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Abstract

We consider a variety of subtrees of various shapes lying on the fringe of a recursive
tree. We prove that (under suitable normalization) the number of isomorphic images of
a given fixed tree shape on the fringe of the recursive tree is asymptotically Gaussian.
The parameters of the asymptotic normal distribution involve the shape functional of the
given tree. The proof uses the contraction method.
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1. Introduction

The recognition of patterns in random objects is a fundamental operation in information
processing. For example, a linguist may be interested in the frequency of five-letter words in
Abraham Lincoln’s famous speech:

Four score and seven years ago our fathers brought forth on this continent a new nation,
conceived in liberty and dedicated to the proposition that all men are created equal.

Analysis of pattern matching in text can be found in Mahmoud et al. (1997) and Régnier and
Szpankowski (1998). The equivalent problem in random trees to the pattern counting problem
in texts is to find trees of a certain size in a given tree generated randomly. Flajolet et al. (1997)
dealt with this problem in binary search trees for trees of fixed size on the fringe, and Feng et
al. (2008) considered it in recursive trees and binary search trees (where there is no restriction
on the size of the pattern), so the full spectrum is discussed.

Alternatively, the linguist may be interested in how often the syllable tion occurs in the text.
The equivalent problem in random trees is to find trees of a certain shape in a random tree.
This area has already attracted attention in the recent literature on random trees (see Chyzak et
al. (2008)). In the present paper we investigate this area for one important random tree model.
We look at the number of subtrees of a certain shape on the fringe of random recursive trees.

The rest of the paper is organized as follows. In Section 2 we define recursive trees and give
examples of the varieties considered on the fringe; we also state the main theorem. In Section 3
we introduce a shape functional (a numerically quantifiable measure) of trees. In Section 4 we
discuss the basic stochastic recurrence for the count. In Section 5 we show how in general the
moments can be computed, and carry out the program for the mean (Subsection 5.1) and the

Received 19 September 2008; revision received 12 November 2009.
∗ Postal address: Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026,
China. Email address: fengqq@ustc.edu.cn
∗∗ Postal address: Department of Statistics, The George Washington University, Washington, DC 20052, USA.
Email address: hosam@gwu.edu

191

https://doi.org/10.1239/jap/1269610825 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610825


192 Q. FENG AND H. M. MAHMOUD

variance (Subsection 5.2), and give their exact computation. The task becomes considerably
harder for higher moments. Finally, in Section 6 we give a characterization of all the asymptotic
moments using a shortcut offered by the contraction method, where a Gaussian result is shown
to hold.

2. Random recursive trees

The random recursive tree is a naturally growing structure that underlies many stochastic
phenomena, such as contagion, and algorithms, such as Burge’s sorting and the union find.
It serves as a model for the formation of social networks, and the barest form of preferential
attachment schemes, such as the Internet. For numerous applications of recursive trees, we
refer the reader to the survey in Smythe and Mahmoud (1995). These are rooted labeled trees
in the graph-theoretic sense. The children of the root are unordered without any special plane
orientation, unlike, for example, the binary search tree model, which received quite a bit of
attention (see Mahmoud (1992, Chapter 2)).

The random recursive tree grows out of a single node labeled 1, and nodes are added in
stages. At the nth stage a node in the existing tree is chosen at random as a parent for the nth
entrant (labeled n). Here random means that all nodes in the tree of size n−1 are equally likely
parents. Per the construction algorithm, the nodes along any root-to-leaf path carry increasing
labels; hence, these trees were also dubbed ‘increasing trees’. Figure 1 shows all the recursive
trees of size 4.

The model of randomness in the growth of random recursive trees induces a uniform
distribution on the trees. All (n−1)! recursive trees of sizen are generated with equal probability.
Many important properties of recursive trees have been analyzed from the convenient viewpoint
of recurrence occurring naturally in the stochastic growth. Nonetheless, the uniform distribution
of the trees also gave rise to analyses based on generating functions and analytic methods such
as integral transforms (see Bergeron et al. (1992)).

