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1. Introduction. We develop some ideas contained in the author's paper [8] which
was, in turn, inspired by Bierlein and Stich [5]. The main body of the present paperf is
divided into three sections. Section 2 is concerned with some vector-lattice-theoretical
results. They are then applied to extensions of quasi-measures and measures in Sections 3
and 4, respectively.

Let A' be a vector lattice, let x e X+ and let 5 be a non-empty set. Theorems 1 and 2
describe some properties of the convex set

f) e Xs: !;s 5= 0 for all s e S and 2 £s =

seS

(see Section 2 for the definition of the sum above). The extreme points of 3)XiS are
characterized in terms of the components of x. It is also shown that if X has the principal
projection property and S is countable, then extr 3)x s is, in some sense, large in 3)x-S.
Furthermore, for finite 5, each point in 3>xS is then a a-convex combination of extreme
ones.

Let 9ft and ffi be algebras of subsets of a set Q with 9ft <= JR. We denote by ba(3ft) the
vector lattice of all real-valued bounded additive functions on 3ft. For a quasi-measure n
on 2ft, i.e. an element of ba+(2ft), we define

We give a description of £(ju) in the case where 5R is generated by 3ft and an n-element
partition of Q. This description allows us to identify E(/x) with an extreme subset (=face)
of 3)^ s for 5 of cardinality n and, consequently, to apply the material of Section 2 (see
Theorem 3).

Let now 9ft and 9i be a-algebras of subsets of Q with 3ft <= 31 We denote by ca(3ft)
the vector lattice of all real-valued a-additive functions on 2ft. For a measure JJ, on 2ft, i.e.
an element of ca+(9ft), we define

We give a description of £CT(ju) in the case where 5H is generated by 9ft and a countable
partition of Q. This description allow us to identify Ea(fi) with an extreme subset of S>M w

and, consequently, to apply the material of Section 2 (see Theorem 6 and the proof of
Theorem 7). The results obtained are closely related to some theorems in Bierlein [4] and
Bierlein and Stich [5].

In Sections 3 and 4 we also examine the problem whether each element of E{(i) or
Ea(n) dominates, in the sense of absolute continuity, an extreme one (see the affirmative
Theorems 5 and 7 and the negative Examples 2 and 3). The problem seems to have been
mentioned for the first time in [8].

t Some results of the paper were presented at the conference "Topology and Measure VI", Warnemiinde
(Germany), August 1991.
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154 Z. LIPECKI

Throughout the paper we dispense with uncountable forms of the axiom of choice.
The only exception is the proof of Theorem 5, where the Stone representation theorem
and the non-effective part of Plachky's criterion [12] are applied.

The vector-lattice-theoretical notation and definitions we use are gathered at the
beginning of Section 2. Sections 3 and 4 start with the explanation of our notation
concerning quasi-measures and measures, respectively.

2. Components and extreme points in vector lattices. Throughout this section X
denotes a vector lattice (or a Riesz space in the terminology of [1] and [9]) over the reals
R and X+ stands for its positive cone. Given x eX+,we put

% = {yeX:yA(x-y) = 0}.

The elements of <€x are called components of x ([1], p. 36, or [9], Definition 38.1). The set
^ is a sublattice of X with smallest element 0 and greatest element x. For y e %x we have
y v (JC —y) =x, which shows that x — y is a complement of y in c€x. Thus, %x is a Boolean
algebra (see [1], Theorem 3.15, for details). The difference operation in <&, is denoted by
\, that is

yi\y2 = yi A (JC - y2) for y,, y2 e %.

Following [1], pp. 30-31, we denote by Bx the band generated by x in X. If Bx is a
projection band ([1], p. 32), Px stands for the (band) projection of X onto Bx. Clearly, we
then have Px(y)e(€y for every yeX+. We say that X has the principal projection
property, PPP for short, provided that Bx is a projection band for every x e X ([1], p. 35,
or [9], Definition 24.8). Every Dedekind complete vector lattice has PPP (see [1],
Theorem 3.7, or [9], Theorem 25.1).

