to the
boundary of D, then for all X e [0,1]

(#-! + A ( M ( 7 > , J ) - r j , j , + X ( u ( r , r , 5 ) - J , ) ) = i V ( r , s , \ ) e £>.

Consequently, (r, 5) - N(r, s,\)±0 for (r, s) e 8£> and X e [0,1]. By homo-
topy invariance of degree (see, for example [11] or [14]), it follows that the degrees
of the two mappings (r, s) -> (r, s) - N(r, s, 1) = F(r, s) and (r, s) -» (r, 5) -
Af(/-, 5,0) = (r — ru s — sx) with respect to D and 6 are the same. Since (r — rx, s
— sx) = (0,0) has the unique solution {r, s) = (r^s^ in D and the Jacobian of
the mapping (r, s) -* (r — ru s — sx) is identically equal to 1, it follows that its
degree with respect to D and 0 is 1. This proves the lemma.

3. The local index

The purpose of this section is to prove

LEMMA 3.1. Let F and D be as in Lemma 2.3. / / (r0, s0) e D and F(r0, s0)

(0,0) then the Jacobian of F at (0,0) is positive.

PROOF. The Jacobian of F at (r0, s0) is equal to the determinant

"97̂  r'ro>^o) -^{T,ro,so)

Therefore, if ax and a2 are the eigenvalues of the matrix

du

then the Jacobian of F at (ro,so) is equal to (1 - o^Xl — a2). We shall prove
that 0 < al < 1 and 0 < a2 < 1 and from this the lemma will follow.

If

g l ( u , v , t ) = u [ a ( t ) - b { t ) u - c ( t ) v ] ,

g2(u,v,t) = v[d(t)-e(t)u-f(t)v],
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then col(«(/, r, s), v(t, r, s)) is the solution of the system

v'{t) = g2{t,u(t),v(t)),

which satisfies the initial condition u(0) = r, v(0) = s. It follows from the basic
theorem concerning differentiability of solutions with respect to initial conditions
(see, for example, [10, p. 21-23]) that if

*(/) =

— (
gr U> r0> s0> so) ^u ( \

"foX1* r0>s0)

then

where

X'(t)=A(t)X(t), X(0) = I,

(3-1)

(3.2)

,4(0 =
-^•(t,u(t,ro,so),v(t,ro,so)) -^-(t,u(t,ro,so),v(t,ro,so))

-^-(t,u(t,ro,sQ),v(t,r0,s0)) -j^(t,u{t, ro,so),v(t, ro,so))

and / is the identity matrix.
If for brevity, we set u{t, r0, s0) = uo(t), v(t, r0, s0) = vo(t), then

a(t)-2b(t)uo(t)-c(t)vo(t) -c(0«o(0]
-e(t)vo(t) d(t)-e(t)u0(t)-2f(t)v0(t)\'

Since MO(0) = r0 > 0, vQ(0) = s0 > 0 and the open first quadrant in the u, u-plane
is invariant with respect to (1.1), we have uo(t) > 0, vo(t) > 0 for all t. Moreover,
since F(ro,so) = (0 ,0) , uo(t + T)= uo(t) and vo(t + T) = vo(t).

Letx(r) = CO1(JC!(0, ^2(0) be a solution of the vector system x'(0 = A(t)x(t).
Since

"o(O/«o(O = a(') - *(O«o(O - c(t)vo(t),
v'0{t)/v0(t) = d{t) - e(t)uo(t) -f(t)vo(t),

we see that

I - 6 ( O K O ( ' ) * I ( ' ) - c(O"o(O*2(O.