We discuss here the scope of the main result. It is concerned with rooted subtrees. Any
connected subgraph of a recursive tree is a rooted subtree, and its root is the vertex with the
smallest label. Given a rooted tree� with size |�| = γ , letRn := R(n, �) denote the number of
rooted subtrees (simply referred to as subtrees henceforth) on the fringe of a random recursive
tree of order n that are isomorphic to �. A subtree of size |�| is ‘on the fringe’ if it has no
proper subtree that is also of size |�|. For instance, � may be the rooted tree shown in Figure 2
(where the arrow points to the root), with the recursive tree being that shown in Figure 3. In
this recursive tree there are three occurrences on the fringe of the tree with shape isomorphic to
� (the subtrees with the labels (2, 4, 6, 9), (10, 11, 14, 17), and (12, 13, 15, 16)). Thus, in this
example R(17, �) = 3; the three isomorphic images of � lying on the fringe of the recursive
tree of Figure 3 are pointed to by arrows. We draw the reader’s attention to the fact that the
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Figure 1: Recursive trees of size 4.
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Figure 2.
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Figure 3: A recursive tree with three isomorphic copies (on its fringe) of a given pattern.

rooted tree � in Figure 2 is one of two possible drawings (the other one coincides with the third
tree from the left in Figure 1). Thus, as a rooted tree shape, � is isomorphic to the third, fourth,
and fifth recursive trees in Figure 1.

We will demonstrate the asymptotic normality of Rn. We will work out the exact mean and
variance of Rn, which include a constant called the shape functional. The main result is as
follows.

Theorem 1. Let Rn be the number of occurrences of a rooted fixed-shape tree � on the fringe
of a random recursive tree of size n. Then,

Rn − µ�n√
n

d−→ N (0, σ 2
�),

where µ� and σ 2
� are constants (given explicitly below in Propositions 1 and 2) that depend

only on �, and ‘
d−→’ denotes convergence in distribution.

3. The shape functional

To study the random variableRn, we need to ‘quantify’ the shape of a tree, that is, describe it
by one numerical value that captures the relevant essence of the structure. For a certain rooted
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tree �, let V (�) denote the set of vertices and let |�| := |V (�)| denote the total number of
vertices in it. For simplicity, we will use γ = |�| throughout. For any vertex v ∈ V (�), let S(v)
be the set of immediate children of v and let s(v) be the size of S(v), that is, s(v) is the outdegree
of v. In particular, if s(v) = 0 then v is a leaf. Let τ(v) be the subtree with root v ∈ V (�).
If v1, . . . , vs(v) are the immediate children of v, some of the graphs τ(v1), . . . , τ (vs(v)) may
be isomorphic images of �. We define d(v) to be the number of different subtrees rooted
at v. After renumbering the vertices v1, . . . , vs(v) in an appropriate way, there are numbers
b1(v), . . . , bd(v)(v) such that

τ(v1)
iso= · · · iso= τ(vb1(v)),

τ (vb1(v)+1)
iso= · · · iso= τ(vb1(v)+b2(v)),

...

τ (v
1+∑d(v)−1

i=1 bi (v)
)

iso= · · · iso= τ(vs(v)),

where ‘
iso=’ denotes isomorphism. Of course, the definition of bi(v) is not unique, since the

different groups of subtree can be rearranged. However, the function

ψ : V (�) → [0, 1]; ψ(v) =

⎧⎪⎪⎨
⎪⎪⎩

(d(v)∏
i=1

bi(v)!
∏
ṽ∈S(v)

|τ(ṽ)|
)−1

if S(v) �= φ,

1 otherwise,

is well defined.
Let

C(�) :=
∏

v∈V (�)
ψ(v).

This shape functional is similar to those that appear in positional trees, such as binary and
m-ary (see Dobrow and Fill (1996), Fill (1996), and Fill and Kapur (2005)), and in digital trees
(see Knuth (1998, Chapter 6)). The essential difference is the factorial terms, which appear
here because recursive trees basically allow a new entrant to appear in any number (of possibly
isomorphic) subtrees, whereas only a single position is prescribed for a key in binary andm-ary
search trees, depending on the key’s order statistic.

Lemma 1. Let � be a fixed rooted tree. A randomly grown recursive tree of size |�| is
isomorphic to � with probability C(�).

Proof. We use induction on γ = |�|. For γ = 1, we have C(�) = 1. Assume now that the
lemma holds for γ ′ ≤ γ − 1, where γ ≥ 2 is an integer. Note that, for a tree �′ of size γ ′,
the number (γ ′ − 1)! P(�′) counts the recursive trees that are isomorphic to �′. Now suppose
that a fixed tree � of size γ ≥ 1 is given. It suffices to compute T (�), the number of recursive
trees of size γ that are isomorphic to �. To have a recursive tree of size γ being isomorphic
to �, its root must have the same number of children as �’s root. Suppose that vertex r is the
root of � and that r1, . . . , rs(r) are the immediate children of r . We call a subtree rooted at any
of the children of the root of a tree a branch of that tree. For any vertex v ∈ S(r), |τ(v)| < γ ,
and the induction hypothesis applies to each branch.

