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ABSTRACT

This paper attempts to give an overview of the pricing of risks in a pure
exchange economy, where trade takes place at time zero and where uncertainty
is revealed at time one. An economic equilibrium model under uncertainty is
formulated, where conditions characterizing a Pareto optimal exchange equilib-
rium are derived. We present two sets of sufficient conditions for the existence
of an equilibrium, and demonstrate how equilibria can be characterized
through several examples. Uniqueness of equilibrium is also discussed. Special
attention is given to the principal components that the premiums in a
reinsurance market must depend upon. We also apply the general theory to the
risk exchange problem between a policyholder and an insurer, and in particular
we compute market premiums of the resulting optimal contracts.

It is emphasized throughout how the formulation of a competitive equilib-
rium, rather than merely a general risk exchange formulation, is of particular
interest in deriving a well-defined and unique set of equilibrium premiums in an
insurance market. The theory is put into a framework which is fruitful for
extensions beyond the one-period case.
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1. INTRODUCTION

The following model is interpreted as a reinsurance syndicate, in which I
insurers trade among themselves. We take as given

(a) The preference of insurer / e / = {1, 2, ..., I}, >-,-, represented by expected
utility £•{«,(•)}, where u\ > 0 and u" < 0.

(b) The initial net reserve of insurer i, represented by the random variable xt,
iel.

We assume that each JC, e L2(Q, ,T, P) where {Q, JF, P) is the probability
space on which all the x,'s are defined, all the insurers agree on the probability
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186 KNUT K. AASE

measure P (homogeneous beliefs), and the events :f on which P is defined are
generated by the I net reserves, which we sometimes call the initial portfolios,
i.e., -Jr= a{xu x2, •••, Xj}. This means that the uncertainty in the model is
totally described by the initial portfolios x,, i e /. We briefly comment on the
realism of homogeneous beliefs in reinsurance: The assumption about homo-
geneous beliefs appears reasonable for a reinsurance market, where trade is
supposed to take place under conditions of umberrimae fidei, and no informa-
tion is supposed to be hidden. Our pricing results for a reinsurance market are
likely to influence premiums in the market for direct insurance as well. In the
direct market the assumption about homogeneous beliefs seems more unrealis-
tic. It is likely that the buyers of insurance have more information about the
risk they try to cover, than the insurers. This asymmetric information gives rise
to adverse selection. In addition, the buyers can directly or indirectly influence
events so that the probability distributions of the risks are altered. This can
happen since the insurer is usually unable to monitor the insured, and the
phenomenon gives rise to moral hazard. Whereas the problem of morel hazard
does not seem important in a reinsurance market, the problem of adverse
selection may occur since the ceding company usually has more detailed
information about the risks they underwrite than the reinsurers. It may of
course be tempting for some direct insurer to sell some "bad risks" in the
reinsurance market. In the long run this " practice " is not likely to pay off,
since the reinsurance industry makes heavy use of a detailed rating system for
insurance companies (i.e., Insurance Solvency International), and there exist
penalties for such actions.

The competitive equilibrium (CE) that we shall demonstrate in this model,
we claim to be of particular interest in insurance, where its importance has
been partly overlooked. Insurers of today seem to be turning to finance
markets and their models, often without the understanding of the most basic
exchange economy that can be thought of, and which we think is of the utmost
importance to general insurance markets; the syndicate described in this paper.
The present model has also been a key motivation of much of the financial
equilibrium theory which has dominated the literature of financial economics.

The usual formulation in insurance settings has been to derive the front of
Pareto optimal (PO) risk exchanges, generally uncountable in number. This
does not help to find unique premiums, as there will be one set of prices for
each different Pareto optimal point. In order to find a well-defined set of
premiums in this model, the budget constraints of the insurers must be
employed. A well-posed model will then normally determine a unique set of
equilibrium premiums subject to a normalization condition.

The paper is organized as follows: In Section 2 we present the economic
model of uncertainty. Here we formulate one set of sufficient conditions, the
Inada conditions, for the existence of a unique equilibrium, and we demon-
strate some properties of this equilibrium. In Section 3 we demonstrate that the
CE is Pareto optimal, and in Section 4 we present examples of how optimal
sharing rules might look like, and what their market values are. Here we
introduce a different set of sufficient conditions, called properness, for the
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existence of an equilibrium, which turns out to be satisfied in the examples. We
discuss when a syndicated market can restrict attention to proportional
treaties, and when non-proportional treaties are needed. In the latter case, we
argue that this has nothing to do with the market being " incomplete ", as has
been suggested in the economic literature. At least this is a definition which we
do not find fruitful. In Section 5 we demonstrate some properties of risk
tolerances, and in Section 6 we risk adjust the probability measure in the
present one-period framework. In Section 7 we present an insurance version of
the capital asset pricing model, and in Section 8 we rewrite our results on
portfolios to treat insurance premiums directly in this syndicate. In Section 9
we employ the results of Sections 2-4 to the general treatment of the risk
exchange between a policyholder and an insurer, and in particular to the
computation of market premiums of optimal contracts in such models. We end
our exposition in Section 10 with some concluding remarks.

2. THE ECONOMIC MODEL OF UNCERTAINTY

In the market the I insurers exchange parts of their initial portfolios among
themselves. As a result of these exchanges insurer ;' obtains a final portfolio,
represented by the random variable J^XJ , x2, ..., xx). Market clearing requires
that

(2.1) Z
i e / i e /

since the insurers only trade among themselves, where xM represents the
" market portfolio ".If some allocation of risks (yu y2, • • •, yj) satisfy (2.1), it
is called feasible. The premium functional we denote by n{-). In order to
prevent arbitrage possibilities this must be a linear functional on L2(Q, J/~, P).
As an illustration of this point, assume on the contrary that
7l(y\+}'2)> 7l(y\) + n(yi) f°r two risks y\ and y2. Then one agent could
insure the bundle (>>, +y2) and reinsure separately yx and y2. The cash flow at
time zero equals {n(y\+y2)-n{yx)-n{y2)} > 0. The cash flow at time one
equals - ( j , +y2)+y\ +y2 = 0. This agent has no obligations at time one, so he
has made a riskless profit at time zero. This is a money pump, or a "free
lunch", which is inconsistent with an economic equilibrium.

By the Riesz' represenation theorem there exists some function
[/' e L2(Q,.:/, P) such that

(2.2) n{x) = E{xU'\, Vx e L2(Q, JT, P).