- e(t)oo(t)Xl(t) -f(t)vo(t)x2(t).
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Rewriting these equations in the form

= - b{t)uo(t)Xl(t)/uo(t) - c(t)vQ(t)x2(t)/v0(t),

[x'2(t)vo(t)-v'o(t)x2(t)]/vo(t)
2

= -e(r)"o(0*i(')/"o(0 -/('K(O*2(OAo(')>
it follows that if y(t) = co\(Xl(t)/u0(t),x2(t)/v0(t)), then / ( / ) = B(t)y(t),
where

\-b(t)uo(t) -c(')vo(t)]
[) [-e(')uoO) -f(t)vo(t)\'

Since each column of the matrix X(t) is a solution of the vector differential
equation x'(t) = A(t)x(t), we see that if

and y*(?) = P(t)X(t), then Y\(t) = 3(t)Y*(t). Setting 7(0 = ^ ( / ^ (O) - 1 we
see that Y\t) = B(t)Y(t) and y(0) = P^X^PiO))-1 = I. Moreover, since
P(T) = P(0), Y(T) = P(T)X(T)P{T)-\ Since similar matrices have the same
eigenvalues, it follows that the eigenvalues of Y(T) are also equal to â  and a2. If
Z(t) = RY(t)R, where

then Z'(0 = C(0Z(0, ^(0) = /, where

e(t)uo(t) -f(t)vo(t)\

To complete the proof of the Lemma we use the following result whose proof
we take from [15]:

SUB LEMMA: The elements ofZ(t) are strictly positive on the interval 0 < t < T.

PROOF. Since the off-diagonal elements of C(t) are strictly positive we may
choose a constant y > 0 so large that C(t) + yl has strictly positive elements for
t e [0, T]. If Z,(/) = ey'Z(t), then Z',(t) = [C(t) + yI]Z,(t), Z,(0) = /, so

Z,(t) = I + f'[C(s) + yl]Z,(s)ds. (3.3)
•'o

Since Z*(f) is equal to the uniform limit on (0, T] of the sequence {Zm(t)}™=0

defined inductively by Z0(t) = I, Zm+l(t) = / + U[C(s) + yI]Zm(s)ds, for m
= 1,2,..., and by induction the elements of each member of the sequence are
nonnegative on (0, T], the same is true of Z+(t). Since Zm(t) is never singular, it
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follows from the strict positivity of the elements of C(t) + yl and (3.3) that
has strictly positive elements for 0 < t < T. Hence the same is true for Z(t) and
the proof is complete.

Continuing with the proof of Lemma 3.1 we note that Z{T) = R~1Y(T)R and
Y(T) have the same eigenvalues, namely ax and a2. Since the elements of Z(T)
are strictly positive, it follows from the Perron-Frobenius theorem (see, for
example [1] or [7]) that Z(T) has a simple positive eigenvalue which is strictly
greater than the modulus of the other eigenvalue and a corresponding eigenvector
with strictly positive elements. Since, by Liouville's formula axa2 = det Z(T) =
exp/o

rtrace C(s) ds, ax > 0 and a2 > 0 so we may assume 0 < ax < a2. To prove
the lemma it is sufficient to prove that a2 < 1-

Let us note that from (2.2) and (2.3) we have that aL> cMdM/fL > cMd,/fL

> CMeMaM/fLbL > CMeMaL/fL
bL a n d h e n C e

fJ>L-cMeu>Q. (3.4)

Let w = col(wl,w2) be a constant vector which satisfies Z(T)w = a2w, w1 > 0,
w2 > 0. Let 0(t) = Z(t)w. If 0(t) = col(01(t),61(t)), then by the sublemma
0r(t) > and 62(t) > 0 for 0 < / < T. Moreover, since 0'(t) = C(t)0(t),

e2-(t) = e(t)uQ(t)8l(t)-f(t)v0(t)e2(t).

Clearly,

0[{t) < - V o ( ' ) 0 i ( O + cMv0(t)02(t),

OiO) < eMuQ{t)6x{t) -fLoo(t)02(t),

and hence, by (3.4), eM0[(t) + bL0^t) < (eMcM - bLfL)02{t) < 0 for 0 < / < T.
It follows that eM0x(T) + bL02{T) < e^tf^O) + bL02(O). But 8{T) = Z(T)w =
a2w = a28(0) so O^T) = a28x(Q), 02(T) = a202(O). Hence a2 < 1 and by earlier
remarks the lemma is proved.

