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Microswimming cells and robots exhibit diverse behaviours due to both their swimming
and their environment. One key environmental feature is the presence of a background
flow. While the influences of select flows, particularly steady shear flows, have been
extensively investigated, these only represent special cases. Here, we examine inertialess
swimmers in more general flows, specifically general linear planar flows that may possess
rapid oscillations, and impose weak symmetry constraints on the swimmer (ensuring
planarity, for instance). We focus on swimmers that are inefficient, in that the time scales
of their movement are well separated from those associated with their motility-driving
deformation. Exploiting this separation of scales in a multiple-time-scale analysis, we
find that the behaviour of the swimmer is dictated by two effective parameter groupings,
excluding mathematically precise edge cases. These systematically derived parameters
measure balances between angular velocity and the rate of strain of the background
flow. Remarkably, one parameter governs the orientational dynamics, whilst the other
completely captures translational motion. Further, we find that the long-time translational
dynamics is solely determined by properties of the flow, independent of the details of
the swimmer. This illustrates the limited extent to which, and how, microswimmers may
control their behaviours in planar linear flows.
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1. Introduction

Microswimming cells, together with robotic swimmers at low Reynolds number, exhibit a
myriad of behaviours and characteristics, in part due to the complexity of their actuation
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and in part due to the diversity of their surrounding fluid environment (Lauga & Powers
2009; Gaffney et al. 2011; Elgeti, Winkler & Gompper 2015; Goldstein 2015; Huang et al.
2016; Diaz et al. 2021). A common feature of the microswimming environment is the
presence of a background flow, which can influence microswimming in diverse ways. For
instance, flows can induce guidance cues for cell navigation, often referred to as rheotaxis.
Examples include sperm motility (Miki & Clapham 2013) and the behaviour of swimmers
in microdevices, including algae such as Chlamydomonas reinhardtii (Omori et al. 2022)
and bacteria such as Escherichia coli (Hill et al. 2007). Furthermore, investigations of
the impact of a background flow are pertinent to the guidance of sperm cells in the
female reproductive tract (Kolle et al. 2009; Miki & Clapham 2013; Kantsler et al. 2014),
the design and control of microrobotic swimmers (Nelson, Kaliakatsos & Abbott 2010;
Iacovacci et al. 2024) and microbial contamination, infection, biofilm formation and
ecology (DiLuzio et al. 2005; Rusconi & Stocker 2015; Junot et al. 2019; Mathijssen
et al. 2019). In turn, the prevalence and utility of background flows in microswimmer
environments has motivated numerous theoretical studies investigating how background
flows alter the swimmer dynamics. These range from studies closely aligned to observed
microswimmer behaviours (Kantsler er al. 2014; Ishimoto & Gaffney 2015; Junot et al.
2019) to more theoretical investigations that analyse the general dynamics and mechanics
exhibited by theoretical models (Hill er al. 2007; Zottl & Stark 2012, 2014; Chengala,
Hondzo & Sheng 2013; Ishimoto 2017, 2023).

However, even among the theoretical studies, there has been a focus on specific
background flows, especially Poiseuille and shear flows (Zottl & Stark 2012; Chengala
et al. 2013; Ishimoto & Gaffney 2015; Junot et al. 2019; Ishimoto 2023). Such flows are
often well-motivated, since Poiseuille flows are common in a confined microgeometries
and shear flows are a somewhat general approximation close to surfaces, noting that many
swimmers accumulate near surfaces (Woolley 2003; Lauga et al. 2006). This focus on
candidate flows prompts the broader question of how do microswimmers respond to more
general background flows, especially in the absence of a confining geometry or a nearby
surface. This is all the more relevant given individual models for swimmer dynamics are
often and increasingly integrated into the development of models for collective behaviour,
for example the works of Saintillan & Shelley (2013), Ezhilan, Shelley & Saintillan (2013)
and Junot et al. (2019).

Consequently, a pertinent generalisation of previous studies is to document and classify
the behaviour of microswimmers in more general flows. We pursue this in terms of the
features of the flow and the swimmer’s shape deformation cycle, also termed a gait cycle.
However, the potential scope is unwieldy in full generality due to the diversity of possible
flows and possible microswimmers. Thus, in this study, we restrict ourselves to planar,
linear flows where, at most, we consider only spatially constant flows perpendicular to
the plane of motion. The restriction to linear flows entails that the flow decomposes
into a translation, rigid body rotation, and a pure strain, with the well-studied shear
flow constituting an edge case in this general exploration. Despite such restrictions, and
further constraints detailed below, the consideration of swimmers in more general linear
planar flows with a focus on analytical results provides the novelty of our investigation,
as emphasised by the observation, for example, that mathematical precision is required to
balance the flow angular velocity and rate of strain to generate a pure shear flow. Hence,
previous detailed studies of swimmers in shear flow may in fact only represent edge cases
for the possible dynamical behaviours.

Additionally, we restrict the range of possible swimmers to maintain tractability. One
assumption is that the deformation cycle of the swimmer is sufficiently robust to be
unchanged by the background flow. A further simplification that pertains to numerous
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microswimmers is high inefficiency: to swim, non-reciprocal body deformations are
required for actuation, with the period of deformation giving one time scale, whilst
the time to swim a body length gives a second time scale, with the latter being much
longer in the case of swimmer inefficiency. This separation of time scales can be readily
seen in biological swimmers, for instance sperm (Smith er al. 2009), as well as many
theoretical studies of idealised swimmers (Curtis & Gaffney 2013; Ishimoto & Gaffney
2014; Pak & Lauga 2015). Hence, we assume such swimmer inefficiency, especially as
it presents a means to extensively simplify the resulting equations of motion using the
method of multiple time scales, as has been applied to the theory of microswimmers
in numerous diverse contexts (e.g. Ma, Pujara & Thiffeault 2022; Ventrella et al. 2023;
Walker, Ishimoto & Gaffney 2023; Dalwadi et al. 2024a, b; Dalwadi 2025).

We also assume that the velocity scale of the background flow is not extensively greater
than the velocity scale of net swimming, so that the swimmer is not simply washed out.
Nonetheless, we do relax this assumption for investigations of reciprocal swimming, where
the swimmer oscillates back and forth with no net motion in a quiescent fluid, to consider
whether or not the interaction of background flows with oscillatory swimmer motion can
induce overall motility. We also allow for the prospect of oscillations of the background
flow, noting there is an emerging interest in how swimmers interact with oscillating
background flows (Hope et al. 2016a; Jo et al. 2016; Moreau & Ishimoto 2021; Ma et al.
2022; Ventrella et al. 2023), especially in scenarios where an inefficient swimmer makes
progress in a background flow oscillating with a frequency commensurate with that of the
swimmer deformation (Morita et al. 2018a,b; Ishikawa, Morita & Omori 2022). The latter
is particularly relevant to the current study and, thus, we incorporate background fluid
flow oscillations with a frequency of the order of magnitude of the fast swimmer shape
deformations.

A more technical constraint is the restriction to swimmers with sufficient symmetry to
ensure that the impact of the fluid rate of strain on the swimmer simplifies. In generality,
this would be governed by two rank-three tensors (Kim & Karrila 2005) and thus 2 x 33 =
54 degrees of freedom, each of which is a periodic function of the fast time scale since the
swimmer is changing shape periodically to effect swimming. With symmetry constraints
on the swimmer, including those required to ensure that simplifications from the planar
symmetry of the flow are retained, these degrees of freedom can be reduced dramatically
(Ishimoto 2020b), which we document in more detail in §2.2. For instance, swimmers
that are bodies of revolution throughout their deformation cycle are special cases of the
results considered below. However, we also explore the consequences of weaker symmetry
constraints. For example, the presence of a swimmer-fixed axis with swimmer shape
invariance to rotations of 2w /3 about this axis, together with three invariant reflection
planes containing the body fixed axis, throughout the swimmer shape deformation cycle
is sufficient to apply the results of the analysis below, and other relatively low-symmetry
shape deformations are considered too.