Since ,'f= o{xx, x2, ..., x,}, it follows that U' — £/'(*,, x2, ..., xt) is some
Borel-measurable function of (xx, x2,..., Xj) (see e.g. TUCKER (1967), Th.1.1).
(So far the prime on U' is just a matter of notation. Later we show that under
the present conditions U' (•) is also a derivative of some function as well.) The
statement in (2.2) means, in economic terms, that the market is complete in the
following sense (BORCH (1962)):
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Definition 1 :

A market model is complete if it assigns a unique value n(x) to an arbitrary
random variable x e L2 (Q, ,9~, P). O

The economic theory of pricing of contingent claims started with Arrow's
paper in (1953). BORCH (1960-62-68) developed these ideas further, and below
we present some of the elements of this theory. Consider the following
problem:

(2.3) max E{ui(yi(xl,x2, ...,x,))}
y,(x)eL2

subject to the budget constraint

(2.4) n{yi)<n{xt, iel.

In order to avoid bankruptcy problems we also assume that yt > 0 a.s. An
equilibrium is a collection (n; yx, y2, ..., yf) consisting of a price functional n (.)
and a feasible allocation (yx, y2, • ••,yi) such that for each /, yt solves problem
(2.3-4).

The market value of the portfolio cannot increase when exchanges are settled
at market prices. The expected utility of the portfolio can however be increased
by such exchanges, and this is the very purpose of reinsurance transactions.

The Lagrangian of this problem is

(2.5) <?(y,; A,) = E{ui(yi(xi, x2, ..., x,))-^(y-x.) £/'}.

For the purpose of the first result below, in addition to the assumptions (a)
and (b) we now make the following three assumptions

(c) The derivatives u't{x) satisfy

lim w/(x) = 0 and lim u,'(x)= + oo.
AT-.00 X { 0

(d) The functions X->XM,'(X) are all nondecreasing.
(e) The aggregate market portfolio xM e [5, A] almost surely for finite con-

stants A > 8 > 0.

The assumption u[ (0 +) = + oo guarantees that the constraint xM > 0 will
never be active, called the Inada condition. The condition u[ (x) -> 0 as x -> oo
can be thought of as a saturation effect. We now present a theorem giving
sufficient conditions for the existence of a competitive equilibrium. Assumption
(d) is sufficient for uniqueness. The theorem also characterizes the equilibrium.

Theorem 1:

Suppose assumptions (a)-(c) and (e) hold. Then there exists a CE characterized
by

(2.6) u[ (yi(xl,x2,...,x1)) = ).iU'(xl,x2,..., x,), i e I, P-a.s.,

https://doi.org/10.2143/AST.23.2.2005091 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.2.2005091


EQUILIBRIUM IN A REINSURANCE SYNDICATE 189

where A; are positive constants. If in addition (d) holds, then the CE is
unique.

Proof: Existence of CE in infinite dimensional spaces under out conditions are
shown by DUFFIE and ZAME (1989). Uniqueness of an interior CE under the
additional assumption (d) has been shown by KARATZAS et al. (1988). As for
the characterization (2.6), since the Bernoulli utility functions «,-(•) are concave,
the program (2.3)-(2.4) is concave for each i. By the Saddle Point Theorem, if
(_>>,•, A;) is a saddle point of the Lagrangian for this program, yt(x) solves the
given program for all /. Again because of concavity, the conditions (2.6) are the
Euler equations of the maximization problem of the Lagrangian in y (•), which
in the present situation are necessary and sufficient for the solution of this
sub-problem, since the optimal solution happens to be interior by our
conditions. Thus the equations (2.6) must hold. O

Remarks:

— Uniqueness means relative to a normalization. In particular this means that
if X = (A), X2, • • •, A/) and if A' = (A',, A'2, . . . , A/) are two different vectors
corresponding to a unique CE, then there exists a constant c > 0 such that
X = cX', cn(y;X) = n(y;X') and yt{x; A) = y,(x; A'), where J>,-(JC;A),

i = 1, 2 , . . . , I, are the optimal sharing rules, or equilibrium allocations,
corresponding to the vector A, and n(y; A) stands for the corresponding
pricing rule. Thus equilibrium premiums can be determined only up to a
multiplicative constant, since there can always be a re-evaluation of
currency; this is not going to afffect, however, the way in which the insurers
share the risks among themselves.

— The present economic interpretation of the function U'(x) is that it
represents the marginal utility of the market as a whole at the " portfolio
point" JC. Another common interpretation, especially in financial economics
and in macroeconomics, is that U'(x) represents the marginal utility
function of some representative insurer, or even of some abstract central
planner. A final interpretation is also possible; U'(x) is the shadow price
per unit of /"-probability when x (co) = x (we return to this in Section 3).

— In Section 4 we present a different set of sufficient conditions for the
existence of an equilibrium. It turns out that these conditions are inconsis-
tent with the Inada condition (c), but otherwise they appear to be less
restrictive. Here we need the above conditions in order to secure an interior
optimum.

Some immediate consequences of (2.6) are:

dU'(x1,x1,...,xI) 1 .
(I) = , i el, P-a.s.

8 Ar

~u"{yr{xy)
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This follows from differentiating (2.6). Since the right-hand side above does
not depend on i, it follows directly that

(2.7) U'{xux2,...,x,)=Ul{xM), P-a.s.,

so that only changes in the market portfolio xM affects U''. Similarly

(ii) — - - ' ' 2 ' '—-L = '- , ijel, P-a.s.,
Sxj „ xr

u" (y, (JK)) /

which again follows from (2.6). We notice that the right-hand side above does
not depend upon / This means that the total derivative

, , , fyi(x) Syi(x) . .
oy,(jc) = axM = «xM, tor any j , k e I, and for all i e I, r-a.s.,

dxj dxk

so that only changes in the aggregate portfolio xM affects the optimal final
portfolios yt, i.e.

(2.8) yi(xl,x1, ...,Xj) = )>i(xM), iel, P-a.s.

A consequence of this is that the syndicate members can hand in all their
initial portfolios to a pool, and let the pool's clerk distribute parts of xM back
to the syndicate's members according to the optimal sharing rules j ,(xM).

Here we remark that the consequences (2.7) and (2.8) could alternatively
have been derived more directly from the Saddle Point Theorem.