4. Proof of main theorem—first part

THEOREM 1. Under the assumptions that a(t),...,f(t) are positive and T-peri-
odic and (2.2) and (2.3) hold, the system (1.1) has a unique T-periodic solution
col(u0(0> vo(t)) with uo(t) > 0 and vQ(t) > 0 for all t. This solution is asymptoti-
cally stable. If col(u(r), v(t)) is any solution with «(0) > 0 and v(0)> 0 then

0. VU) - vo(') as
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PROOF. We shall first prove the existence of col(«0(0, ^O(O) among solutions
with initial values in the rectangle

S = {(r,s)\0 < r < ku0 < s < k2),
where kx and k2 are defined as in the second section.

From degree theory (see, for example, [11]) we recall that if ft c R" is open and
bounded, if g is an Revalued function of class C1 defined on the closure of ft
such that g(x) =£ 0 for all x in the boundary of ft, and if x e ft and g(x) = 0
implies that the determinant of the Jacobian matrix of g at x denoted by g'{x) is
nonzero, then g(x) = 0 has finitely many solutions xl,...,xm\nQ and

m

deg(g,ft,6") = £ sgndetg'(*,). (4.1)
7 = 1

If D and F are defined as in Lemma 2.3, (r0, s0) e D and F(rQ, s0) = 0, then,
by Lemma 3.1, it follows that det F'(rQ, s0) is positive. Since, by Lemma 2.3,
deg(F, D, 0) = 1, we see from formula (4.1) that there is a unique (r0, s0) e D
such that F(ro,so) = 0. Thus, since 8 > 0 can be taken arbitrarily small, it
follows that there is a unique (r0, ,s0) e S, such that F(r0, s0) = 0. Therefore,
since the solution of (1.1) with initial value col(r, s) at t = 0 is T-periodic if and
only if F(r,s) — 0, we have shown that there is a unique positive, T-periodic
solution of (1.1) which starts in 5 at / = 0.

As in the previous section we set
c o l ( M 0 ( r ) , u 0 ( 0 ) = col(u(t,r0,s0), v(t,rQ,so)).

As shown in the previous section, if X(t) is the solution of the matrix
differential equation (3.2) with A'(O) = / then the eigenvalues ax and a2 of X(T)
satisfy 0 < ak < 1, k = 1,2. This means that the characteristic multipliers of the
linear variational system corresponding to col(«0(/), vo(t)) have moduli less than
1, so by the basic theory of differential equations the solution col(w0(0, vo(t)) of
(1.1) is locally, asymptotically exponentially stable (see [3, p. 78-80, 321-322]).
We now investigate the region of attraction.

Let col(«(r), v(t)) be a solution of (1.1) such that 0 < u(0) < kx, 0 < v(0) < k2.
Choose 8 > 0 such that 8 < H(0), 8 < v(0), and (2.4) and (2.5) hold. Let
col(«*(/), v+(t)) and col(u,(/), v*(t)) be as in the statement of Lemma 2.2. From
Lemmas (2.1) and (2.2), it follows that for all / > 0 we have

« , ( / ) < « (0 <u*(t), (4.2)

v,(t)<v(t)<v*(t), (4.3)

8 < «.(0 < i/,(* + T) < u*(t + T) < u*{t) ^ klt (4.4)