Since spheres and spheroids fall into the symmetry classification we study, a sphere or a
spheroid with a surface velocity slip profile, known as a spherical or spheroidal squirmer,
is captured in our theory. Such a squirmer is not only a reasonable model of many ciliates
and Volvox, but has also been used as a canonical theoretical model both for biological and
artificial microswimmers (Ishikawa 2024). The symmetry class studied here also includes
particles and swimmers with discrete rotational symmetry (Fries, Einarsson & Mehlig
2017), such as diatoms with regular n-gonal prism shape and radiolarians with regular
polygonal pyramid shape (Gordon et al. 2009; Ishimoto 20205). A simple uniform helix
also falls in the symmetry class of this study, while a bacterial model composed of a helix
coupled to a rigid spheroid is excluded due to insufficient reflection symmetry.
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In summary, our objectives are to analyse and classify the planar dynamics of inertialess
but inefficient microswimmers in linear background flows. In doing so, we retain sufficient
generality to consider rotational, irrotational, and shear flows as special cases, with the
general linear planar flow still amenable to analysis, even with flow oscillations on the
same fast time scale as the swimmer’s gait. From the perspective of rotational dynamics,
we are particularly interested in whether a swimmer will tumble indefinitely, rock back
and forth or asymptote to a fixed angle, including how this is contingent on the properties
of the both the swimmer and the flow, as well as interactions between them. Similar
questions arise in considering translational dynamics, especially whether the swimmer
inexorably drifts indefinitely across flow pathlines or settles into periodic orbits, and also
whether swimmer-flow interactions can generate net motility for reciprocal swimmers
and, thus, circumvent Purcell’s scallop theorem (Purcell 1977). In turn, this allows us to
consider to what extent, and how, a microswimmer may control its trajectory within a
general planar linear flow.

We pursue these objectives by first formulating the governing equations in § 2. Then,
utilising the assumption of inefficiency via its concomitant separation of time scales
between swimmer undulation and motion, the governing equations are simplified in § 3
and general features of the resulting solutions are examined, including a classification
of the angular dynamics in §4 and the translational dynamics in § 5. This is followed
by numerical and theoretical investigations of special cases in § 6, with a focus on more
symmetric swimmers and specific fluid flows for concreteness. Finally, we conclude with a
general classification and summary in § 7, which readers may wish to review for the main
findings before proceeding to the technical details below.

2. Governing equations

We derive the governing equations for inefficient swimmers undergoing rapid shape
changing in planar background flows, with sufficient swimmer symmetry to render the
swimmer motion planar and to ensure that interaction between the swimmer and the
background flow rate of strain remains tractable. We additionally impose the following
constraints: the swimmer mechanics and background flow are effectively inertialess; the
swimmer shape is independent of the background flow; the swimmer shape oscillates on
a fast time scale relative to the time scale of its net motion, with suitable generalisation
if there is reciprocal swimming and, thus, no net motion; the background velocity field is
a planar, incompressible Stokes flow that may in general oscillate on the fast time scale,
commensurate with the time scale of the swimmer deformation oscillations. Whenever the
background flow oscillates, for technical simplicity we additionally assume that the ratio
of the flow oscillation period and the swimmer gait period is rational, with the overall
period (the time for both the swimmer and the flow to return to the same phase) remaining
a fast time scale.

With these assumptions, we immediately non-dimensionalise, with the viscosity scaled
to unity by a choice of the pressure scale. In addition, we use the velocity, length and time
scales of the background flow,

Lpek

= 9
Upck

respectively, to remove the remaining dimensions, thus generating the non-dimensional
framework for the governing equations that we work with below. The non-dimensional
background flow is denoted by u*. As an example, consider a non-dimensionalised planar
linear shear flow of the form

Upck»  Lbck, T 2.1

u*(x, T)=y(T)yei, 2.2)
1022 A13-4
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Figure 1. We illustrate a model swimmer in a planar, unidirectional, linear flow in the x-direction (e;) and
varying in the y-direction (e;), with the swimmer moving in the xy-plane. The swimmer orientation in the
plane is captured via the unit vector &;, which makes an angle 6 with the e; axis.

at a fixed instant in time, as depicted in figure 1, with {e1, e2, e3} representing an inertial
frame Cartesian basis for coordinates x, y, z with z out of the plane of the flow. Here, the
non-dimensional shear rate, y (T), would be unity for shear that does not vary in time but,
here, we allow it to oscillate on the fast time scale. This is represented by a dependence
on a fast time variable T, associated with the swimmer gait oscillation and possible flow
oscillation so that 7 = 2w corresponds to one fast period. In turn, 7T is related to the slow
time variable, ¢, via

T=wt, w>1. (2.3)

We also require ¢ to be commensurate with the net swimming time scale, so that 7, is
of the order of the time it takes for the swimmer to have a net translation of a body
length, so that the swimmer is not washed out by the flow. This also immediately satisfies
our assumption that the swimmer is inefficient given @ >> 1, and can be viewed as the
definition of inefficiency. However, a minor refinement is needed when considering the
time scales for reciprocal swimmers, which never translate a body length in a quiescent
fluid. In particular, reciprocal swimmers are, in a suitable sense, maximally inefficient but
the net swimming time scale is nevertheless ill-defined. Thus, above, we have not used the
time to swim one body length for non-dimensionalisation and, in addition, for reciprocal
swimmers we relax the requirement that 75, is on the time scale needed for the swimmer to
translate a body length.

2.1. Flow kinematics and general governing equations

With the time scales defined, we can proceed to consider the background flow in detail and
derive the governing equations for the rotational and translation dynamics of the swimmer.
We have x = xe; + yes + ze3 as the non-dimensional position of a general point with
respect to the laboratory-fixed basis, {e1, €2, e3}; analogously, the swimmer-fixed frame
has a basis given by {€1, &>, €3} with its origin x. at the centroid of the swimmer. As
further detailed below, the swimmer is taken to possess a body-fixed symmetry axis
throughout its deformation cycle, which we take to be aligned in the body-fixed direction
¢1. Noting the assumptions of flow planarity and sufficient swimmer symmetry to ensure
planar motility (detailed below) we can, with suitable initial conditions implicitly assumed,
take the swimmer axis of symmetry to lie in the plane of the flow which, without loss, is
the xy-plane of the inertial frame. Note that this entails that e; also lies in this plane.
Hence, we have the simple relations between the basis vectors

e1 =cosfe; +sinbe,, ep=—sinbe| +cosber, e3=es3, 2.4)
1022 A13-5
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with 6 as depicted in figure 1. In practice, this alignment also requires stability of planar
swimming, which we do not explore in this work.

Neglecting the influence of the swimmer on the flow (so that no-slip conditions on
the swimmer surface are not imposed), we denote the linear, planar, non-dimensional
background flow field as u*(x, T) with rate of strain and angular velocity given by
(Bachelor 1967)

E*(T)= % [Vu* + (Vu*)T] . 2"T)= %V Au*, (2.5)

respectively, where - T denotes the transpose. As above, the prospect of rapid background
flow oscillation is indicated by the fast time variable dependence of the rate of strain and
angular velocity while, by the linearity of the flow, we have 2* and E* are independent
of spatial location. As the flow is planar we have the further simplifications

Q*(T) = Q2*(T)e3 = 2%(T)es, .Q*(T):%Q-V N (2.6)

Further, we have that the rate of strain tensor, E*, can be written with respect to the
laboratory basis as

EX(T) EXT) 0
E*=|EL(T) —EN(T) 0], 2.7)
0 0 0

noting that symmetry and flow incompressibility entail that only two degrees of freedom
remain. In the same laboratory reference frame, the background flow takes the explicit
form

u*(x, T)=u;(T)+ (—yer +xex)2*(T)

pure rotation

+ (xe1 — ye) ETy(T) + (ver + xe2) ET(T)

pure strain
=ul(T)+ 2*(T) Ax + E*(T)x, (2.8)

where u.(T) is a translational flow that has no spatial dependence. It is useful to note that
velocity field satisfies the identity

wx, T)=u;+2"(T)N(x —x.)+E*(T)(x —x,) (2.9)

by linearity, where u} =u*(x., T) is the background flow at the centroid x. of the
swimmer.

With the background flow specified, we show in Appendix A that the planar motion of
the swimmer is governed by

dxC * ~ ~ E*
5 =u IV +eUM)e - gE*, (2.10)
fes =0é3=[2*(T) + 2(T) +w2(T)] &5 — hE*. (2.11)

Here, wU(T), V and w2¢(T)+ $2(T) are the oscillatory swimming speed, average
progressive swimming speed and rate of rotation of the swimmer in the absence of any
background flow, each of which are assumed to be given. Note that we have decomposed
the latter into a fast, zero-mean O(w) component §2(7T) and an O(1) component £2(T")
for later convenience. As described in detail in Appendix A, we assume V ~ O(1) and
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wU(T) ~ O(w), with the average of U(T) evaluating to zero over a period of the fast
oscillation, T =2m. This is commensurate with the notion of swimmer inefficiency:
swimmer variations that occur on the fast scale do not generate net motion on the fast
scale. Later, during our asymptotic analysis of the translational equation of (2.10), we
will see that this setting necessitates an additional constraint on U(T') and £24(T), in
that a particular nonlinear combination of these functions must have an average that
is O(1/w) (see the discussion that follows (3.22) for more details). Notably, relaxing
these assumptions of inefficiency will lead to swimmers that, at leading order, do not
meaningfully interact with the flow.