3. PARETO OPTIMALITY

If feasible, an allocation yl, y2,..., yi is Pareto optimal if there is no feasible
allocation zx,z2, ...,Zj such that E{ut(z)) > E(ui(y$) for all /, with strict
inequality for at least one /. It is now easy to demonstrate that any competitive
equilibrium allocation is Pareto optimal. In order to show this, let
(U'{xM), yx,'...,yi) denote the CE in Theorem 1, and suppose z is a feasible
allocation which Pareto dominates y. Then E(ut(z$) > Eiu^y^j) for all / with
at least one strict inequality, say for insurer / Since E(UJ(ZJ)) > E(uj(yj)),
we know that n(zj) > ^(yj)- If for some / the quantity
S = n(yi)-n(zi) > 0, we could let j , * = Zt + SU'(XM)/TI(U'(XM)), from which
n(y?) ~ n{yl)- But then, since w, is strictly increasing and U' > 0, we would
have EUjiyi*) > Eu^y,), which is impossible by the definition of an equilib-
rium. Thus n(z,) > 7t (y,) for all /. Using this, we now have the contradic-
tion n (1.x,) > n (Sz,-) > n (£j,) = n (2x,), which proves the result.

When the optimal solution is interior, an alternative construction is the
following: It is well known the Pareto optimal sharing rules are found by
solving (see e.g. BORCH (1960-62) or WILSON (1968))

(3.1) max
2
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such that

iel

where k{,k2, • • •, kl are arbitrary positive constants. In two dimensions there is
a nice graphical illustration of this point. The Lagrangian of problem (3.1) is

/ s / i e I

where the Lagrangian multiplier X(-) is now a Borel-measurable function, so
that X = X (xM) is an ./"-measurable random variable.

Theorem 2: (Borch's Theorem)

Under our assumptions (a) and (b) on preferences, the Pareto optimal sharing
rules yi(xM) are characterized by

(3.3) kiu'{yi{xM)) = X{xM), i 6 / , P-a.s. ,

where the k{ are arbitrary positive constants.

Proof: We assume that A:, can be chosen in such a way that the domains of the
functions &,«/(•) have a nonvoid intersection. Then there exists at least one
Pareto optimal treaty (see Du MOUCHEL (1968)). By the concavity of the
Bernouilli utility functions w,(), our program is concave. If (yt, X) is the saddle
point of the Lagrangian in (3.2), yt solves the problem (3.1) since A(-) is
continuous (this latter property follows since any positive linear functional on
L2 is continuous). The saddle point must maximize the Lagrangian (3.2) in y,
and this latter problem can be solved by the calculus of variations: Because of
concavity of the «, for all i, a necessary and sufficient condition for this
maximization is again given by the Euler equations. In this special case they are
given by (3.3), since the derivatives of j , ( x M ) with respect to xM are not
entering the equations (3.2). O

Corollary 1 :

The competitive equilibrium of Theoream 1 is Pareto optimal.

Proof: By comparing (3.3) and (2.6-8), the result follows after simply identify-
ing U'(xM) with X(xM) and kt with I/A,. Alternatively, see the introduction to
this section. O
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We may notice that the identification in the above proof also explains that
the function U' (•) may be interpreted as a shadow price, which is exactly what
A(-) is. Finally we notice that the formulation (2.3) and (2.4) implies that the
CE solutions yi(xM), is I, must satisfy individual rationality, since clearly the
solution y>i(xM) = xt is possible, where xt is square integrable and obviously
satisfies (2.4).

4. EXISTENCE AND UNIQUENESS OF CE : EXAMPLES

4.1. Introduction

Theorem 1 gives a set of sufficient conditions for a CE when premiums, as a
result of a competitive equilibrium, are unique. Since equilibrium prices can be
determined only up to a multiplicative constant, we should normally get unique
premiums from the budget constraints after normalization. The family of
solutions we get by varying the normalization constant will not affect the
sharing rules, as will be demonstrated in the examples below. It turns out,
however, that the conditions (c) and (d) for existence and uniqueness are far
from necessary. After the examples we shall therefore present an alternative set
of sufficient conditions for existence of CE. When the sharing rules are linear,
it is possible to reach a Pareto optimum by an exchange of fractions of the
initial portfolios. Linear sharing rules are optimal when the individual utility
functions are members of the HARA class. In a reinsurance market this means
that there should be no need for any other contract than the standard
proportional reinsurance contract when this is true. Applied to a stock market,
the assumption that the optimal sharing rules are linear implies that there
should be no need for trading any other securities than ordinary shares
(common stock). Non-proportional reinsurance and securities such as contin-
gent claims and options both exist and are important, so we must conclude that
the preferences of decision makers are at least so diverse that they cannot be
represented HARA-utility functions only. For some reason many economists
refer to a market in which it is impossible to reach a Pareto optimum through
an exchange of proportions of the initial portfolio as an " incomplete
market".

4.2. Illustrations

Example 1: Exponential utility.

Here

u[ (x,) = exp {- Xj/a,}, a, > 0, iel.

Notice that neither (c) nor (d) hold true here. Nevertheless we shall
demonstrate both existence and uniqueness of an interior CE.

Borch's Theorem gives

ktu[ (yt(xM)) = U' (xM), i s I, P-a.s.,
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which leads directly to

193

(4.1) U' (xM) = exp (
{

*— 1, where K = £ a,- In k,.
) iel

Notice how the marginal utility of the market depends upon the parameters
a, from the individual preferences, and the positive constants kt. The latter can
finally be determined from the budget constraints (2.4), which we return to
below.