While� is a fixed unlabeled tree, numerous recursive trees of the same size can be isomorphic
to it, by permuting the labels in the branches. We thus need to choose |τ(r1)| labels for the
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branch rooted at r1, |τ(r2)| labels for the branch rooted at r2, …, |τ(rs(r))| labels for the subtree
rooted at rs(r), and this can be done in

(
γ − 1

|τ(r1)|, . . . , |τ(rs(r))|
)

ways. Subtrees in the ith group can further be permuted in bi(r)! ways, and still the recursive
tree obtained is isomorphic to �. Finally, we impose the isomorphism on the branches
(i.e. inductively count the number of ways that each branch can be configured to be isomorphic
to a corresponding branch of �). We proceed with

T (�) = (γ − 1)!∏s(r)
i=1 |τ(ri)|!

1

b1(r)! · · · bd(r)(r)!
s(r)∏
j=1

(|τ(ri)| − 1)! P(τ (rj ))

= (γ − 1)!∏d(r)
i=1 bi(r)!

∏s(r)
i=1 |τ(ri)|

s(r)∏
j=1

P(τ (rj ))

= (γ − 1)!ψ(r)
∏

v∈V (�)\{r}
ψ(v) (by the induction hypothesis)

= (γ − 1)!
∏

v∈V (�)
ψ(v)

= (γ − 1)!C(�).

4. Counting the variety of shapes

To formulate a recurrence for Rn, for γ < n, we employ a decomposition. It is shown in
van der Hofstad et al. (2002) that the distribution of the size of the branch rooted at 2 is uniform
on the set {1, . . . , n− 1}. Let Un be such a discrete random variable. If the branch rooted at 2
is removed from the tree, what is left is isomorphic to a random recursive tree on its respective
size n− Un.

Consider the branch rooted at 2 to be ‘special’, and consider the rest of the tree to be a
nonspecial subtree. A node rooting a subtree of size γ on the fringe may fall in the special
branch or outside. The totality Rn is synthesized from the number of size γ subtree roots in
the special branch and of shape � on the fringe (that is, RUn ) plus the number of size γ subtree
roots on the fringe of the nonspecial subtree and of shape �, and, thus, has a number of subtrees
of shape � distributed likeRn−Un , and conditionally independent of their number in the special
branch. This decomposition has one exception, which is the case Un = n − γ . When we
assemble in this case the special and nonspecial trees into one whole recursive tree (which has
size n > γ ), the root 1 is no longer a root of a subtree of size γ , and we must subtract 1 from
the combined count, if the nonspecial subtree is isomorphic to �.

Let Ber(p) be a Bernoulli random variable, with success rate p, and let 1E be an indicator
of the event E that assumes the value 1 if E occurs, and assumes the value 0 otherwise. We
have the distributional equality (valid for n > γ )

Rn
d= RUn + R̃n−Un − 1{n−Un=γ } Ber(C(�)), (1)

where R̃n−Un
d= Rn−Un , and RUn and R̃n−Un are conditionally independent. Conditional

independence in this context means that while RUn and R̃n−Un are dependent (via their joint
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dependence onUn), they are conditionally independent given the value ofUn, that is,Ri and R̃j
are independent for all i, j ≥ 0. The two variables 1{n−Un=γ } and Ber(C(�)) are independent.

5. Exact moments

The relation (1) is useful for the direct computation of moments, although the task becomes
considerably more demanding for each higher moment. We can use it for the first few moments.
We illustrate the procedure on the mean and variance. For third and higher moments, the
procedure becomes too cumbersome, and it is prudent to seek transparent methods that shortcut
these calculations.

5.1. The mean

We have the following result for the mean.

Proposition 1. Let Rn be the number of subtrees on the fringe of a random recursive tree of
size n that are isomorphic to a given rooted tree � (of size γ ). For n > γ ,

E[Rn] = C(�)

γ (γ + 1)
n.

Proof. Let us use the symmetry Un
d= n− Un. Condition the distributional relation (1) on

Un = j , and write

E[Rn] = E[RUn ] + E[R̃n−Un ] − E[1{n−Un=γ }] E[Ber(C(�))]

= 2

n− 1

n−1∑
j=1

E[Rj ] − P(Un = n− γ )C(�)

= 2

n− 1

n−1∑
j=1

E[Rj ] − C(�)

n− 1
.