In the sequel S stands for an arbitrary set consisting of at least two elements. We
consider Xs as a vector lattice with the usual product ordering ([1], p. 18). The elements
of Xs are denoted by boldface small Greek letters £, t|, £. Their coordinates are denoted
by ordinary small Greek letters equipped with superscripts, e.g. § = (§*). For \ e (Xs)+
we define

2 §s = sup] 2 §*: So is a finite subset of 51

provided the supremum exists. We say that a subset W of X+ is o-convex if it is closed
oo

under taking o-convex combinations of its elements, i.e. for all tj > 0 with E tj = l and all

| e WN we have E t$ e W provided the sum exists.

Given x e X+, we set

s<=S

%x_s = {I e %_s: §J A f = 0 whenever s,s' e S and s ±s

In the case where 5 = {1,. . . , n} we write X", %xn and % n for short.

THEOREM 1. (a) c€x s c Sdx s and 3)x s is a o-convex subset of Xs.
(b) extr 2)x,s = ^,s. '
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Part (b) has been previously known in several special cases. In fact, the case where 5
has exactly two elements is equivalent to the following assertion contained in [1],
Theorem 3.15: extr[0, JC] = %. (The inclusion "z>" of the latter assertion is used in the
proof of (b) below.) The case where X = LT{(x) with a probability measure ju, x is the
constant 1 function, and S is finite or countable can be found in [6], Corollary 2.3 and
Theorem 5.2 (cf. also [7], proof of Theorem 5). Finally, for X = Um, x = (1 , . . . , 1) and
S = { 1 , . . . , « } the set 3)x s can be interpreted as the set of all stochastic matrices with m
rows and n columns. According to (b), a stochastic matrix is extreme if and only if its
entries are all equal to 0 or 1 (cf. [1], Section 7, Exercise 7).

Proof of Theorem 1. Only part (b) needs a proof. For \ e ^ 5 we have

?'A z r'=o and r + S ?'=*,
s'eS\{s) s'eS\{s)

whence !•' e % for all s eS. Suppose £, = rtj, + (1 - t)i\2, where 111,1126 3)XyS and 0 < t < 1.
Then %s = trj\ + (1 - t)r)s

2, whence ^s = r\\ = r}2, by the inclusion % a extr[0, x] men-
tioned above.

Now, let J=e @,.s and §*' A ^ S " # 0 for some distinct s', s"e5. Set y = ?' A §*", and
define 11 e Xs by

{ 0 if s*s',s",
y if s=s',

-y if s=s".

Then ^ ± i\ e 2)x.s, whence % $ extr %_s.
We define

1 / IV"'
* ) 23 l 2

00

We have tnj>0 and £ fn/= 1. The coefficients tnj appear in Theorems 2(b) and 3(d)
J = 1

below. They have already been used in [5], proof of Theorem 3, in a similar context.
Theorem l(b) shows that 3lx s has always extreme points. This is seen by considering

the points § e 3iXtS such that £s = x for some s e S (and %s = 0 for other s e 5). The next
result shows that, under some additional assumptions on X and 5, the set 2>XtS has
sufficiently many extreme points for our purposes. In connection with part (a) note that
B% stands for the band generated by % in Xs. Part (b) originates with a theorem due to R.
Bierlein ([5], Theorem 3). For n = 2 this part reduces to [8], Theorem 4; see also [11] for
a related result.

THEOREM 2. Suppose X has PPP and x e X+. Then
(a) For every I; e 3)XiN there exists i\ e ^>x N with r\ e B?;

(b) For every | e %,„ there exist r\j e (£,,.„ with % = E fn/t|y;

(c) For every %e(X2)+ with x=£§' + £;2 there exists t i€%.2 with 7j'eBgi
^ 2
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Proof, (a) Put £'" = /»£,•(•*)• T h e n V £'"=*- Indeed, denoting yk = \J % and zk =
k / = 1 / = 1

E I1', we have (see [9], p. 181)
i

We have £' e%, and so, taking into account that % is a Boolean algebra, we can define

y=i

Then rj'e^ and r / 'Ar / ' = 0 whenever i,i'eN and /=£/ ' . Moreover , r]'eB^, since
0 « ? j ' * £ £ ' . Finally,

and so S ij1' = x. Therefore i\ e % N.
/=i

(b) We first observe that

- 2 V?/) = «'n.* + l*. * = 1, 2, . . . (1)

whenever t|i,. . . , t|* e S) ,̂n. Indeed, we have

1 - 2 ^ = 1 — =ntn,k+i.
y=i \ i'

We shall define, by induction, t)y e ^ „ such that

l ^ E ^ - n / . * = i , 2 , . . . . (2)

Then the i|y's are as desired. This is seen, since (1) and (2) imply
k

and Z is Archimedean ([9], Theorem 25.1).
n

In order to define r\l, it is enough to find r\e(%)" with \Jr}'=x and
1 <=1

- t j , and then use the standard disjointization procedure (see the proof of (a) above)
Pt stand for the projection on the band generated by (x — «£')+ in X. Define

r? '=-c-^(x) , i = l,...,n.