We also notice that the optimal sharing rules are given by

(4.2)
IS

oc;
 m kt — a,-

"j e /

i e /, P-a.s.,

which verifies that the sharing rules are linear in xM. The Arrow-Pratt measure
of absolute risk aversion equals I/a, for each insurer i. Also the relative risk
aversion is increasing in the net reserves for these insurers. The kind of treaty
given in (4.2) seems common in reinsurance pratice. Insurer i will hold a share
OLil'LoLj of the total market, inversely proportional to his coefficient of absolute
risk aversion. In order to compensate for the fact that the least risk-averse
insurer will hold the larger proportion of the market, zero-sum side-payments,
or fees, occur between the insurers. The last term in (4.2) represents these fees.
The quotas are determined by the risk-aversion parameters only. Quota-share
treaties with side-payments also occur when all the insurers have preferences
represented by logarithmic utilities, quadratic utilities, as well as by power
utility functions with the same exponent. For further details see LEMARIE

(1990).
Let us for simplicty write (4.2) as

where

K

Employing the budget constraints (2.4), we determine these constants as
follows

Pi =

XM ] t

exp {- \ - — xM exp
A ) A

XM

A

E exp { -
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where A = Sa7, so that the sharing rules are now uniquely determined.
Moreover, the ray (k{, k2,..., k,) is unique modulo a multiplicative constant.
Normalizing so that

K =
ief

we obtain the unique ray as follows

k,,= exp j —- 1 eA , i= 1,2, . . . , I.
I a,- J

In the case where we have a riskless security in the economy in addition to
the existing portfolios, it is natural to normalize so that £ { [ / ' ( % ) } = 1, in
which case the normalization constant K is determined from

- - /
e A = E \ exp

x M

so that the unique vector of constants (k\, k2, • • •, kj) is given by

(Pi)
exp { —

^ — , « = 1 , 2 I .
XM

Finally the unique set of market premiums of the optimal portfolios yt is
given as

a,- E{xMexp(-xM/A)} £{x,exp (-xM/A)\ .
n(yi (xM)) = + Pi = , iel,

A E{exp(-xM/A)} E{exp(-xM/A)}

i.e., by the Esscher premium principle of actuarial sciences (see BUHLMANN

(1980)). O

We now present another example.

Example 2: Logarithmic utility.

Here

tii(x,) = In 0?, + a, x,), where (y?, + a,x,) > 0 P-a.s., a , ->0.

The individual marginal utilities are given by

"«'(*/) = — > ' 6 / > P-a.s.,
P
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and the absolute risk aversion and the relative risk aversion are both increasing
with net reserve levels if /?, > 0. In this case neither condition (c) nor (d) hold.
Borch's Theorem gives

(4.3) = U'(xM), is I, P-a.s.,

which leads to

(4.4)

and the linear sharing rules

(4.5) yi(xM) = —- --• xM + ~L - — I , is I, P-n.s.

Using the budget constraints (2.4) we obtain the unique ray (kx, k2, ...,
subject to E/c,- = k, as

= kE
A + xM

i = l , 2 , . . . , I ,

where

A-?.*.

In the case when the normalization is E{U'(xM)} = 1, then the constant k
equals

k = E —
1

+ x
M

so that the unique vector of positive constants kt is given by

A+xM

1

+ x
M

- 1

Finally the market values of the optimal portfolios yt are given by
- l

j = l , 2 , . . . , I ,
A+xM) \ \A+xM

which is a new "premium principle". O

We now present an example where both the conditions (c) and (d) hold
true.
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Example 3: Power untility.

Here

Ul(xd = xf; PiB (0,1), 1 6 / .

If condition (e) hold true, by Theorem 1 there exists a unique CE, which
means that this model is complete by our Definition 1. Borch's Theorem
gives

k,pt(y,(xM)y»'l = U'(xu), iel,

and the optimal allocations are

i
u'(xM)

so that from the market clearing condition we obtain the equation

£ l—U'(xM)
iel \ kiPi

The normalization E{U'(xM)}=\ together with the budget constraints
finally determine the constants kt. As an illustration, consider the case where
I = 2 and Pl = 1/2, p2 = 3/4. Here

yi(xM) = (klPl)
2 (U'(xM)y2, y2(xM) = (k2P2)

4 (U'(xM)y4.

Only the ratio between the two positive constants matter, so we can
arbitrarily set k2 = 4/3. The marginal utility of the market equals

2xM

and the optimal allocations are

- h ) , y2(xM) = xM + - (h-yjh2 + 4hxM),

where

Pi k

The normalization E{U'(xM)} = 1 finally gives the equation for the constant
h (or really kY), in which case the unique CE is determined. It should be clear
that this Pareto optimum can not be achieved by an exchange of proportional
reinsurance contracts. Similarly, in a stock market this type of arrangement can
not be reached by an exchange of common stock.
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Let us finally check condition (e). Supposing that xM is uniformly distributed
on the interval [S, 1 + d] where d is some given parameter, we see that here is
(5 = 0 allowed, since the integral J0+w~1/2Jw converges. In this particular
case (e) is too strong. O

4.3. Uniform properness

We now turn to another set of sufficient conditions for the existence of an
equilibrium.

Following MAS-COLELL (1986) and MAS-COLELL and ZAME (1991), we
define an expected utility function U(y) = E{u(y)} to be x-proper on
X = L2

+ (Q, .T,P) (or uniformly proper) if there exists a scalar s > 0 such that
for all y in X, a > 0 and z in X, U(y — ccx + z) > U(y) implies that ||z|| > ae.
Here ||z|| = (£{z2})l/2.

The interpretation is that the portfolio x is desirable, in the sense that loss of
an amount ax cannot be compensated for by an additional amount <xz for any
portfolio z, if z is sufficiently "small". When preferences are convex, proper-
ness of U at y with respect to x is equivalent to the existence of a premium
functional U' such that n(z) = E{zU'} > n(y) = E{yU'} whenever
U(z)> U(y) and has the additional property that n(x) > 0. The portfolio x in
this definition is said to be extremely desirable for U. Thus, under risk aversion
properness at xu is equivalent to the linear premium rule we know must exist,
or individual properness at xM is equivalent to market supportability of n.

Now, it is known that properness of f/,(_y) = 2S{M,-(J;)} at x is equivalent to
the assertion that the random variable u[ (x) satisfies £{(«,'(x))2} < oo. A
quasi-equilibrium is defined by the existence of a U' e X, U' =£ 0, such that
n(Xj) = E{XjU'\ = n{y) and n(v) > 7t(j,) whenever C/,(u) > £/,-(>>,). A quasi-
equilibrium is an equilibrium if Uj(y) > Uj(y,) implies that n(v) > n(y,) for all
i. This latter property holds at a quasi-equilibrium if n (x,) > 0 for all i. The
following result is of interest in our model of an insurance market.

Thereom 3:

Suppose our conditions (a) and (b) hold and that there is any allocation z > 0
with Sz, = xM P-a.s. If xM > 0 P-a.s. and £{(M/(Z,))2} < oo for each i, then
there exists a quasi-equilibrium. O

— The proof of this theorem can be adapted from MAS-COLELL and ZAME
(1991).