Note that setting u, E* and £2* to zero gives the equations of motion in the absence

of flow. The terms g and h are rank three tensors that capture how the rate of strain of
the background influences the swimmer dynamics. The assumption of planarity requires
hE* || e3, which we impose by constraining the swimmer shape throughout its gait cycle
to have sufficient symmetry. However, we remark that this framework retains validity even
when gE* has a component in the é3 = e3 direction, so we do not disallow this prospect a
priori. Here and throughout, all angular velocities are constrained to the &3 = e3 direction
by the assumption of planarity.

Below, we simplify these equations of motion by enforcing geometrical symmetries of
the swimmer. The generality of the resulting derivations and equations naturally requires a
relatively large number of parameters and variables. Hence, we summarise these in tables 1
and 2 for reference, together with the parameters and variables already introduced.

2.2. Simplified governing equations

In order to be consistent with our assumption of planarity, we must restrict ourselves to
particular classes of swimmer geometry. In full generality, this is necessarily technical
and requires significant notation. A reader seeking a concrete example might consider
the swimmer to be a body of revolution with fore—aft symmetry, though we remark that
much more general geometries are admissible within the present framework. Below, we
elaborate on the details of some additional cases, though these can be safely skipped if
one is willing to accept the presence of the time-dependent geometrical parameters B(7T),
A5(T), n2(T), n3(T) and n4(T) in the explicit and simplified governing equations,

dx.
dt

=ul +[V +oU(T)] & —n(T)[é] E*(T)éy]es

+ 13(T)Bo(T, sin 26, cos 20)é| — n4(T)[é5 E*(T)é1lés, (2.12)
do

— = Q"(T) + w24 (T) + 2(T) + [As(T)E}5(T) — B(T)E},(T)] sin 26

dr
+ [As(T)E},(T) + B(T)E},(T)] cos 26. (2.13)
Here, B(T) is the Bretherton parameter and, using ¢ = cos 26 and s = sin 26, we have that
B (T, sin 26, cos 20) is given by

Bo(T, sin 26, cos 20) = E* — [E}(T) cos 20 + E},(T) sin20](e1e + eze,)

EF(T)(1 —c¢) — E5(T)s E3(T) 0
= ET,(T) —[E5 (D)1 +0)+ EL(T)s] 0], (214
0 0 0

where the final expression is with respect to the laboratory basis. In the remainder of this
section, we explicitly describe the construction of these governing equations from (2.10);
we continue with an analysis of these equations in § 3.
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Parameter/Variable

Upck»> Lick> To = Lpck/ Upck

t, T =wt

{e1, e2, e3}

{1, e, &3}

0

X, X

u*(T), EX(T), 2*(T) = 2*e;

2(T,0)=w27(T)es + 2(T)es3
E}, Ef,

uluj,

V,U(T)

CVH}? Cnhs Dna Dnh

g.h

dy,dy, d3, dy, ds

A2, As, M2, M3, N4

Description
Dimensional velocity, length and time scale of the background
flow; see (2.1).
Slow and fast time scales, respectively, with w > 1. See (2.3).
Laboratory-fixed basis. Section 2.1.
Swimmer-fixed basis. Note e3 = e3. See § 2.1.
Swimmer orientation angle. See (2.4).
Field point and the swimmer centroid. See § 2.1.

Background flow, its rate of strain tensor and its angular velocity.
See (2.17) and (2.5).

Angular velocity of the swimmer when u* = 0, decomposed into
fast and slow components. See (2.10) and (A4).

Components of E* in the laboratory and swimmer frames.
See (2.7), (2.15).

Background flow at the swimmer centroid and its spatially
constant contribution. See (2.9) and (2.8).

Mean swimming speed and oscillatory swimming speed.
See (2.10) and (A2).
Types of helicoidal symmetry. See § 2.2.

Rank 3 tensors capturing the impact of the rate of strain on
motility. See (A11).

Vectors used to decompose —gE*, —hE*. See (2.17) and (2.2).
Coefficients of the decomposition of —gE* and —hE*.

See (2.17) and (2.2).
B=—-1 Bretherton shape parameter. See (2.17) and (2.2).

By(T, 0) Matrix used to summarise translational equation of motion before
multiple scales approximation. See (2.14).

Table 1. A list of parameters and variables used in the formulation of the governing equations, including the
description of the background flow and the swimmer symmetries. All are non-dimensional except for the first
row of scales used to non-dimensionalise the system. Note that the variable u;},. is overloaded and relative
to either the 2-D flow plane or three-dimensional (3-D) more generally according to context, with the 3-D
expression including the constant z-contribution to the background flow. Parameters and variables introduced
in the appendices that do not appear in the main text are not listed.

2.3. Simplification of the governing equations and detailed geometrical constraints

In order to ensure that the swimmer only rotates in the plane of the flow, we immediately
restrict consideration to swimmers whose shape throughout the gait cycle possesses a
rotational symmetry of degree n > 3. That is, the swimmers possess a body fixed axis
throughout the gait cycle such that there is a shape invariance to rotations around this axis
of angle 277 /n (Ishimoto 20205). In Shoenflies notation, such a body with n-fold rotational
symmetry is denoted by C,. In turn, the body symmetry enforces the constraints on the
entries of the third-rank tensors, g and h, yielding another type of shape classification
based on the symmetry of these tensors. This symmetry is a hydrodynamic symmetry
and we refer the interested reader to the detailed definitions of Ishimoto (2020a, b, 2023)
for further elaboration on this rich topic. With this C,, (n > 3) body symmetry, Ishimoto
(2020b) considers the structure of —gE* and —hE* and shows that a C,, (n > 3) body
has helicoidal symmetry of degree three, for which the body dynamics are explicitly
written down in the same form. By taking n — oo, it is known that a simple helix
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Parameter/Variable

x0, 0o, x1, 0

az, by, by, cy, cp,a,b, ¢

D> 4, 000
Go(t)

w(T)
&10(o), &20(6o)

Ue(T), Us(T)
n

Tye, lys
A(T)

LG

S1, 52,583,854
X

Description

Leading-order and next-to-leading-order approximations to the
swimmer centroid and orientation angle. See (3.17).

Terms summarising contributions to the angular equation of motion.
Here a, b, c are fast time scale averages of a;, b;, c;. See (3.1), (3.2)
and (3.10).

Here p = (b2 + ¢ — a®)V/2, g = (a* — b* — 312, 0pg = 6 (1 = 0).
See (3.16).

Auxiliary function of the slow time scale used in leading-order
angular solution. See (3.6).

Fast time scale integral of 2 ¢(T). See (3.6).

Vectors in the leading-order multiple scales approximation to &; (6).
See (3.19).

Mean-subtracted products of gait and orientation. See (3.24).
Concise form of the coefficient of 6; in the translational governing
equations, with n = —Ug(T)e o + U.(T)éx.

Periodic, fast time scale integrals of U, and U;. See (3.28).

Matrix used in summarising expansion of background flow. See
(3.20).

Linear operator and image for the Fredholm alternative. See (3.31).
Spanning basis for the nullspace of the adjoint of L. See (3.34).

Here x = a:(T) — bs(T) sin(26p) — c; cos(26p). See (3.12).

Linear functions of cos 250 and sin 250 summarising the form of the
effective translational equations. See (3.38) to (3.40).

Fi, i, Gy, Gy, Hy, Hy

C(sin 250, cos 250, sin 50, cos 50) Here éo—dependent vector within the translational equations and is
linear in its arguments. See (3.46).

A, K=exp[At] Constant matrix and its exponential for the translational equation of
motion and its solution. See (3.41) and (3.45).

v, Here v = (ETI2 + Ei“zz 7@2)1/2’ n= (ﬁz — E’lkl2 — Ei‘zz)l/2
describing the in-plane dynamics of the translational motion.
See (3.44) et seq.

A, B, K Constants in the trajectory equation for an oscillatory shear

background flow. See (6.16) and (6.18).