8 < o , ( O < vJit + T) < v*{t + T)< v*(t) < k2. (4.5)
If for / > 0 and m = 1,2,... we set
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then the sequence {«*m(0}i° is increasing and bounded above on [0, 00), while
{v*(t)}f is decreasing and bounded below on [0, 00). Therefore there exist
functions «(/)and v(t) defined on [0, 00) such that

lim u,m(/) = u(t), lim v*(t) = u{t) for / > 0. (4.6)
m—* 00 m—* 00

Since for each m = 1,2,... col(u«m(/), v*(t)) is a solution of (1.1) (by T-peri-
odicity in t of the right-hand sides), we see that the derivatives of the members of
the sequences {w*m(0}m=-i and {v*(t)}™al are bounded on [0, 00). Hence by
Ascoli's lemma, for any compact subinterval of [0, 00), there exist subsequences of
these two sequences which converge uniformly to u(t) and ii(() on this subinter-
val. Hence, u and v are continuous, so by Dini's theorem and monotonicity of the
two sequences, we see that the convergence in (4.6) is uniform on compact
subintervals of [0, 00). Since col(w,m(O, u*(O)is a solution of (1.1) for in =
1,2,..., it follows that the derivatives of members of the sequences { u+m(t)}f
and {f*(O} converge uniformly on compact subintervals of [0, 00). Hence, u{t)
and v{t) have continuous derivatives and col(«(/), v(t)) is a solution of system
(1.1). Moreover, U(t + T) = limm_M u.m(t + T) = limm^00 K , I M + 1 ( / ) = u(t).
Similarly, v(t + T) = U(t) for / > 0. It follows that u{t) and v{t) can be
periodically extended to (-00, 00) so that CO1(M(/), v(t)) is a T-periodic solution
of (1.1). From (4.4) and (4.5), we see that S < w(0) < kl and S < v(0) < k2.
Therefore, since col(«0(0, «o(O) is t n e unique T-periodic solution of (1.1) with
(M(0), V(0)) G S, we see that u(t) = uo(t), v(t) = vo(t).

We now show that u*(t) - uo{t) -> 0, v*{t) - vo(t) -* 0 as / -» 00. Since (4.6)
holds uniformly for 0 < t < T, given e > 0 there exists N such that ii m ^ N,
then \umm(s) - uo(s)\ < e, \v*(s) - vo(s)\ < e for 0 < s < T. If t > {N + \)T
thenf = mT + s for some m > N and some s e [0, T) and consequently, by
T-periodicity of u0, |«,(r) - wo(/)| = \u+m(s) - uo(s)\ < e. Similarly, \v,(t) -
uo(O| < e if t ^ (N + \)T and the claim is established.

A repetition of the same reasoning applied to the solution CO1(M*(/), I>*(0)

instead of col(«*(0»u*(0) shows that u*(t) - uo(t) -> 0, v*(t) - vo(t) -* 0 as
t -» 00. Therefore, by (4.2) and (4.3) we see that u(/) - uo(t) -> 0, v(t) - vo(t)
-* 0 as t -» 00.

We remove the restriction that («(0), o(0)) e S in the next section.

5. Global asymptotic stability

To complete the proof of the main theorem we use a result concerning the
logistic equation

U'(t) = U(t)[A(t)-B(t)U(t)] (5.1)
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where it is assume that A and B are continuous T-periodic functions with
A(t) > 0 and B(t) > 0 for all /. The following result can be derived from a study
of more general functional equations given in [5] but for completeness we give a
much shorter alternate proof.

LEMMA 5.1. There exists a unique positive T-periodic solution U0(t) of (5.1). If
U(t) is any other solution of (5.1) with U(0) > 0, then

U(t)- U0(t) -> 0 ast^>cx>.

PROOF. If e > 0 is so small that
e[A(t) - eB(t)] > 0

for all /, and Ur(t) is the solution with U^O) = e, then U^t) > e for t > 0 so
Ui(T) > Ux(0). Similarly, if k > e is chosen so that k[A(t) - kB(t)] < 0, then
the solution U2(t) with t/2(0) = A: satisfies U2{T) < U2(0). Hence, there exists c in
(e, k) such that if U0(t) is the solution with £/0(0) = c, then U0(T) = f/0(0) so
U0(t) is T-periodic and positive (since 0 is a solution of (5.1)). If U(t) is any
positive solution of (5.1) and we set W(t) = l/U(t), W0{t) = l/f/0(0 then
W\t) - WJ(t) = -A(t)[W(t) - W0(t)]. Hence, W(t) - W0(t) = constant(exp
- /„' A(s) ds) so W(t) - W0(t) -» 0 as t -> oo. This impUes that U(t) - U0(t) ->
0 as t -* oo and the lemma is proved.