— Consider now the examples above, and suppose the theorem holds for
z = y, the optimal allocation. The conditions for properness are then

2

£{exp (-2y,(xM)laM < CC,E\ '- I < co,E{yi(xM)2(p'~l)} < oo.
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for the Examples 1, 2 and 3 respectively. As an illustration, suppose that xM

is exponentially distributed with probability density f(x) = X exp { — Xx},
x > 0, f(x) = 0, x < 0. The properness condition in Example 1 is then
equivalent to A = 2a, > 0, which is indeed one of our assumptions. In
Examples 2 and 3 the properness requirement does not seem to add any
new restrictions to the ones that are already naturally present.

— One advantage with our conditions (a)-(e) is the interior solution they
provide, which gives us the characterization (2.6). Theorem 3 does not rule
out corner solutions.

— Uniform properness is incompatible with the condition u\ (0 +) = + oo.
— Uniform properness was used in a model of a reinsurance market in AASE

(1990).

5. RISK TOLERANCE

Here we demonstrate a simple consequence of Borch's Theorem:

,,,, u(yi(xM))yi{xM) U"(xM) .
(5.1) = , IEI, P-a.s.,

«/(J,(*M)) U'{XM)

which follows from differentiating (2.6). Equation (5.1) can alternatively be
written

/c ->\ yi (XM) 1 T n

(5.2) = , te I, P-a.s.,

U" u"
where R = — — , and R,• = — —

V u'
stand for absolute risk aversion. Since 1.^1 (xM) = 1, we see that

1 ^ 1
(5.3) . = £ - , P-a.s.

R ( x M ) i e i R i ( ( ) )
The quantity \/R is called the risk tolerance. The above result has been found

by BORCH (1985); see also BUHLMANN (1980) for the special case of exponen-
tial utility functions. The result (5.3) says that in a Pareto optimum the risk
tolerance of the market as a whole is equal to the sum of the risk tolerances of
the participants. If one member is risk neutral, his risk tolerance will be
infinite, and hence that of the market. This may be interpreted as saying that in
a Pareto optimum all risk should be carried by the risk neutral participants. We
can also easily derive the following

,c ., Syt{xM) R(xM) .
(5.4) = , ie I, P-a.s.

8 ( ( j )
If all the syndicate's members are strictly risk averse, then /?, > 0, and R > 0

follows from (5.3), so that y,:(xM) > 0 a.s. from (5.4). This means that as the

https://doi.org/10.2143/AST.23.2.2005091 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.2.2005091


EQUILIBRIUM IN A REINSURANCE SYNDICATE 199

market portfolio increases, all the insurers increase their portfolios in a Pareto
optimum.

6. RISK ADJUSTMENT OF THE PROBABILITY MEASURE

The premium functional n can alternatively be represented by a risk adjusted
probability measure as follows: Suppose there exists a riskless security x0 in the
economy, and assume without loss of generality that xo(a>) = 1 P-a.s. We can
then normalize such that E{U' (xM)} = 1, as we have suggested earlier. Suppose
that P[U'(xM) > 0] = 1. Define a new measure P* as follows:

(6.1) P*(A)= [ U'(xM(co))dP(co).

Clearly P*(£2) = 1 from our normalization assuption. Also it follows from
integration theory that P*() is countably additive, confirming that P* is a
probability measure. Finally P* and P are mutually absolutely continuous with
respect to each other, meaning that if P(B) = 0 then P*(B) = 0 and if
P*(A) = 0 then P(A) = 0 for any A, Be .:F. Using F* we can express the
premium as follows

(6.2) n(x) = E(U'(xM)x) = f V (xM(co)) x(co) dP(oj)
J a

x(w)dP*(co) = E*(x)," I .
where E* refers to the expectation operator under P*. The interpretation is
that the market premium can be computed using an altered probability
measure P* corresponding to a world of market risk neutrality. We call P* the
risk adjusted probability measure. Notice from (6.1) that the market's marginal
utility U'(xM) corresponds to the Radon-Nikodym derivative of P* with
respect to P, i.e.

dP*
(6.3) U'(xM) = .

dP
This type of construction is of considerable importance in the time-

continuous case (see e.g., AASE (1988-92-93).
Returning to the illustrations in Section 4.2, we now see that in general the

Radon-Nikodym derivative depends on the preferences. This at least holds in
equilibrium models. This fact should be contrasted with the literature on
contingent claims analysis. In the arbitrage pricing theory, where the uncer-
tainty is modeled by Ito-diffusions, this quantity is preference independent,
which clearly does not hold when "jumps" can occur as in our model.
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7. INSURANCE PREMIUMS

The foregoing has been formulated in terms of portfolios and market values of
net reserves. To obtain market premiums of insurance contracts, we note that
the net reserves of insurer i consist of assets a, less of liabilities under the
insurance contracts held by the insurer. Let the non-negative random variable
Zj(a>) represent claim payments under the contracts if the state of the world
becomes cue Q, ie I. Let the events be completely specified by
.jf = a{zx, z2,..., zj), so that the assets at are riskless, and write

(7.1) x, = a , -z , , i e / .

Now we have that

(7.2) 7r(x,) = a/-K(z,) = aj-E{U'(aM-zM)zi},

where aM = 2 a, and zM = £ z,. We define the market disutility of claim
payments by the function V, where

(7.3) V(zM)=U'(aM-zM).

Clearly V'(zM) = — U"(aM-zM) > 0 because of assumption (a) and (5.3).
Formula (7.2) simply says that the market value of the insurer's portfolio is
equal to his riskless assets less the market premium for insurance of the
liabilities. This formula makes it easy to translate results expressed in terms of
net reserve values into insurance premiums. Notice in particular that if for
some portfolio JC, the premium n(Xj) < E(XJ), we get from (7.2) that the
corresponding insurance premium satisfies n(z^) > E{zj), so that the economic
risk premium {^(z,) — E(z,)} of this insurance contract is positive. After
normalization, we find in general that the risk premium can be written as
follows

(7.4) n(z^-E{Zl} = cov {zt, V(zM)}, ie I.