Table 2. A list of parameters and variables describing the multiscale simplifications and aspects of the explicit
solutions to the governing equations for special cases. They are all non-dimensional. An overline of any variable
refers to taking a temporal average over a period of the fast time scale, as defined by (3.7). Note that the variables
X0 and A are overloaded and relative to either the 2-D flow plane, or 3-D more generally, according to context,
with 3-D expressions, respectively, including the z-contribution to the leading-order swimmer centroid position
and a trivial zero-padding in the third dimension when A acts on a 3-D vector. Parameters and variables
introduced in the appendices that do not appear in the main text are not listed in this table.

approximately follows the same dynamical equations (Ishimoto 2020a). However, the
helicoidal symmetry alone is not sufficient for our purposes. Thus, we closely follow

Ishimoto (2020b) to determine —gE* and —hE*, noting that additional simplifications
will arise here from both the planar nature of the flow and the restriction of swimmer

shapes to those for which hE* | é;. Before doing so, it is convenient to introduce the
notation

E}(T, sin26, cos 20) := &, E*(T)&; = E¥;(T sin 20, cos 20) (2.15)
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fori, j € {1, 2, 3}. Explicitly, for j € {1, 2, 3} we have

Efy = —E%, = Ef{(T) cos 20 + Ef,(T) sin 26, 2.16)
E¥, = E%(T) cos 20 — E},(T) sin 26, (2.16b)
E3; =0, (2.16¢)

each functions of T, sin26 and cos26. This corresponds to the rate of strain tensor
expressed in the {1, €», €3} basis. Later, we will make us of these definitions of El*j as
functions of sin 26 and cos 26, wherein it will be appropriate to substitute 8 for another
angular variable.

With our assumptions and simplifications, we can now decompose —gE* and —hE*
via

—gE* =ny(T)dx(T, 0) + n3(T)d3(T, 0) + na(T)d4(T, 6), (2.17a)
—hE* = 2,(T)d»(T, 6) + As(T)ds(T, 6) (2.17b)

with
dy(T,0)=—E}es, ds(T,0)=(E*— EfDéy, (2.18a)
dy(T,0)=—E3e, ds(T,0)=—E5es, (2.18b)

where A(T) = —B(T), As(T), n2(T), n3(T) and n4(T) are shape-dependent parameters.

Notably, symmetries have to be imposed on the swimmer in order to ensure that there
are no contributions to —hAE* from d3(T, 0) and d4(T, 6), so that hE* || 3. For the
swimmer shapes we consider throughout, this also ensures that —gE * has no contribution
from d5(T, 6) (Ishimoto 2020b). Thus, we do not consider the full range of shapes for
which (2.17) is valid, but instead require additional restrictions. Particular examples of
swimmer shapes with sufficient symmetry to be admissible within the present framework,
together with the related restrictions on (2.17), are presented in detail in Appendix B for
the interested reader. Finally, we note that for the simple canonical example of a body of
revolution with fore—aft symmetry, there is extensive simplification, with s =1, =n3 =
na = 0. Such a swimmer does not have the asymmetry needed to generate rotation in the
absence of a flow, so that its angular velocity in the absence of flow, w2 ¢(T) + £2(T), is
also zero.

3. Multiscale analysis in time-dependent flows

We proceed to use a multiscale analysis to simplify the governing equations, taking
advantage of the separation of time scale arising from w >> 1, so that wt is fast time scale
relative to 7. As previously noted, we implicitly assume that the period of the fast time
scale oscillations is a small integer number of periods of any background flow oscillation
and swimmer deformation oscillation, including treadmilling, which ensures there is only
one fast time scale.

3.1. Multiple scales for the angular dynamics

Defining
ar(T) = 2*(T) + 2(T), (3.1a)
bi(T)=B(T)ET|(T) — A5(T)E},(T), (3.1b)
c+(T)=—B(T)E},(T) — As(T)ET(T), (3.1¢0)
1022 A13-10


https://doi.org/10.1017/jfm.2025.10765

https://doi.org/10.1017/jfm.2025.10765 Published online by Cambridge University Press

Journal of Fluid Mechanics

for notational convenience, the angular evolution equation becomes

2—? =wf2s(T)+a(T) — b+(T) sin 20 — c+(T') cos 26, (3.2)
which is decoupled from the equations for translational motion and thus may be treated in
isolation.

To study this angular dynamics, we use the method of multiple time scales, exploiting
w > 1. The slow time scale, ¢, is associated with the flow, and the fast time scale, T =
wt, is associated with the swimmer deformation and treadmilling. Hence, the total time
derivative decomposes via

d o . 0 (3.3)
—=—4w—. .
dr ot aT
With a zero subscript denoting the leading order, we expand 6 via
1
0=00@, T)+ ;91 @, T)+..., (3.4

with 61 (¢, T) inheriting the 2 -periodicity of the fast time dynamics, as is standard in the
multiple time scales method. Thus, at O(w) and O(1) we have, respectively,

bor = 24(T), (3.5q)
0117 = —6or + a4(T) — b+(T) sin 20 — ¢4(T) cos 26y. (3.5b)
This gives
T
0o(t, T) =¥ (T) + 6o(1), W(T):/ 2¢(85)dS, (3.6)
0

where y(7) is an undetermined function of ¢ alone. We denote fast time scale averages of
functions that are 27 -periodic in the fast variable T using a bar, that is

. 1 To+2m 1 2w
Q:=-— / @, T)dT = — 0@, T)dT, (3.7
21 To 2 0
where the T dependence drops due to the periodicity in the fast variable. Noting that
W (T) is 2m-periodic, as §2(T) is 2 -periodic with zero mean, averaging (3.6) gives
Oo(1) =W +6o(1), (3.8)

with ¥ a constant, so that df/dr = df/dt.
Given (3.6), we expand

b+(T) sin 26 + ¢+ (T) cos 260 = b+(T) sin(20 4 2¥) + ¢+ (T) cos(26o + 2¥)
= by(T) sin(200) + c1(T) cos(26p), (3.9)
where we define
biy(T) = B(T)E¥, (T, sinQ¥), cosQ¥)) — As(T)EX, (T, sinQ¥), cos2¥))  (3.10a)
c:(T) = —B(T)E}(T, sinQ¥), cos(2¥)) — As(T)EF (T, sin2¥), cos(2¥)) (3.10b)

using the definitions of (2.16). Hence, the impact of the fast angular dynamics is that the
contributions of the rate of strain tensor are taken only after a rotating the basis by an angle
w(T).
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As the only periodic homogeneous solution of (3.5b) for 6 is the constant solution, (3.9)
and the Fredholm alternative theorem give

27
/ (=60 + x(T)} dT =0, G11)
0

defining
x(T) :=a+(T) — bs(T) sin 26y — c+(T) cos 26 (3.12)
for later convenience. Thus, the leading-order dynamics is governed by the simpler
differential equation
ddo
dr

Note that we have defined a, b, ¢ as the averages of ay, by, ¢y, respectively, for ease of
notation in what follows. These quantities will be key in exploring the emergent behaviour
in § 4 to § 6. With the initial condition that

Go(t = 0) = Oy (1 = 0) = Oy (3.14)

—a—bsin20p —ccos20y, a=as, b=bs, c=cs. (3.13)

and the definitions
p=0*+c*—aH'? = - —cH', (3.15)
one can readily determine
ptan g + [a — ¢ — b tan Hyp] tanh(pt)
p + [b — (a + c) tan 6y ] tanh(pt)

a’ < b + 2,

tan 6gg + [a — ¢ — b tan Oyt
14 [b— (a+ c) tan Oyp]t

tan 6y = a=@B*+cH12, (3.16)

q tan 6y + [a — ¢ — b tan Hyp] tan(gt)
q + [b — (a + c) tan Oyp] tan(g?)

a’ > b + 2,

where the appropriate branches of arctan are chosen so that 6o is continuous. Note that,
by (3.8), this also gives the angular evolution of 6¢(¢) up to a constant shift.

3.2. Multiple scales for the translational dynamics

We proceed to consider the translational dynamics by applying the method of multiple
scales to (2.12) using the expansions

1
xc=xo+;x1+..., (3.17a)

0=060t,T)+ 591 t, T)+...=60@t) +¥(T) + é@] @ T)+.... (3.17b)

Before doing so, it will prove convenient to expand the swimmer basis vectors of (2.4)
in powers of w using (3.17b). We write

1 1
e1(0) =cos e+ sinWexn + —0 [— sin ¥ejg + cos 1117320] +0 <—2) ., (3.18a)
w 1))
1
e(0)=—sinWey+cosWery+ O (—) , (3.18b)
1)

1022 A13-12


https://doi.org/10.1017/jfm.2025.10765

https://doi.org/10.1017/jfm.2025.10765 Published online by Cambridge University Press

Journal of Fluid Mechanics

defining
&10(1) = cos Hpe; + sinfpea,  €20(1) = — sin fpe| + cos pes. (3.19)

We also write the translational equation in a more concise form by defining the matrix
operator

E}(T) EL(T)— 2%(T) 0
A(T) == | E3(T) + Q%(T) —EX(T) 0. (3.20)
0 0 0

This allows us to write the background flow explicitly as an affine map of position, with

u;=u,;(T)+ A(T)x,, (3.21)
so that the governing equation for the translational motion can be written as
dx.
¥ =u}(T)+ A(T)x.+ [V +oU(T)]e1(0) — g, TYE*(T). (3.22)

Later, we will make use of the explicit expression derived for —gE* in (2.17), but we leave
it implicit for now.