Since ^ e 3)x n, we have

A (* - "?')+ = °, whence \ / »?'' = *•
i=i i=i

On the other hand, x^(x- ng)+ implies Pi(x)^x - n£\ i.e. n^' ^ JJ'.
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Suppose now (2) holds for some k, and define

. 1 , ' *

7 = 1

Then, in view of (1), we get t, e 2)x „. Applying (2) for k = 1, we get r\k+l e % „ with

1
n

and the induction step is accomplished.
(c) Define 77' = P$<(x) and rj2 = x - rj\ Since TJ2 A §' = 0 and J72 =̂  §' + §2, we have

Of course, (c) cannot be strengthened to the effect that r\ e ^ 2 and n.^2;. (Take
X = R, x = 1 and i= = (^, |).) Modifying an example due to R. Bierlein ([5], pp. 95-96),
we shall show that for j= e 2 ^ there may be no n, e %iN and t > 0 with tx\ « §. Therefore
(a) and (b) are, in some sense, best possible.

EXAMPLE 1. Take X = UN and x = 1N. Then % = {0,1}N. Define

— Z ,

Clearly, % e 3)X,N. Moreover, r\ e %%N if and only if there exists a partition {£,, £ 2 , . . .} of
N with r/' = 1£. for all i. Therefore tr\«| implies / « 0.

3. Extensions of quasi-measures. Throughout this section 1H and !H stand for
algebras of subsets of a set Q with SRcJH. Given U c 2 n , we denote by U f̂U ]̂ the
algebra [a-algebra] of subsets of Q generated by U. The Dedekind complete vector lattice
of all real-valued bounded additive functions on 3ft is denoted by ba(Sft) (see [3], Section
2.2). The elements of ba+(3ft) are called quasi-measures. For ^,veba+(3ft) we write
H « v if /j is (e - 6) absolutely continuous with respect to v (see [3], Definition 6.1.1).

Let ju e ba+(9ft). The ideal of fi-null sets in 3ft is denoted by N(n). Moreover, we
denote by £(/J, 3J) or E(n) the a-convex set

It is well known that E((i) is always non-empty (see [3], Theorem 3.4.4).
Generalizing a part of [8], Theorem 1, we now give a description of E(n) in a special

case. This description allows us to apply Theorems 1 and 2 above. As a result, we obtain
a generalization of the remaining part of [8], Theorem 1, and an improvement of [8],
Theorem 3. The advantage of the present method over the one used in [8] is that no
appeal is made to uncountable forms of the axiom of choice.

THEOREM 3. Let n e ba+(2f) and 91 = (3K U { £ , , . . . , £„})„, where { £ , , . . . , £„} is a
partition of Q. Define <Stin as {p e 2^ „: M fl E,, = 0 implies p'(M) = 0 whenever M e 97i,
i = 1 , . . . ,n}. Then

(a) %>in is an extreme subset of 3)^^.
(b) The mapping p^>p of ba+(9l) into (ba+(9#))n, where p\M) = p(M D £,) for all

M eWl and i = 1,. . . ,n, is injective, preserves o-convex combinations and takes E{n)
onto %n,n. Moreover, p , « p2 if and only if p \ « p'2 for / = ! , . . . , « .
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(c) Let p e E(fi). Then p e extr E(ii) if and only if p' A p'' - 0 whenever i =£ /', where
p' are as defined in (b).