Take the difference between a version of the recurrence for (n − 2)E[Rn−1] from that for
(n − 1)E[Rn]. Observe that, because recurrence (1) is valid for n > γ , we must also take
n− 1 > γ to obtain

E[Rn] = n

n− 1
E[Rn−1],

valid for n > γ + 1. The latter recurrence then unwinds as

E[Rn] = n

n− 1

n− 1

n− 2
E[Rn−2] = · · · = n

γ + 1
E[Rγ+1].

Unless all the nodes labeled higher than 1 in a recursive tree of size γ + 1 appear in the
special branch, and that branch takes the form of �, the recursive tree cannot have any subtrees
isomorphic to � on its fringe. That is, Rγ+1 is a Bernoulli random variable that is the product
1{Un=γ } Ber(C(�)). The average value of this product (of independent random variables) is
C(�)/γ , in view of the uniform decomposition.
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5.2. The variance

For the second moment calculation, square both sides of (1) and take the expectation.
Employing several symmetries we obtain

E[R2
n] = 2 E[R2

Un
] + P(Un = n− γ )C(�)+ 2 E[RUnR̃n−Un ]

− 2 E[RUn1{n−Un=γ } Ber(C(�))]
− 2 E[R̃n−Un1{n−Un=γ } Ber(C(�))]

= 2

n− 1

n−1∑
j=1

E[R2
j ] + C(�)

n− 1
+ 2

n− 1

n−1∑
j=1

E[Rj R̃n−j ]

− 2

n− 1

n−1∑
j=1

E[Rj1{n−j=γ } Ber(C(�))]

− 2

n− 1

n−1∑
j=1

E[R̃n−j1{n−j=γ } Ber(C(�))]

= 2

n− 1

n−1∑
j=1

E[R2
j ] + C(�)

n− 1
+ 2

n− 1

n−1∑
j=1

E[Rj ] E[Rn−j ]

− 2C(�)

n− 1
E[Rn−γ ] − 2C(�)

n− 1
E[Rγ ],

where the rearrangement in the last sum follows from the conditional independence ofRUn and
R̃n−Un .

We can use the boundary conditionsRj ≡ 0 for j < γ ,Rγ = Ber(C(�)), and Proposition 1
for E[Rn−γ ]. To apply this proposition, we must take n− γ > γ , i.e. n > 2γ , a condition that
we assume holds in the sequel. The recurrence now has the form

E[R2
n] = 2

n− 1

n−1∑
j=γ

E[R2
j ] + C(�)

n− 1
− 2C(�)

n− 1
(E[Rn−γ + E[Rγ ])

+
(

4

n− 1
E[Rγ ] E[Rn−γ ] + 2C2(�)

n− 1

n−γ−1∑
j=γ+1

j

γ (γ + 1)

n− j

γ (γ + 1)

)

= 2

n− 1

n−1∑
j=γ

E[R2
j ] + C(�)

n− 1
− 2C2(�)(3γ 2 + 4γ − 1)

3γ (γ + 1)(n− 1)

+ C2(�)(n3 − n)

3γ 2(γ + 1)2(n− 1)

:= 2

n− 1

n−1∑
j=γ

E[R2
j ] + h(n)

n− 1
.

Taking the difference between a version of the recurrence for (n− 2)E[R2
n−1] from that for

(n− 1)E[R2
n], we simplify the recurrence to

E[R2
n] = n

n− 1
E[R2

n−1] + h(n)− h(n− 1)

n− 1
.
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Recurrence equations of the general form

vn = n

n− 1
vn−1 + wn

with a given v2γ+1 have a transparent solution:

vn = v2γ+1

2γ + 1
n+ n

n∑
j=2γ+2

wj

j
.

Subsequently,

E[R2
n] = C2(�)n2

γ 2(γ + 1)2
+ σ 2

�n,

where

σ 2
� := E[R2

2γ+1]
2γ + 1

− (2γ + 1)C2(�)

γ 2(γ + 1)2
.

Lemma 2. The random variable R2γ+1 has the distribution

R2γ+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 with probability 1 + (γ + 1)C2(�)− 2γ (2γ + 1)C(�)

2γ 2(γ + 1)
,

1 with probability
γ (2γ + 1)C(�)− (γ + 1)C2(�)

γ 2(γ + 1)
,

2 with probability
C2(�)

2γ 2 .

Proof. The random variable R2γ+1 cannot exceed 2, for if it were 3 or more, there would
be at least three subtrees of size γ each, and none of them rooted at 1 (which roots a tree of
size 2γ + 1), and the number of nodes in the recursive tree would be at least 3γ + 1 > 2γ + 1.
The range of R2γ+1 is thus {0, 1, 2}.