Since the marginal disutility of the market increases as the aggregate claims
in the market increase, from (7.4) we may be tempted to believe that for claims
which are positively correlated with zM, the risk premium is positive, and for
claims which are negatively correlated with zM, the risk premium is negative.
Both these cases make perfectly sense in a rational reinsurance market with risk
averse insurers. However, there exist joint distributions for z = (z,, z2, . . . , z,)
under which this result may not hold true. Covariances are measures of linear
statistical dependance, and can only be considered as a good measure of
" stochastic association " under multinormality. In insurance an assumption of
jointly normally distributed claims is usually not very realistic. Among other
things can claims only take on non-negative values. We are therefore reluctant
to use the nice results obtainable from an assumption of multinormality in
insurance. Here we cite HARALD CRAMER (1930) who wrote: " .. .in many cases
the approximation obtained by using the normal function is not sufficiently
good to justify the conclusions that have been drawn in this way ". In the last
section of the paper we nevertheless briefly discuss multinormality.
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8. RISK EXCHANGE BETWEEN A POLICYHOLDER AND AN INSURER

The problem of risk exchange between a buyer of insurance and an insurer has
been extensively studied under varying conditions in insurance economics, and
some of the contributions can also be found in the actuarial literature. By
restricting attention to the buyers problem only, MOSSIN (1968) showed that if
the compensation c(x) = ax is received by the pohcyholder if the damage
amounts to x, where 0 < a < 1 is a constant, and if the premium paid is cup,
then if p > Ex it is never optimal to take full coverage. Borch later modified
this, and considered instead a premium p = xEx + c, where c > 0 is some
constant. He showed, simply using Jensen's inequality, that a* = 1 is optimal if
it is rational for the risk-averse customer to buy insurance. The constant c he
interpreted as administrative costs. ARROW (1974) used Borch's original
risk-exchange model of (1960-62), and found that a policy with a deductible is
optimal. His premium contains a fixed percentage loading, which has later been
interpreted as a special example of a cost function by RAVIV (1979), who
analyzed the problem for general cost functions, using the maximum principle.
Here we remark that a loading is perhaps more naturally associated with an
economic risk premium. HOLMSTROM (1979) analyzed the problem under
moral hazard, and showed that this gives rise to deductibles. Moral hazard is
clearly a problem in this particular kind of risk exchange. ROTHSCHILD and
STIGLITZ (1976) considered the case with imperfect information, and demon-
strated deductibles for low-risk individuals in a very simple model, and
TOWNSEND (1979) established deductibles under a certain kind of non-
observability, where there is a cost involved by verification of the true state.
LANDSBERGER and MEILIJSON (1990), on the other hand, explained deductibles
in insurance from another perspective, by the use of preferences derived from
so called star-shaped utility functions. MOFFET (1979) used Borch's Theorem
directly on the risk exchange problem that we discuss below.

In this section we want to demonstrate that the risk exchange model of this
paper can be used to establish some simple, yet general results, still abstracting
from the problems caused by asymmetric information and moral hazard. These
results, we claim, constitute the natural benchmark from which refinements
should be obtained. In particular we are interested in the form of the premium
functional in this situaion, derived from (2.2).

To this end we consider a pohcyholder with initial wealth wx, utility function
«! satifying conditions (a) and (b). Against a premium p the insurer offers a
policy that reimburses the policyholder an amount /(x) if a claim of amount x
occurs. The insurer has initial wealth w0, and his utility function we denote by
u0 (•) satisfying UQ (•) > 0, w0" (•) < 0. A natural constraint on the compensation
function I(x) is

0 < / ( x ) < x for all x.

Ignoring this constraint for the moment, a direct application of Borch's
Theorem to the present sharing arrangement gives

(8.1)
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(8.2)

Differentiating (8.1) with respect to x leads to

dl(x) (kx/k0) u"(wx-p-

dx M0"(wo+p-I(x)) + (ki/k0) u"(to,-p-x +

Using (8.1), we get directly

dl(x)

UQ(WO+P-I(X)) + u"(wx-p-x-I{x))

which can be written

dl(x)
(8.3)

dx R0(w0+p-I(x))

where Rx and Ro again stand for the measures of absolute risk aversion. If both
parties are risk averse, then from (8.3) we see that

(8.4) 0 < / ' ( * ) < 1 for all x > 0 .

Letting 1(0) = 0, the mean value theorem implies that

(8.5) 0 < I(x) < x for all x > 0.

This means that the Pareto optimal sharing rule involves a positive amount
of coinsurance, or full coverage is not Pareto optimal.

Notice that policies with a deductible can not be Parero optimal. This
follows since I(x) = 0, x < d, I(x) — x — d, x > d has / ' (x) = 0, x < d and
I' (x) = 1, x > d, both violating (8.4). This holds quite generally without using
any constraints on the compensation function I(x).

Referring to the literature cited above, policies with a deductible can only be
Pareto optimal in models where one or more of the following are included;
costs, moral hazard, asymmetric information, non-observability or alternative
preferences (e.g., star-shaped utility).

Example 1: (Exponential utility).

Suppose Ui(w{) = 1 — exp { — awx}, u0(w0) = 1 — exp {-bw0} for two positive
constants a and b. In this case Ro = b and i?, = a, so the absolute risk
aversions are constants and independent of wealth levels. It now follows
directly from (8.3) that I' (x) = a/(a + b), or I(x) = ax/(a + b) + c, where c is an
intergration constant. If 1(0) = 0, c = 0. In this case if R{ = a is large
compared to Ro = b, I(x) is approximately equal to x, so that full coverage is
then approximately Pareto optimal. In practice this seems reasonable, since the
absolute risk aversion of the policyholder is usually large compared to that of
the insurer. O
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From (8.3) we see that the conclusion of this example also holds quite
generally, i.e., if Rl is very large as compared to Ro for all input values, then
full coverage is approximately Pareto optimal. Quite generally, if we tried to
solve the risk exchange problem in this section imposing the natural constraints
on I(x), the application of the maximum principle would yield the same
conclusions as above: The Pareto optimal deductible is zero in the absence of
operating expenses (RAVIV (1979)).

Turning to the premium, the problem of determining p is usually overlooked
or ignored in the above kind of analyses, where p is simply assumed to be given
as "a positive number".