(d) For every p e E((i) there exist Jij e extr E([i) with p = E tniKr

/='
Proof. Assertion (a) is obvious. As for (b), it is clear that the mapping in question

preserves a-convex combinations. The assertions concerning injectivity and absolute
continuity follow from the formula

<'{Mj), where Mx,. . . , Mn e2ft, (3)
i=i / ,=r

since

To prove the "onto" assertion, given p € ^ „, define p by formula (3). Observe that this
definition is correct. Indeed, take Mu . . . , Mn e 9ft with

y Mi n £,- = y Xf, n £,,

Then (Af, A M,) n £, = 0 , whence p''(Af(- A M,) = 0, by the definition of &„,„. Therefore

p'(M-) = p'(Mi). Since A/ = U M D £,-, we have p(M) = /x(M) for M e 2ft. The additivity

of p follows from that of p' , i = 1,. . . ,«. In sum, p e £(ji), and we are done.
In view of (a) and (b), (c) and (d) are consequences of Theorems l(b) and 2(b),

respectively.
To prove our next theorem, we shall need two lemmas.

LEMMA 1. Let ^r ,peba+(JH) and let ?R = (3#U {EUE2,. . .})b, where EUE2,...
are pairwise disjoint subsets of Q. Then n«p if the following two conditions hold for

'(i)jt\Wk«P\mk, where mk = (3K U { £ „ . . . , £ * } ) „ ;

M n (U Ejj J =s p[M D (U E,\ J for Me 2ft.

Proof. Fix e > 0 and take k0 with JTI U E,\< e/3 whenever m > k0. By (i), there

exists 0 < 6 < e/3 such that p(R) < d implies JT(R) < e/3 for all R e JR*0. Since

9t=U9t*. (5)

it follows from (4) that every R e 9i can be represented in the form

I m \ I I m \ c \

R = R 1 U [ U M , n E , U M H ( \ J E , ) ) ,

where Rx e dtko and Mka+l,.., , Mm, M e 2ft. Taking into account our choice of k0 and 6
and applying (ii), we conclude that p(R) < 6 implies it(R) < e.

https://doi.org/10.1017/S0017089500009708 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009708


COMPONENTS IN VECTOR LATTICES 159

LEMMA 2. Let ju € ba+(TO) and p e ba+(W), and let JR = (TO U {£}),,, w/iere £ c Q. If
Qo e TO is disjoint from E and

(i) ^ « p | TO,
(ii) ;ii(M n Qo) *£ p(M n Qg) /or a// M e TO,

then there exists n e extr E(\i) such that
(i)' n«P,
(ii)' ^(« n (Qo U E)c) =£ p(fl n (Qo U E)c) for all R e JR.

Prao/. Since JR = (TOU {Q()U E})b, it follows from (4) that (ii)' is equivalent to the
condition

K{M n (Qo U E)c) =£ p(M n (Qo U £)c) for all M e 3JJ.

It is then easy to see that we may confine ourselves to the case where Qo = 0 . In this case
(i) follows from (ii), which now reads: /z =£ p | Tl. Define E^ = E, E2 = Ec and

p'(Af) = p(M n £,-) for M

We then have fi^p1 + p2. By Theorems l(b), 2(c) and [3], Theorem 6.2.2, there exists
re e extr S)M 2 with n1 «s p1 and Ji2^p2. It follows that, in the notation of Theorem 3,
JI e %p,2>

 a nd so re € extr ^Mi2- It now suffices to choose n e E(n) which corresponds to JC
according to Theorem 3(b).

The following two results are motivated by [8], Theorem 2, which describes the
extreme points of £(ju) with the help of various minimality conditions with respect to the
relation « .

THEOREM 4. Let jueba+(2ft) and let $R = (2RU($)6, where (£c2 Q is a family of
pairwise disjoint sets. Then for every p e E(n) there exists n e extr E(fi) with K « p.

Proof. We first prove the assertion under the additional assumption that (£ is
countable, say (£ = {£,, E2,. . .}. As in Lemma 1, define

A: = 1,2,. . .

Using Lemma 2, we can define, by induction, nk e ba+(JHt) such that

nk«p\?Rk, n, e extr E(ix,%), nk+l eextr E(jzk,9ik+l),

for /?ejR*.

In view of (5), the nk's admit a (unique) common extension n to JR. Clearly, ^ e extr£(^).
An application of Lemma 1 yields a « p.

To establish the general case, define

2TCo = (TOU^(p))6 and ^ =

In view of [12], Theorem 1, we have jU0 e extr E(n, *ffl0). Put

Clearly, @0 is countable and JR = (TOQ U @0)fc- By what we have proved so far, there exists
n e extr E(nQ, ?R) with n « p. Of course, n e extr £(ju), and this proof is completed.
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We note that Theorem 4 is a partial generalization of Theorem 3(d). In fact, the
latter theorem implies that, for finite (5, we can replace n « p with tn « p for some t> 0.
This stronger version fails if (£ is countable, as an example due to R. Bierlein reveals ([5],
pp. 95-96; cf. also Example 1 above).