The easiest of the three probabilities is P(R2γ+1 = 2). To have the event {R2γ+1 = 2}, we
must have an even split. The root node 1 with two branches, each with the shape of � (hence,
each with size γ ). The special branch will have size γ , occurring with probability 1/(2γ )
(according to the decomposition property), and when that size is realized, it will have the shape
of � with probability C(�).

The nonspecial subtree, of size γ + 1, should consist of the root 1, and a single child of it
which fathers all the other descendants in the nonspecial tree, which should then assume the
shape of �. Again, by the decomposition property, the subtree of the root of the nonspecial
subtree must be isomorphic to a random recursive tree of size γ , and, for that child to father a
tree of shape �, the event has probability C(�)/γ . The probability

P(R2γ+1 = 2) = C2(�)

2γ 2

follows.
Equating the mean (given in Proposition 1) to its defining computation, we obtain

E[R2γ+1] = (2γ + 1)C(�)

γ (γ + 1)
=

2∑
j=0

j P(R2γ+1 = j) = P(R2γ+1 = 1)+ 2
C2(�)

2γ 2 .

The complete distribution follows.
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We can now proceed with the computation

E[R2
2γ+1] =

2∑
j=0

j2 P(R2γ+1 = j) = γ (2γ + 1)C(�)+ (γ + 1)C2(�)

γ 2(γ + 1)
,

needed as a boundary condition in the solution of the recurrence for E[R2
n]. We have thus

proved the following result.

Proposition 2. For a given rooted tree � with size γ , let Rn be the number of subtrees
isomorphic to � on the fringe of a random recursive tree of size n > 2γ . Then

var[Rn] = (γ + 1)(2γ + 1)− (3γ + 2)C(�)

γ (γ + 1)2(2γ + 1)
C(�)n.

6. Limit distributions for varieties of a fixed size

In principle, we can continue pumping higher moments by the recurrence methods utilized
for the mean and variance, and attempt to determine limit distributions by a method of recursive
moments (see, for example, Chern et al. (2002)). However, as already mentioned, the mounting
complexity is forbidding. We choose a method that is transparent for limits.

The contraction method was introduced in Rösler (1991) to analyze the quick sort algorithm,
and it soon became a popular method because of the transparency of structure that it provides in
the limit for processes that have distributional recurrences that may be complicated. Rachev and
Rüschendorf (1995) added several useful extensions. Recently, general contraction theorems
and multivariate extensions were added in Neininger (2001), Neininger and Rüschendorf (2004),
and Rösler (2001). Neininger (2002) gave an application of the contraction method to recursive
trees. Rösler and Rüschendorf (2001) provided a valuable survey.

We highlight the rationale behind the contraction method (tailored to our context) in a few
paragraphs. An equation like (1) can be normalized in the following manner. Let

R∗
n = 1√

n

(
Rn − C(�)

γ (γ + 1)
n.

)

Then,

R∗
n = R∗

Un

√
Un

n
+ R̃∗

n−Un

√
n− Un

n
− 1{n−Un=γ } Ber(C(�))√

n
.

Now, if R∗
n converges to a limit R∗ then so will R∗

Un
because Un → ∞ almost surely.

A symmetric argument applies to the tided random variable in (1), and
√
Un

n

d−→ √
U,

√
Un

n

d−→ √
1 − U,

1{n−Un=γ } Ber(C(�))√
n

→ 0.

It is plausible to guess that R∗ satisfies the distributional limit equation

R∗ d= √
UR∗ + √

1 − UR̃∗, (2)

where R̃∗ d= R∗ and is independent of it.
The contraction method provides a rigorous proof for this, by viewing the equality in

distribution at n as a contraction in a metric space, the points of which are distribution functions
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and distances between distribution functions are measured by some suitable metric, such as
Wasserstein’s or Zolotarev’s. As thenth distribution function can be represented as a contraction
in a metric space, it converges to a unique ‘fixed point’ (some fixed distribution function),
satisfying a distributional equation like (2), which has a normal distribution as a solution.

Theorem 1 is an immediate consequence of Propositions 1 and 2 and Corollary 5.2 of
Neininger and Rüschendorf (2004). Expressed explicitly, the statement reads as follows. In
a random recursive tree of size n the number Rn = R(n, �) of subtrees on the fringe that are
isomorphic to a given fixed rooted tree � (of size γ ) satisfies

Rn − C(�)n/(γ (γ + 1))√
n

d−→ N

(
0,
(γ + 1)(2γ + 1)− (3γ + 2)C(�)

γ (γ + 1)2(2γ + 1)
C(�)

)
.
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