LEMMA 5.2. / / U0(t) is the unique positive T-periodic solution of
U'{t) = U(t)[a(t) - b(t)U(t)] and V0(t) is the (5.2)

unique positive T-periodic solution of
V'{t)=V{t)[d{t)-f{t)V{t)), (5.3)

then
V0(t) < dM/fL. (5.4)

PROOF. If U0(t) attains its maximum when/ = tx, then since U'(tx) = 0, U(tx)
< aM/bL. The proof of the second inequality is similar.

LEMMA 5.3. Let col(u(0, v(t)) be a solution of the system (1.1) such that
w(0) > 0 and v(Q) > 0. If U(t) and V(t) satisfy the scalar differential equations
(5.2) and (5.3) respectively and u(0) = U(0), v(0) = K(0), then u(t) < U(t),

V(t) for all t > 0.

PROOF. Since col(U(t),0) and col(O), V(t)) are both solutions of the system
(1.1), the assertion of the lemma follows from Lemma 2.1.

COMPLETION OF PROOF OF THEOREM 1: As in section 4, let S denote the open
rectangle in the u, u-plane given by 0 < u < klt 0 < v < k2. It has been shown
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that if col(w(r), v(t)) is a solution of (1.1) with («(0), v(0)) e S then «(/) - «0(/)
-» 0 and v(t) - vo(t) -> 0 as / -» oo. We shall show that if col(«(0. u ( 0 ) i s anY
solution of (1.1) with u(0) > 0 and v(0) > 0, then there exists an integer m > 1
such that (u(mT), v{mT)) e S. By T-periodicity of the system, col(w(0, «(0) =
col(«(r + mT), v(t + mT)) is a solution in S at / = 0. From this and r-periodic-
ity of CO1(M0(?), I>O(O) it wiU follow that

u(t + mT) - uo(t + mT) -* 0 as r -» oo

v(t + mT) - vo(t + mT) -» 0 as r -> oo,

so w(O — uo(O -» 0, u(r) — u0(O -» 0, as t -* oo and the proof of Theorem 1
will be complete.

Suppose then that col(u(t),v(t)) is a solution of (1.1) with u(0) > 0 and
y(0) > 0. If U(t) and K(f) are the solutions of (5.2) and (5.3) respectively such
that u(0) = 1/(0) and u(0) = K(0), then by Lemma 5.3, u(t) < U(t) and u(0 <
V(t) for r > 0. From Lemma 5.1. U(t) - U0(t) -» 0 and F(/) - V0(t) -» 0 as
r -» oo where C/o(?) and K0(r) are the unique positive T-periodic solutions of (5.2)
and (5.3) respectively. Since U0(t) < aM/bL < k1 and V0(t) < dM/fL < k2, for
all f, it follows that for / sufficiently large and positive u(t) < U{t) < kx and
v(t) < V{t) < A:2. In particular, there exists an integer m > 1 such that
(u(mT), v{mT)) e S. By earlier remarks, this complete the proof of Theorem 1.

6. Upper and lower bounds

In this section, through very elementary means, we establish upper and lower
bounds for the components of the unique periodic solution of the system (1.1)
under conditions (2.2) and (2.3).

THEOREM 2. 7/col(u0(/), vQ(t)) is the unique positive periodic solution of system
(1.1) whose existence was established in Theorem 1, then for t e (-oo, oo)

rt f — f A n f — c, d F

bMfL~

- eMaM

bf -ce ^ o ( O < r / - c T - <6-2>
"UM CLeM "MIL CMeL

PROOF. From (3.4) we have bLfM - cLeM > bLfL - cMeM > 0, and bMfL —
cMeL ** bj_fi, ~ cMeM > 0-

For brevity we use uM, uL, vM and vL instead of u0M, u0L, v0M, and v0L to
denote the maximum values of «0(0 an(^ the maximum and minimum values of
vo(t) respectively. If uM = wo(/1) and vL = vo(t2) then u'^tj = v'0(t2) = 0, so
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from (1.1)

0 = afo) - M'iK('i) - c(*iK('i).