THEOREM 5. Let fi e ba+(3K) and let 5K = (M U (£)6, where g c 2 Q is a family of sets
well ordered by inclusion. Then for every p e E([i) there exists n e extr E(n) with n « p.

Proof. We assume that p is a-additive. This is legitimate, since, by the Stone
representation theorem, we may assume that Q is a compact space and ?R is its algebra of
open-and-closed sets. Denote by pp and fip the (unique) extensions of p and /x to
measures on JĤ  and Tip, respectively ([3], Theorem 3.5.2). Then pp is an extension of
Up. In view of Theorem 7 below, there exists a measure

Up € extr E([MP, ?Hp) with Up « pp.

Since Up eextr £(/*, Tip) by [3], Theorem 3.5.3, and [12], Theorem 1, it follows that
np e extr E(fi, ffip). Putting n = np | M and applying [12], Theorem 1, again, we conclude
that K is as desired.

Note that an analogous reduction of Theorem 4 to Theorem 7 below is possible.
However, the proof we have given above avoids any uncountable form of the axiom of
choice.

The following example shows that, in Theorem 5, it is not enough to assume that (£ is
linearly ordered by inclusion (even for countable (£).

EXAMPLE 2 (cf. [8], Example). Let Q = [0,1), take W= {0, Q} and define n on 2H
by n(0) = 0 and fi(Q) = 1. Let

(£ = {[0, t): 0 < t < 1 is rational}

and let p be the restriction of Lebesgue measure to ffi = @fc. Then for every n e extr E{pi)
we have n{W) = {0,1} (see [12], Remark 1), whence n « p does not hold.

4. Extensions of measures. Throughout this section SM and d\ stand for a-algebras
of subsets of a set Q with Tic 3i. The Dedekind complete vector lattice of all real-valued
a-additive functions on SM is denoted by ca(ft)J) (see [3], Section 2.4; cf. also [9], Example
25.3). The elements of ca+(9Jf) are called measures.

Given n e ca+(Wl), we denote by Ea{fi, SK) or Eo{fi) the cr-convex set £(//) H ca(9i).
In contrast to E{(i), it may happen that Ea(n) is empty (see, e.g., [4], Satz 1C). This is,
however, not the case in the situations we consider below, that is, when there exists a
family (£ c 2" of pairwise disjoint sets ([3], Satz 2B, and [2], Corollary 3) or well ordered
by inclusion ([13], Satz (3)) with ffi = (3WU ®)p.

We now give a version of Theorem 3(a) — (c) for measures. Its parts (b) and (c) are
closely related with [10], pp. 311-312, [4], Satz 2A (see also [5], Theorem l(a)), and [5],
Theorem l(b).

THEOREM 6. Let n eca+(W) and let SM = (HftU {£,, E2,. . .})„, where {£,, E2,. . .} is
a partition of Q. Define %^N as

{p e \ N : M n Ei = 0 implies p\M) = 0 whenever M e 9JJ, i = 1,2,. . .}.
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Then
(a) ^,,M is an extreme subset of 3>^>N.
(b) The mapping p-> p of ca+(9?) into (ca+(2ft))N, where p'(Af) = p(M f~l £,) /or a//

M e SM and i = 1, 2,. . . , is injective, preserves o-convex combinations and takes Ea(fi)
onto %>tlM. Moreover, p, « p2 if and only if p\ « p'2 for i = 1,2,. . ..

(c) Let p e Ea(fi). Then p e extr Ea(n) if and only if p' A p' = 0 whenever i =£ i',
where p' are as defined in (b).

The proof is analogous to that of Theorem 3. We only note that (3) and (4) are now
replaced by

) 2 p ( ) where M,, M2,. . .

SR = { U M- n £,: Af,, Af2,. . . e Tl\,

respectively.

THEOREM 7. Lef ^ eca+(SJi) and /ef K = (WU @)̂ j, w/iere g c 2 a w a /amt/y w/»c/i
either consists of pairwise disjoint sets or is well ordered by inclusion. Then for every
p e Ea(n) there exists n € extr Ea(n) with n « p.