Suppose we use the pricing principles of Section 2 of this paper, and apply
them to the present "mini-market". We would like to answer the question of
how the resulting equilibrium-based premium p depends on the parameters of
the problem. First we need to derive the shadow price. Using Borch's Theorem
we get

(8.6) klu[(wl-

and

(8.7) kouo(wo+p-I(x))= U'(wi

The budget constraints of the two parties are

(8.8)

and

(8.9)

Herej>0(xM) = wo + p-I(x), y{(xM) = w{-p-x + I(x), xM = w^+w^-x =
vo — x, x0 = w0 and x, = wi~x. Using (8.8) we have E{(wo + p — I(x)) U'(xM)}
= E{wnU'(xM)}, and since

(8.10) p = n{I(x)} = E{I(x) U'(xM)},

we obtain that the by now familiar normalization E{U' (xM)} = 1 must hold.
Consider the following example:

Example 2: (Exponential utility, continued).

Using the results of the above example and of Example 1 in Section 4, we get
the following: The shadow price equals U'(w — x) = exp {(K-w + x)/A\ where
K= (In &i)/a + (ln ko)jb and A = \/a+ \jb. From the normalization we find the
constant K= w~ A In {£[exp (x/A)]}. Furthermore, from Example 1 we get, in
the case where /(0) = 0, that the market premium p is given by

(8.11) r
a + b E {exp (x/A)}

As an illustration, suppose that x is exponentially distributed with parameter
A, so that Ex = XjX. Then the simple formula p = a/[X (a + b) — ab] obtains,
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where the parameter X > I/A. Notice that p increases with Ex and with a. If
X < a, then p increases with b, with the opposite result if X > a. Notice that an
increase in i?, = a has here two effects, both working in the same direction:
First the absolute risk aversion of the policyholder increases, and second the
coverage increases; so we would expect a large premium p in both cases. An
increase in Ro = b implies on the one hand less coverage, but on the other hand
the insurer becomes more averse towards risk. These two mutually competing
facts explain the more complex comparative statics for b.

The risk neutral case can be studied by letting b -*0. Then p -> Ex follows
from (8.11) by the monotone convergence theorem, i.e., we obtain the usual
" actuarial fair" premium in the limit. Alternatively we could try the charac-
terization in Section 2 directly with u0 (w) = b + cw, c > 0, a constant. It is then
straightforward to show that the shadow price U' (xM) = 1, again leading to
premium given by the " principle of equivalence " above. (Formally the latter
derivation is not valid when U'Q(W) = 0 for all w.) O

Examples 1 and 2 are somewhat specialized in that the absolute risk aversion
is independent of wealth. In general we should also expect the premium to
depend on the aggregate level of wealth w in the market. This is indeed of
importance in actual markets where insurance contracts are traded at market
prices. Consider the following example:

Example 3: (Power utility).

Suppose uo(w) = U\ (w) = wp where p e (0, 1). In this case the shadow price is

(w-xY~l

1 1

which becomes, after the standard normalization

(w-xy1

U (xM) =
E

The Pareto optimal sharing rule satisfies

dl(x) _ wo+p-I(x)

dx w — x

depending, as we see, on the premium p. Solving this differential equation
under the condition 7(0) = 0 gives

I{x) = x,
w

i.e., full coverage is only Pareto optimal if p=wx. The present problem is
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well-posed for the above utility functions only if x < min (w0, W\) P-a.s. Since
p < W\ must generally hold, coinsurance results. The premium p must satisfy
p = E{xU'(xM) (wo + p)/w\, which leads to

w
E{xU'(xM)}

- 1
- 1

w0.

Notice how the premium p in general depends on the wealth level w. It is
seen that unless the wealth of the customer is too large, i.e., when
W\ < E{xU' (xM)}, the premium decreases as w0 increases as well as when w\
increases, whereas the premium increases as a function of w0 when
W\ > E{xll' (xM)}. In general the premium is a decreasing function of w. This is
in accordance with the general observation that the premiums tend to decrease
as the "capacity" (= w) in the market increases and vice verca.

In the limiting case where p-*\, U' (xM) -» 1 a.s. and p -»w0Exftw — Ex) by
the dominated convergence theorem. In the limit, approaching risk-neutrality,
the optimal compensation scheme is I(x) = wox/(w — Ex), costing its actuarial
fair value E(I(x)\ = w0Ex/(w — Ex).

As an illustration, suppose that x is uniformly distributed on (0, w{), where
wo> W\. The premium is then

= tvo [w(uf- wp
0)/p-(wp+l-wp

0
 +')/(/?+1)]

P

which depends on the aggregate wealth w of the two parties, their attitude
towards risk as measured by p and the reserves w0 of the insurer. As p -* 1, this
expression is seen to converge to p{ = wiwo/2(w — wi/2), which is exactly
E{I\(x)}, where /, (x) = (wo+pi)x/w is the optimal sharing rule for this
particular premium /?,. O

9. AN INSURANCE VERSION OF THE CAPITAL ASSET PRICING MODEL

We now discuss the case when x = (xi, x2, •••, x{) is jointly multinormally
distributed. As noted before, this case has limited applicability in insurance
economics. However some of the results in this model remain true even if the
assumption of normality is dropped. The first problem we encounter is to find
a set of sufficient conditions for the existence of a competitive equilibrium. Our
earlier theorems can not be directly applied here, since x can take on negative
values with positive probability. NIELSEN (1990) has a set of sufficient
conditions for the existence of equilibrium in a CAPM-model in financial
economics. In his model the investor has a utility function U(fi, a) which is a
function of the mean and the standard deviation of the total portfolio return.
Mean-variance behavior is consistent with expected utility maximization with
general utility functions if the returns follow the distributions described by
CHAMBERLAIN (1983) and OWEN and RABINOWITCH (1983), which include the
multinormal distribution. In the present model the optimal allocation may not
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be a linear function of xM, in which case y is not necessarily multinormally
distributed. Expected utility maximization with general utility functions can
not, in our model of an insurance market, in general be represented by
mean-variance utility functions U(p, a), unless the utility functions happen to
be members of the HARA-family with the same cautiousness. In this latter case
Nielsen's sufficient conditions are possibly appropriate in our model.

For the moment supposing an interior equilibrium exists, its characterization
is then straightforward. Under our normalization assumption E{U'(xM)\ = 1,
the premium functional can be written

(9.1) TT(X,) = .E'(X,) + COV(X,, U'(xM)) for all the x,.

Here (n(Xj)~ E(x,)) is the economic risk premium of x,. From the assumption
of multinormality it follows that

(9.2) cov (XJ, U'(xM)) = E{U"(xM)} cov (x,, xM) for all the x,.