We are now in a position to discuss a further constraint imposed by our assumption of
swimmer 1nefﬁ01ency Whilst we have already assumed that U = §2 ¢ = 0, for consistency
we must also impose that the product of wU (T') and e;(6) in (3.22) does not generate
terms that scale with w; otherwise, this would represent a fast effective swimming speed.
In particular, noting the expansion of € (9) in (3.18), we additionally impose that

1
UcosW, Usin¥ =0 (—) , (3.23)

1)
so that there is no average swimming at leading order in (3.22). This motivates us to define
the 2 -periodic functions of the fast time scale

U(T)=U(T)cosW¥(T)—Ucos ¥, (3.24a)
Us(T):=U(T)sin¥(T) — U sin¥ , (3.24D)
noting that U, = U, =0. For later convenience, we write V. :=wU cos & and Vy, 1=
oU sin ¥, both O(1) by assumption. These represent the average swimming speeds that
arise due to the combination of angular oscillations and variations in linear swimming

speed. With our notion of swimmer inefficiency now made precise, we write the
translational governing equation of (3.22) as

5 = WD)+ ADx e+ 1V cos W(T) + Vuel €0 + [V sin W (T) + V]

- 1
+ 16 + o [Uc(T)ér + Uy(T)ex | — §6, TYE*(T) + O (;) . (325)

writing n = —U;(T)e o + U.(T)eyo. Here, we have made use of (3.18) to make the
dependence on the asymptotic approximation to @ explicit in all but g.

With this expanded governing equation, we now apply the method of multiple scales
as in the case of the angular dynamics. Transforming the time derivatives as in (3.3) and
inserting the expansion of (3.17), we have the leading-order balance

8x0

3T = Uc(T)e + Us(T)ex (3.26)
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at O(w). This has solution
xo=1Iyc(T)e(t) + Iys(T)ex(t) + xo(t), (3.27)

defining the 27 -periodic functions
T
Iy :=/ Uc(s)ds — Ce, (3.28a)
0

T
Iys :=/ Us(s)ds — Cg, (3.28b)
0

where the constants C. and Cy are chosen such that Iye =1Iys =0. Note that the
periodicity of Iy, and Iy follows from U, = Uy =0, in turn a consequence of swimmer
inefficiency and the definitions of (3.24). These functions capture the oscillatory
translational motion that arises from interactions between angular oscillations and the
rapidly varying speed U (T).

At next order, we have the more complex balance

ox 0x - . ~
S T 2 = (1) + AT)xo + LV cos W(T) + Vel éio + LV sin @ (T) + Vil éx0
+ n0, — gl + ¥ (T), T)E*(T). (3.29)
To make progress via the Fredholm alternative, we consider the linear operator
- 5 -
— 0 0 —n-e
oT 5
0 — 0 -—-n-e
L= or (3.30)
0 0 3T 0
a
0 0 0 —
L oT
and the system
X1 _
L [91] =g, (3.31)

with the forcing G given by concatenating the remaining terms of (3.29) and the integrand
of (3.11), the latter being the forcing of the analogous angular evolution equation. We seek
periodic solutions of the homogeneous adjoint problem, £*s = 0, where

[ d

o7 0 0
9
0 — 0 0
L= — oT 5 (3.32)
0 0 o7 0
0 9
n-e n-e o
R 2 aT |

and we compute —n -e; = Uy(T) cos 50 4+ U (T) sin 50 and —n ey =Uy(T) sin éo -
U.(T) cos 6y. Note that, in order for solutions of the original forced system to exist, we
require that G is orthogonal to the nullspace of £*, writing (-, -) for the appropriate inner
product.
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Solving the adjoint problem leads to

c1 [IUS(T) cos o + Iy (T) sin 50] + [IUS(T) sin 6y — Iy (T) cos éo] +cq
(3.33)
written in terms of arbitrary constants c1, ¢z, ¢3 and c4. Abusing notation to write e4 for
the angular direction here, we have the independent solutions

si=e; + [IUS(T) cos By + Iy (T) sin éo] es. (3.344)
sy=ey+ [IUS(T) sin Gy — Iye(T) cos éo] es. (3.34b)
§3 =e3, (3.346‘)
$4=e4. (3.34d)

These s; each generate a solvability condition for the system, which will yield governing
equations for the components of the motion. Notice that (s4, G) =0 collapses onto the
condition found in our analysis of the angular evolution in (3.11), so that these approaches
are consistent.

All the out-of-plane motion is generated by (s3, G) =0, which leads to the evolution
equation

dzo
dr
This corresponds to constant translation out of the plane and, as we will see that there is
no dependence on zg in the other governing equations, these dynamics decouple. Thus,
without loss of generality, we overload our notation and neglect ez components of all
quantities in what follows.
With this simplification and overloaded notation, the solvability conditions (s, G) =
(s2, G) = 0 generate the equations of in-plane motion, which we write as

=ul.-e3— g+ ¥ (T), T)EX(T) - e3. (3.35)

dxo — —_ ~ ~ peeny é
d_to =ul + AXo + IycAéyg + IysAéy + [Vcos v+ Vye+ XIUs] €10

+ [Vsin¥ + Vs — x1uc] €0 — G0 + ¥, T)E¥, (3.36)

recalling the definition of x(7') from (3.12). It remains to compute the average of the
shape-flow interaction terms captured by

g6+ v, T)E*. (3.37)

This can be done in a straightforward manner using the expressions and definitions
of (2.12) and (3.18), though the calculation is somewhat lengthy and broadly
uninformative. For the purpose of our analysis, it suffices to summarise these expressions
simply in terms of a sum of ;o and €9, weighted by functions that are in linear in cos 26,

sin 26y, with coefficients formed of nonlinear averages of shape parameters (13 and 1),
background flow strain rates El?k/., and the fast oscillations of the swimmer orientation

through ¥. We write the average contribution as

— 9By + W, T)E* = Fy(cos 26y, sin 260)&10 + F>(cos 26, sin 260)éx (3.38)
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for implicitly defined linear functions F; and F;. These, along with other terms in the
effective governing equations, simplify extensively under the assumption of no fast angular
oscillations (£2 s = 0), as explored in detail in Appendix C.

With this, the governing equation looks to be sufficiently complex as to be unwieldy.
However, it turns out that there are further simplifications to be made through seemingly
serendipitous cancellation. For instance, gross cancellation occurs in the following
summation:

IycAeio + IysAex + x Iyseio — xIucern = [R21ys + Gi] 1o + [—R21yc + G2] e,
(3.39)

with all terms involving §£2* vanishing. The unspecified functions G| and G, are linear
in cos 26 and sin 26, analogous to F| and F,. Writing A = A for notational convenience
in what follows, this entails that the governing equation can be written in the significantly
simplified form

dxo — _ - - ~ 1. =

= =+ A% + | Veos W 4 Vye + Q1 + Hi 200 | 10(Go)

n [Vsin T+ Vy, — Q21ye + H2(2§0)] &20(60). (3.40)

with Hy = F; + G| and H> = F, + G,. To emphasise the structure of these equations
of motion, we have explicitly included any dependence on the angular dynamics. In
particular, all other quantities (save for X() are constants — effective quantities that have
arisen from the systematic multiscale analysis. Thus, the motion consists of constant
translation by the background flow, linear interaction with the background flow via
A= A, and an effective self-propelled swimming that is modulated by the average angular
dynamics in a nonlinear fashion. In what follows, we set ;. =0 by choice of reference
frame without loss of generality and, thus, the solutions for the equations of motion below
are relative to the mean translational component of the background flow.