0 = d{t2) - e{t2)u0(t2) -f(t2)oo(t2).

Hence

/M"L > f{h)vL = d(t2) - e(t2)u0(t2)

>dL- eMuM,

so

"M = M ' I ) - c('iK('i)]/*»('i) < « M A - ^z/f tL (6.3)

and

»L = Uih) - e(t2)uQ(t2)]/f(t2) > dJSM - eMuM/fM. (6.4)

Substituting (6.4) in (6.3) we obtain

aMfM~cLdL cLeM
w h f h f M'

°LJM "LJM

from which it follows that

°LIM cLeM

Similarly, substituting (6.3) into (6.4) we obtain

CLeM

(6.5)

We obtain the same two differential equations in the system (1.1) when we
interchange u with v, a with d, b with / , and c with e. Therefore by (6.5), (6.6),
and duality, we obtain

~ eLaLaL
M

/L^M - eLcM

and

„ ^ /L°L CMdM
L> f h - e c •

JLDM eLCM
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The inequalities (6.1) and (6.2) follow from (6.5)-(6.8) and the theorem is
proved.

7. Diffusion

Let £2 be a smooth bounded domain in RN. We consider the system of
parabolic differential equations

«i = * i ( ' ) A « + «[<i(0 - 6 ( 0 " - c(/)«], , .
vt = K2(t)to + u[d(t)-e(t)u-f(t)v], { ' j

subject to the boundary conditions

-£- 3fi X R = -£- 3S2 X R = 0, (7.2)
0/7 071

where 3/3n denotes differentiation in the direction of the outer normal to the
boundary of the cylinder $2 XR. In [2] Brown showed that if Kx, K2, a,... ,f are
positive constants and (1.5) holds then if CO1(M(X, t), v(x, t)) satisfy (7.1) and (7.2)
for(x, /) G fi x(0, oo),

u,ve C(S X [0,oo)) n C2>1(S X (0, oo)), (7.3)

u(x,0)^0, v(x,0)>0, «(JC,O)#O, v(x,0)&0, (7.4)

then u(x, t) -* u0, v(x, t) -» v0 as / -» oo uniformly with respect to x e J2,
where u0 = (a/ — dc)/D, v0 = (bd — ae)/D, D — bf — ce. In [4], the second
author and C. Cosner showed that if Kv K2, a, and d axe continuous positive
T-periodic functions, b, c, d, and / are positive constants, and (2.2) and (2.3)
(Gopalsamy's conditions) hold, then for any solution col(«(x, t), v(x, /)) of the
initial value problem satisfying (7.4) and

u(x,

u(x,
o)
0

<
-> «o(O. «(

x,0)

x,t)

< dM/F,

~* «o(O.

(7.5)

(7.6)

uniformly with respect to x e fi, where col(w0(/), uo(O) is t n e unique positive
r-periodic solution of (1.1).

Using essentially the same argument as in Theorem 2.1 of [4], one can prove

THEOREM 3. / / Kl,K2, a,..., f are continuous, positive, T-periodic functions
satisfying (2.2) and (2.3) and col(u(;t, t), v(x, t)) is any solution of the initial value
problem corresponding to (7.1) and (7.2) such that u(x, 0) and v(x, 0) are
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sufficiently regular, (7.4) holds and u(x, 0) < aM/bL, v(x, 0) < dM/fL for x in fi
then (7.6) holds uniformly with respect to x e B w/iere CO1(M0(0.

 uo(O) '•* '^ e

unique, positive, T-periodic solution of (1.1).
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