Since (9.2) holds for each of the initial portfolios, clearly

n (x() = E (x,) + E{U" (xM)} cov (x,, xM) for all the x,.

By summation over i we obtain

n{xM) = E(xM) + E{U"(xM)} var (xM)

from the linearity of the pricing functional n (•) and from standard properties
of the expectation and the covariance operators. Rearranging, we finally have
the insurance version of the capital asset pricing model as follows:

(9.3) n (x,) - E(xd = COV ( X ' ' XM) (n (xM) - E(xM)), for all /,
var (xM)

The risk premium of any of the initial portfolios can be written as the risk
premium of,the market portfolio multiplied by the normalized covariance term,
the portfolio's beta in the market.

The result (9.2) is often referred to as Stein's lemma. The first derivation in
the economics literature seems to be due to RUBINSTEIN (1973). Using a Taylor
series expansion, he assumed that the function U' possesses derivatives of all
orders and that these functions can be integrated. Below we give a simple
proof, where U' need not even be one time differentiate for (9.3) to result by
the above procedure.

Lemma 1 :

Suppose (X, Y) is jointly bivariate normally distributed. Then

(a) ( , ( ) )

var Y
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Suppose g'(•) exists for all real numbers and that E\g'(Y)\ < GO. Then

var 7

Proof: From the assumption of binormality it follows that E(X\Y) = a+pY,
where

cov (X, Y)
P = -— — -- and a = EX-pEY.

var Y
Also cov (X,g(Y)) = E{E{Xg(Y)\Y}}~EXEg(Y) = aEg(Y) + pE(Yg(Y))

~EXEg{Y) = p{E(Yg(Y))-EYEg(Y)}, proving (a). As for (b), by integra-
tion by parts, using the assumption that the expectation of g' (Y) exists, we
find

Eg'(Y)=- f var Y

where fY(y) is the normal probability density function for Y. This proves (b).
O

Note that (9.3) follows from (a) only. Thus the assumptions that U' is one
time differentiable and that the expectation of U'(xM) exists, are really not
needed in the above step. If U" exists for all reals together with its expectation,
then (a) and (b) imply (9.2). For an extension of this result, proved by entirely
different methods, see WEI and LEE (1988).

Note that we have used the equilibrium-result in Section 2 that
U'(x)=U'(xM).

We may also find the sign of the risk premium of any Pareto optimal, linear
sharing rule y,(xM). In this case we find

(JI(XM)-E(XM)), for all i.(9.4) 7c(yi(xM))-E(yi(xM)) =
dx

By (5.4) we notice that this beta is positive. The risk premium of all the
portfolios have then the same sign as the risk premium of the market portfolio,
which in this case is negative. This result corresponds to "investors hold
efficient portfolios in capital market equilibrium" in the theory of capital
markets, whereas the fact that E{yj(xM)}> 0 corresponds to "efficient
portfolios have positive betas". Notice that the negative risk premiums
here only mean that the insurers require a positive expected return on
their reinsurance exchanges, since this expected return simply equals

Returning to (9.3) suppose that one of the initial portfolios, Xi say, has a
negative correlation with the market. The market finds this portfolio so
valuable that it accepts a negative expected return on xx in equilibrium.
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As for the characterization (9.3), there might exist other joint probability
distributions giving the same separation result (see for example Ross (1976)
and CHAMBERLAIN (1983)). A different line of attack has traditionally been to
impose further conditions on preferences. For example, if the marginal utility
of the market U' is linear, then this separation follows as well.

Apparently this result seems to require no assumptions regarding the joint
probability distribution of x. However, linear marginal market utility is usually
a consequence of quadratic utility functions representing the preferences of the
individual insurers, which means that the probabilities of falling beyond the
satiation points should equal zero in order for condition (a) to remain valid.
Otherwise the preferences are not monotonic, and risky investments are inferior
compared to the riskless. Thus conditions must then indirectly be imposed on
the joint probability distribution of x as well. For example is the multinomial
distribution not acceptable in this situation. In such cases the conditions of
Theorem 1 may be met, and the characterization (9.3) be valid. We should add,
however, that one obvious advantage of imposing distributional assumptions
on x rather than assumptions directly on preferences (if these can at all be
avoided), is that the former can be empirically tested using statistical methods,
whereas the latter are much harder to verify/refute from available data.

The classical version of the one-period CAPM in a capital market was
developed by Sharpe, Lintner and Mossin. The classical one-period CAPM has
also been developed without the assumption of a riskless asset by BLACK
(1972). In a multiperiod setting MERTON (1972) has developed an intertempo-
ral CAPM, where the prices of the risky assets are assumed to follow
Ito-diffusions. In a dynamic, intertemporal reinsurance context, where the
claims processes are represented by random, marked point processes, an
insurance version of an intertemporal CAPM can be found in AASE (1993).

10. SUMMARY

From the above analysis we observe that the premiums in a reinsurance market
typically must depend on:

(i) The stochastic properties of the risk itself.
(ii) The stochastic relationship between the particular risk z and claims in the

market as a whole, described by the covariance between V(zM) and z.
(iii) The attitude towards risk in the market as a whole, represented by

V= U'.
(iv) The total assets of all the insurers in the market, represented by aM.

A realistic theory of insurance premiums must of course take all these four
elements into account. This is however rarely done in actuarial risk theory.
Several books have been written on insurance premium principles, some even
recent, where only the first of these four elements are covered.

Some obvious weaknesses of the above model are the following. There is in
reality no time dimension in these models; trade is supposed to take place only
at one point in time, and the world more or less ends at the next time point. In
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models of (re)insurance markets the risks may be more realistically represented
by random, marked point processes. A model where trade can take place at
any time point t in an interval [0, T] is given in AASE (1992-93). There it is
shown that the market's attitude towards risk can be separated into two
components; one related to frequency risk and the other related to claim size
risk, given that an accident has occurred. In order to fully understand these
results, however, it appears to be essential to have the above model in mind.
This is so since the present derivation basically tells us what happens at each
time point of jump of the vector x of the stochastic process representing the
exogenously given portfolios in the reinsurance market. For example is our
interpretation of the market marginal utility crucial also in the dynamic case.
Therefore the one-period analysis can be viewed as a necessary preparation in
order to proceed to more realistic, but at the same time more complicated and
mathematically challenging models of equilibrium premium formation in a
dynamic exchange economy under uncertainty.
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