Remarkably, further progress can be made now that the evolution of X is written in this
form. To proceed, we recall that

Ef__ Ep—s

A=A= |:Ei"2+.§2* " ] (3.41)
We note that its eigenvalues are given by
+ (B +Ef, -2 (3.42)
and that
A= (B +EL -2, (3.43)

as is most readily deduced from the Cayley—Hamilton theorem. Hence, with the
definitions

—2 —2 —2.12 2 =2 A2
vi= (B + B, -29)% =@ -F -ER) 649
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we can compute exp[A¢] to give

1 -2 —2
cosh(vt)I + —sinh(vt)A, Ej, +E}, > 9*2,
v
—n —2
K(t) := explAr] = { I+ At, Ef +EL =927, (345
1 — 2 9
cos(ut)l+ — sin(ut)A,  El, +E5 <%
u
The effective rates v and p capture the extent to which the rate of strain and the angular
velocity of the background flow dominate one another, respectively. Note that at most one

of v and p is real and non-zero for a given background flow.
Thus, solving (3.40) in terms of K and its convolution reveals

Xo(t) = K(t)xo(t =0)
t
+ / K(r — 5)C(sin 20y (s), cos 20y(s), sin Gp(s), cos Gy (s)) ds, (3.46)
0

where we define
C .= [Vcos U+ Vye+ 21ys + Hy (250)] &10(0o)

+ [v_sin W+ Vs — 210 + Hz(zéo)] &20(00). (3.47)

with H; and H, linear in cos 26y and sin 26;.

4. Classification of rotational dynamics

Numerous deductions can be made from both the leading-order multiple scales solution
for 6 in (3.16) and for x((¢, T) and x¢(¢) in (3.46). Such conclusions concern whether
the swimmer rotational dynamics asymptotes to rocking, tumbling or a steady angle, and
whether there is inexorable drift or oscillation in the translational dynamics.

The rotational dynamics for a rapidly deforming planar swimmer within a planar linear
flow, with a possible fast oscillation, is given by (3.16). If we assume that a® > b> + ¢2, we
have

. (q tan g + [a — ¢ — b tan Ggo] tan(qt)) ’ @1

6y = arctan
q + [b — (a + ¢) tan Oyp] tan(gt)

where g = (a® — b* — cH)V? and Hy is the initial value at  =0. Note that there is a
potential degenerate edge case with

a—c—btanbyp=0=>b — (a + ¢) tan Oy, 4.2)

which would give 50 = 6o for all time. However, eliminating tan 8y in favour of a, b, ¢
immediately yields a® = b2 + ¢2, violating our assumption. Thus, this degeneracy cannot
be realised. Similarly, other degenerate cases lie out of reach, such as setting the numerator
equal to zero in (4.1), which requires tan 6pp = 0 and a = ¢, once more violating a >
b* + 2.

This rotational dynamics corresponds to a continuous tumble (rather than rocking back
and forth). To see this, note that within the expression for 50 given by (4.1), we have
tan(gt) increasing in time monotonically, and the right-hand side is monotonic in tan(gt)
(noting that we have excluded degenerate cases where the expression is constant). Thus,
the jump in arctan to maintain continuity as gt passes though /2 + nm for some integer
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n is always in the same direction, so that 6y changes monotonically with increasing time.
The non-dimensional period of the tumbling is given by

2
q

with ¢ = (a® — b* — ¢%)V/2 once more. The factor of two in the numerator arises because
each jump to a new branch of arctan results in an increase in 6y by 7 once ¢t propagates
across the new branch, so that propagation across two branches is required to increase 6o
by a full rotation of 27.

With this, and noting that the long-time limits of the other cases of (3.16) asymptote
to a fixed angle, we thus have a necessary and sufficient condition for the swimmers of
§ 2 (with the symmetries of § 2.2) to tumble. In particular, endless tumbling is guaranteed
precisely when a? > b? + ¢2, that is

, (4.3)

[T+ 2]
>[B(T)E%, (T, sin 2W, cos 2¥) — As(T) E (T, sin 2¥, cos 2w>]2

+[B(T)E (T, sin 2, cos 2W) + As(T) E%, (T, sin 2, cos 2w>]2.
(4.4)

For all bodies of § 2.2, except those that possess only the C3 symmetry within the gait
cycle, this reduces to

[T+ 2]
>[B(T)E}, (T, sin 2W, cos 20)]* + [B(T) E%, (T, sin 2%, cos 20) ],
(4.5)

For any body of § 2.2 that also possesses fore—aft symmetry throughout the gait cycle, the
condition further reduces to

[2*(D)] > [B(ELTD)] +[BMELT)] . (4.6)

This latter relation readily collapses onto B? < 1 if the particle is rigid and the flow is
taken to be a simple, time-independent shear, in line with the classical results of Jeffery
(1922) and Bretherton (1962). Notably, none of these criteria depend in any way on the
translational swimming motility, with no dependence on V nor U (T).

Each of these conditions signifies that tumbling occurs once the angular forcing

[25(T) + 2] 4.7)

is sufficiently high, where the threshold for tumbling depends on the details of the
interactions between the deformation of the swimmer and the rate of shear experienced
by the swimmer, accounting for any fast time scale changes in its orientation via the angle
W (T). Notably, rocking never occurs in the swimmer system: in every case of (3.16), the
swimmer angle never oscillates back and forth without whole turns. Instead, we have that
the swimmer either tumbles or its orientation asymptotes to a fixed angle. This is in distinct
contrast to the behaviour of a simple pendulum, where whole turns are replaced by rocking
as the forcing is reduced.

Furthermore, if the swimmer is such that the tumbling condition is given by (4.6), we see
that increasingly elongated swimmers (i.e. those with larger B(T')) are always less prone
to tumbling than less-elongated swimmers, so long as the flows are such that E7,(T') and
E7,(T) do not change sign. In other words, the more elongated the swimmer, the more
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that tumbling is suppressed in this setting. Further, the period of tumbling 27 /g increases
with elongation in this setting, approaching infinity as we leave this dynamical regime and
q approaches zero.

However, this simple conclusion need not hold in more generality. For instance,
should EY,(T) and E7,(T) change sign over a period, then there is no such guarantee

on whether there is an increase or decrease of b2+ ¢2 in (4.6) as B(T) increases in
magnitude. In particular, such time-dependent details can drive the system into a regime
where tumbling is suppressed. This, along with other similarly complicating factors like
fast swimmer oscillations, exemplifies and emphasises the more general observation, as
also noted in previous studies (Walker et al. 2022a, 2023), that simply using averaged
parameters for flow and swimmer properties can generate fundamentally different and
incorrect predictions. Ultimately, this is simply because the operations of averaging and
multiplication do not commute.

We also note that (3.13) is a generalised Jeffery equation, describing the angular
dynamics of an ellipsoid in a constant planar linear background flow with a self-induced
angular velocity £2. Notably, (2.13) still holds for this rigid ellipsoid and simplifies to

do¢
dt

where the superscript e refers to the ellipsoid and its associated constant planar linear flow.
Here, B¢ corresponds to the Bretherton parameter of the ellipsoid, which we identify with
the mean Bretherton parameter of the swimmer, B. We can further identify the effective
constant flow to be such that

= Q% + Q¢ — B°E}, sin20° + B°E}, cos 20°, (4.8)

-k

R€=0", Q2°=02, a=Q"+Q2°=2 +2 (4.9)
with, in addition,
=b/B°=by/B°, E}$=-—c/B°=—cs/B". (4.10)

This ensures that the leading-order angular dynamics of the swimmer is the same as the
generalised Jeffery orbit of an ellipsoid with the same mean Bretherton parameter in a
constant background flow (that is a complicated function of the original flow and swimmer
gait dynamics). Thus, a, b, c may be interpreted as the parameters associated with the
generalised Jeffery orbit, with @ measuring the contribution of the angular velocity and
(b* + ¢?)!/? measuring the level of shear, weighted by mean swimmer shape parameters.
The asymptotic angular behaviour is thereby determined by which of these contributions
is dominant.

5. Classification of translational dynamics

From (3.27), we have that the trajectory averaged over the fast oscillations, Xo(?),
is perturbed by a fast oscillation of zero mean at the leading order of the multiple
scales approximation. Furthermore, by inspection of (3.35), any drift in the e3 direction
perpendicular to the plane of the flow can be treated independently once &y is known. In
addition, this drift is completely decoupled and only driven by the background flow, unless
the swimmer only possesses a D, n > 4 symmetry for part of its gait cycle. In the latter
case, shape changes in the body, encapsulated by 1,(T), can interact with the strain rate
of the flow to generate a non-trivial drift perpendicular to the flow, even in the absence of
a background flow component in this direction. In contrast, the dynamics for Xo(¢) in the
plane of flow is much more complex, even for swimmers with high symmetry, which we
consider below.
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5.1. Exponential temporal dynamics in the plane

If the average strain rate of the flow dominates the average rotation rate of the flow, such
that

—2 =2 ==

E}, +E}, >Q*, (5.1)
then the matrix exponential of (3.45) entails that the swimmer will drift away from
its starting point at an exponential rate, irrespective of its angular dynamics and with

the possible exception of edge cases. Such edge cases can occur when K(#)xo(r =0) is
precisely balanced by

t
/ K(r — 5)C (sin 20y (s), cos 20y(s), sin dp(s), cos Gy (s)) ds. (5.2)
0

However, (5.2) is independent of the initial location of the swimmer. Thus, mathematical
precision is required in the initial conditions for such an edge case, which would not be
realisable in practice.