Proof We first deal with the case where @ consists of pairwise disjoint sets. It is then
possible to derive the assertion from Theorem 4 with the help of [12], Theorem 1, and a
classical extension theorem ([3], Theorems 3.5.2 and 3.5.3). Alternatively, for countable
S the assertion follows from Theorems l(b) and 2(a) with the help of Theorem 6(b) and
[3], Theorem 6.2.2. One has only to observe that if p e <?,,>N and n e 2>M N satisfy n'« p'
for all /, then n e <£M,N. TO establish the general case, it is enough to apply the reduction
argument of the proof of Theorem 4.

Now we deal with the case where @ is well ordered by inclusion c For countable (£
this case reduces to the previous one. Indeed, define g- = {FE:E e (£}, where

Then ft is a countable family of pairwise disjoint sets and 'ftp = (Sp. Therefore

9t = (awusy
For arbitrary @ it is enough to find a countable subfamily (£0 such that

and then argue as in the final part of the proof of Theorem 4. Observe that p(@) is a
well-ordered subset of U, and so it is countable. Therefore p((£) = p((£0) for some
countable @0

 c ©• It follows that for every E e @ there exists £0 e (£0 such that
p(£) = p(£0) and £ c £0 or Eo c £. Hence £ e (̂ V(p) U (S())6, and we are done.

A straightforward modification of Example 2 shows that, in Theorem 7, it is not
enough to assume that (£ is linearly ordered by inclusion (even for countable @). We shall
present another example to the same effect with the additional property that extr Ea(fi) #
0 for every jU e ca+(9J{). (That this property holds below follows from [2], Corollary 4 and
its proof, and [12], Theorem 1.)
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EXAMPLE 3. Let Q = [0,1] x [0,1] and

m = {B x [0,1]: B is a Borel subset of [0,1]},

@ = {[0,1] x [0, t]: 0 < t < 1 is rational}.

Then fH = (3KU (£)^ is the Borel a-algebra of Q. Let n and p be the restrictions of the
two-dimensional Lebesgue measure to 3ft and 9ft, respectively. If n e extr Ea(n), then, as
is well known, n is concentrated on the graph Gf of a Borel function / : [0,1]—» [0,1]. On
the other hand, p{Gf) = 0, and so K « p does not hold.

Postscript. For results related to Theorem 2(b) see Z. Lipecki, On binary-type
approximations in vector lattices (submitted).

REFERENCES

1. C. D. Aliprantis and O. Burkinshaw, Positive operators (Academic Press, 1985).
2. A. Ascherl and J. Lehn, Two principles for extending probability measures, Manuscripta

Math. 21 (1977), 43-50.
3. K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of charges. A study of finitely

additive measures (Academic Press, 1983).
4. D. Bierlein, Uber die Fortsetzung von Wahrscheinlichkeitsfeldern, Z. Wahrsch. Verw.

Gebiete 1 (1962), 28-46.
5. D. Bierlein and W. J. A. Stich, On the extremality of measure extensions, Manuscripta

Math. 63 (1989), 89-97.
6. D. A. Edwards, On a theorem of Dvoretsky, Wald, and Wolfowitz concerning Liapounov

measures, Glasgow Math. J. 29 (1987), 205-220.
7. H. Goller, An extension of Lyapounov's convexity theorem and (non-) randomization of

tests, Statist. Decisions 2 (1984), 315-328.
8. Z. Lipecki, On extreme extensions of quasi-measures, Arch. Math. (Basel) 58 (1992),

288-293.
9. W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces, Vol. I (North-Holland, 1971).

10. O. Nikodym, Sur les fonctions d'ensembles, in Comptes-Rendus du I Congres des
Mathematiciens des Pays Slaves, Warszawa 1929 (Warszawa 1930), 304-313.

11. D. Oates, A sequentially convex hull, Bull. London Math. Soc. 22 (1990), 467-468.
12. D. Plachky, Extremal and monogenic additive set functions, Proc. Amer. Math. Soc. 54

(1976), 193-196.
13. H. Weber, Ein Fortsetzungssatz fur gruppenwertige Masse, Arch. Math. (Basel) 34 (1980),

157-159.

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WROCLAW BRANCH

KOPERNIKA 1 8

51-617 WROCLAW

POLAND

https://doi.org/10.1017/S0017089500009708 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009708