5.2. Linear temporal dynamics in the plane
We proceed to consider the degenerate case
—_2 =2 ==
E}, +E}, =%, (5.3)

where A% =0 from (3.43). This splits into two further subcases: A=0 or A # 0.
If A=0, the flow is either trivial or it is oscillatory with zero mean, so that E ’fl =F Tz =

2% =0. If the flow is trivial, the equations for translation collapse to

dx _ o _ o
d_to =Vcos¥ + Vyco)en(Bo) + (Vsin W + Vyg)ern (o)
+ R21Iysé10(00) — R21yce20(60), (5.4

and the swimmer progresses, in general, on a curved trajectory.
For example, even when the swimmer is not rotating on a fast time scale, so that

Qr=0, ¥=sin¥=Iy;=Vy;=0, Vy.=wUcos¥ =awlU=0

0o =00, €10(60) =210(0), &20(00) = 2000, (5.5)
the equation of motion reduces to
dxo " = - =
rrae Veio(0o) — $21yce20(00) (5.6)
and the swimming corresponds to a curved trajectory with radial velocity V' and a velocity
of —2 Iy, in the 6 direction. Moreover, the swimmer trajectory is further modulated by
the fast rotation of the swimmer £2(T') through ¥, Vy,, Vye, lus, Iyc, albeit in a much
more complex manner than suggested by naive averaging, with ﬁf =0 insufficient to
simplify further.
If instead we have A = 0 via a non-trivial mean-zero oscillatory flow, we have K= land

t
fo(t)zfo(z=0)+/ C (sin 26y (s), cos 269 (s), sin Hp(s), cos Gy (s)) ds, (5.7)
0
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with C as in (3.47). Suppose that we are in one of the regimes explored in § 4 in which
the orientation of the swimmer asymptotes to a fixed value. Then, the integrand of (5.7)
becomes constant for large values of the integration variable and, thus, the swimmer will
drift to infinity linearly in time (neglecting possible edge cases of perfect cancellation
between terms). Notably, this linear drift can happen even if there is only reciprocal
swimming, i.e. V = 21y = £21y. = 0. This can be seen explicitly in the example setting
of fore—aft symmetric swimmers that are a body of revolution, with the equations
reducing to those of (Cllc) and where 50 = 6. In this case, contributions to swimming
arise from terms such as IUCE’I"lélo(go), which need not be zero even for reciprocal
swimmers. Thus, seemingly non-progressive swimming can generate a drift to spatial
infinity through interactions with purely oscillatory, mean-zero flows. In other words, this
provides an explicit mechanism by which a swimmer might circumvent Purcell’s scallop
theorem.

Suppose instead that we are in a regime in which the swimmer tumbles endlessly
in the zero-mean oscillatory flow. Note that these flows necessarily have £2* =0, so

that swimmer tumbling requires 52 >0 in this setting (consider (4.6) with 2* =0),
thus excluding swimmers with fore—aft symmetry. Proceeding with a swimmer that is
tumbling, we can evaluate the contribution of the term associated with Vcos ¥ in the
inertial frame e direction in (5.7) over a single period of rotation. For one such tumble,
which we recall has period 27 /g, starting from some ¢ = f,, this contribution is Vcos ¥
multiplied by

1427 /q ~ Bo(ts)+2m cos fo ~
/ cos Gpdt = / —— — dbp
I B (ts) a — b sin 26y — ¢ cos 20y
1 b4 é 5 b2 2\1/2
= —/ €08 % ddy. with k=& T 1 (58
a J_n 1— Rcos(26p — 2£) a

where £ is a phase shift. Here, we have recalled the governing equation of (3.13) to change
variables to 6y in the integrals. Using the periodicity of the cosines, this can be written as
a linear combination of the following integrals:

1 [T cos b -~ 2 (7 cos Gy ~ 1 (" sin G ~
- ———dfp=— ——dfy, - — dbp.
aJ_z 1— Rcos(26p) aJo 1— Rcos(26p) aJ_z 1— Rcos(26p)
(5.9)
Both of these integrals are zero, by the odd parity in reflection about 6y = /2 for the
first integral and about 6y = 0 for the second. Similarly, all other terms contributing to the
translational motility in (5.7) can be written as a linear combination of integrals over a

temporal period, with integrands
sinfy, sin26ycosfy, cos20gcosby, sin26ysinfy, cos 26 sin by, (5.10)

which all integrate to zero using the same arguments as above. Hence, we may conclude
that a tumbling swimmer in a purely oscillatory linear planar flow does not drift
indefinitely.

Now we consider the final subcase of linear temporal dynamics in the plane, assuming
that A # 0 and A2 =0. We consider the Jordan normal form for A to within an overall
scaling, though it is also useful to explicitly demonstrate that the transformation required
in this particular case is a rotation. First, let e 4 denote the zero-eigenvalue unit eigenvector
of A (unique up to sign) and, thus, Ae4 = 0. Additionally, let ej denote the unit vector
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perpendicular to e4 so that {egd, ek} is a right-handed orthonormal basis. We have
Aej # 0, otherwise A= 0. Then, with «; and &y defined by

Aet =ajes +ares (5.11)

wehaveO:Azejzaerj and, hence, ap = 0 and ] # 0. Thus,
1 1 0 o1
A[eA|eA]=[0|a1eA]=[eA|eA][0 0] (5.12)

Noting that [e 4| ej] is an orthogonal matrix, using its transpose to left-multiply both sides
shows that a rotation of the axes can be found to transform A to a matrix that is zero except
for the upper right-hand off-diagonal entry (this is the Jordan normal form of A to within
scaling). Hence, the flows we are considering here are, on averaging, those of pure shear
with u* =2E 1,ye1 for a suitable choice of orthonormal basis, and we have E7, #0 as
A=0.

For swimmers that asymptote to a fixed angle, the presence of pure shear results in
infinite drift in the e; direction, parallel to the flow, that increases quadratically in time in
general. This arises from the fact that the dominant term in the e; direction for # > ¢, > 1
(sufficiently large) is approximately

t
[/ I+ A(t — ) ds] C (sin 26y, cos 26y, sin Hy, cos Hp)

1y Go=60(c0)
t * » ~ B ~
= [/ |:1 2E (= S)] ds] C (sin 20y, cos 26y, sin 0y, cos Bp)|. .
r L0 1 fo=bo(o0)
ord (tz)
[ord ) i| . (5.13)

Finally, we note that a tumbling swimmer’s trajectory will drift in the e direction in all
but edge cases due to the

K(H)xo(t =0) = (I+ A)xo(t =0) (5.14)

term. However, it will not drift in the e, direction. In particular, given the swimmer is
tumbling and noting e32T A =0, we have that its location in the e; direction is given by

e, Xo(t) = e, Xo(t =0)

t
+e) / (14 A(r — 5))C(sin 20p(s), cos 28y (s), sin Gy (s), cos Ay (s)) ds,
’ (5.15q)

t
= eszo(t =0)+ / ezTC(sin 260 (s), cos 200 (s), sin Gy (s), cos Gy (s)) ds.
0
(5.15b)
The integral above is the second component of those occurring in (5.7) for a tumbling
swimmer, as considered in (5.8) and (5.9), and, thus, by an inheritance of this analysis we

can deduce that there is no drift in the e; direction for a tumbling swimmer in a flow that
is pure shear and non-trivial after time averaging.
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5.3. Oscillatory temporal dynamics in the plane

The final class of translational dynamics to consider occurs if the average strain rate is
dominated by the rotation rate, such that

— —2
Ef +E}, <@, (5.16)

Neglecting edge cases, we first consider swimming in which a® < b2 + ¢2, so that there is
no tumbling and, hence, the swimmer tends to a fixed angle for large time (see § 4). Noting
from (3.45) that K(z) is periodic on the slow time scale with period 27 /u, where

— =2 =2
=@ - E, —EL), (5.17)
we have for ¢, sufficiently large
Xo(tx +2m /) — Xo(ts)

L2/ o - - -
~ f K(t,. — s) ds | C(sin 26y, cos 20y, sin 0y, cos 6p)|. . =0. (5.18)
L Ho="0p (c0)

The error in approximating 6y by its asymptote is exponentially small for large
time (see (3.16)) and, hence, these errors do not accumulate. Thus, the trajectory is
asymptotically periodic and bounded for large time. Furthermore, even with net motion
of the swimmer, so that at least one of V, 21y, or §2 1y, is not zero, the contribution of
the progressive swimming to the motion for ¢ > ¢, (with ¢, sufficiently large) is zero. For
example, when V > 0, the contribution to the motion for ¢ > ¢, that scales with Vcos ¥ is
(to within exponentially small errors) given by

t Ty
Vcos ¥ |:/ K(t —s)ds — f K(t, — ) ds] e10(00)
0 0

 VeosT <sin(m*) — sin(ut) N cos(ut) —zcos(,ut*)A) 210(00). (5.19)
0 n

with K as in (3.45). In particular, this contribution is oscillatory as ¢ increases. Directly
analogous and oscillatory results also hold for all terms involving

Vv VUCv VUS? QIUCa ‘QIUS (520)

In turn, this explicitly demonstrates that the progressive movement of the swimmer has
been converted to an oscillatory movement by the background flow.

In contrast, if the tumbling condition holds, that is a® > b% + ¢2, the dynamics will
involve the convolution of oscillations at the tumbling frequency and at the frequency
associated with the flow

—2 —2 —2
n=(2* —E}, —EL)HV (5.21)

Whether such dynamics induces oscillations or unbounded dynamics in the trajectory
at long time is contingent on whether or not there is resonance between the different
oscillatory contributions, though oscillations may be typically expected as resonance
requires parameter fine-tuning. Though general results in this case are less forthcoming,
we can examine special cases of (3.16) and (3.46) to yield additional insights, as we pursue
below.
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6. Bodies of revolution with fore-aft symmetry

While the analytical cases above considered relatively general bodies, emphasising the
ubiquity of the observations among different body shapes, the special cases below
are restricted to bodies of revolution that possess fore—aft symmetry, unless explicitly
stated otherwise. Hence, only —A,(T) = B(T'), the Bretherton parameter, is non-zero
for the interactions between the rate of strain and the swimmer dynamics in (2.17). In
addition, fore—aft symmetry implies that £2 s = £2 =0 and, hence, ¥ =sin ¥ =0, giving
the simplifications of (5.5).

With these restrictions and simplifications, the angular dynamics are given by (3.16)
with the additional reductions

aTZ‘Q*’ bJr=b¢=BETl Cf=Ci=—BET2, 6.1)

which arise from (3.1) and (3.10). For both clarity and the interested reader, the equations
of motion are explicitly simplified in Appendix C, where we have from (C11) that motion
in the e3 direction is trivial. The translational equation of motion in the flow plane
reduces to

dx T T* * * _
W _[ B B0 [VEEL  TEh 50a
A |EL+2F  —E] IucEh V- Ik,
A
+ (TucBEF, sin 280 — T BE], cos 200 é20(@o), 6.2)

and we have dropped the constant background flow contribution, u;,., without loss of
generality by the choice of inertial reference frame.

In this reduced yet still complex setting, we will explore swimmer behaviours in various
planar linear flows and demonstrate that simple dynamics emerge despite the level of
complexity remaining.

6.1. Rotational flow
A particularly simple case is that of rotational flow with non-zero mean, for which E}, =

E}, =0and 2% #0. In this regime, the tumbling condition of § 4 holds, with a = 2* #0
and b = ¢ =0, so that (3.16) reduces to

0o = 6o + 2%, (6.3)
where 8yy = 8o(t = 0). Further, with Xo = e - X0, Yo = e2 + Xo, we have
dx — _ dyy,  — _

d—t" = — 527y + V cos B, % — 2% + V sin f. (6.4)

Hence, if there is no intrinsic net swimming (V = 0), the overall motion is that of simple
harmonic oscillations, with

G + 5% =0 6.5)

and, thus, there is no net motion on the long time scale for non-progressive swimmers with

this level of symmetry in purely rotational flow.
For V # 0, we instead have the dynamics of a forced oscillator, with

d*xo — . — _ 1 —  dxo
d7+9* = -2V 2*sin (900+Q*t) , Yo = ﬁ |:V COS 90— ?] y (66)
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which generates resonance with no parameter fine-tuning beyond that needed to force
a purely rotational flow. Thus, for purely rotational flow and even slightly progressive
swimmers, we conclude that swimmer motility generates a resonant oscillation, so that the
swimmer distance from the origin scales linearly with time. Recovering additional general-
ity by reinstating the shape parameters A5, 172, 3 and 14 does not change these observation-
s, as they enter the equations of motion through the rate of strain tensor, which here is zero.
However, if we relax the constraint of fore—aft symmetry and allow the swimmer to
generate a slow time scale rotation £2 # 0, thena = 2 + 2* # 2*. In turn, (6.3) no longer
holds and the corresponding forcing in (6.6) is modified to a term scaling with sin(6po +
at). Thus, the swimmer oscillates and resonance does not occur, demonstrating that an
element of fine tuning (i.e. perfect fore—aft symmetry) is indeed required for resonance.

6.2. Irrotational flow

For an irrotational flow with non-trivial mean, we have £2*=0, E T12 +E}, >0.
Recalling £2 =0 by fore—aft symmetry, we also have a =0 and, by (3.16), 6 tends to
a constant asymptote for large time. From (5.1) et seq., we have exponential dynamics
in the plane and, recognising the possible exception of edge cases, the swimmer drifts
off to spatial infinity. This long-time trajectory can be examined in more detail without
further loss of generality. As £2* =0, the matrix A of (6.2) is symmetric and, hence,
diagonalisable. Thus, with a suitable choice of laboratory basis, the equations of motion
in the plane of the flow in the long-time limit are given approximately by

%o _ (7 172 v . 2
o = (B +Ep ) Go+a), 0= ~(B7+EL) Go+B. 67)
where
— 5 172 172
o(B+EL) . —8(EL+EY) 6.8)

are the first and second components of the long-time limits of the other terms in (6.2).
Noting the opposing signs of the eigenvalues in (6.7), this explicitly demonstrates an
exponential drift to infinity in one direction accompanied by an exponential decay towards
a constant in the orthogonal direction. Further, we have

a5 _
Do _ _YotP (©9)
dxg X0+ o
and, hence,
v, = , 6.10
Yo+ B Tot (6.10)

where M is a constant of integration. Thus, independent of any further details, a swimmer
in such an irrotational flow moves along hyperbolae in the plane once initial transients have
decayed. Furthermore, noting the change of basis to bring the equation of motion into the
form of (6.7), the hyperbola asymptote is parallel to an eigenvector of the averaged rate of
strain tensor, E*. We showcase an example of asymptoting towards a hyperbola in figure 2,
and note that the long-time direction of motion of this swimmer is given by an eigenvector
of E*, in this case [(1 ++/5)/2, 1]".

Notably, these broad conclusions apply for both progressive and non-progressive
swimmers. They also apply if we relax many of our symmetry constraints (with the
exception of fore—aft reflection invariance), with these results holding for non-zero 12, 13,
na and As. The breaking of fore—aft symmetry, however, allows for self-induced rotation
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Figure 2. Exponential translational dynamics of a swimmer in irrotational oscillatory flow. (a) The temporal
evolution of swimmer position and orientation, highlighting long-time exponential growth of x and y and a
constant-average orientation 6. (b) The path of the swimmer from (x, y) = (0, 0) is shown in grey, which
exhibits large oscillations around an eventually hyperbolic trajectory. This hyperbola asymptotes to a line with
gradient 2/(1 4 /5), parallel to an eigenvector of the averaged rate of strain tensor E*. The leading-order
approximations to the average evolution are shown as black dashed lines, evidencing excellent agreement with
the full numerical solutions that expectedly lessens during the exponential translational motion. Here, we have
taken w =100 and set all swimmer and flow parameters to be zero apart from U(T) =0.1cos T, E ikl (T)=
0.2+sinT and E,(T) =0.4+sinT.

that has the potential to invalidate these conclusions, as we plausibly obtain a > 0 and lose
the asymptoting behaviour of the swimmer orientation.

6.3. Motility in stationary shear

The classical example of a stationary shear flow can be recovered by setting E}; =0 and
2% =—E}, #0 and constant, without loss of generality. In this case, (3.16) and (3.46)
entail that 3o and 6y decouple from X, with motion in the latter direction including an
inexorable drift in all but edge cases. Hence, we focus on the dynamics of yg and 6,
which here are governed by the reduced system

dyo

e —E}IyeB cos 0 cos 20y + V sin 6y, (6.11a)
do — -
< = —Eh (1= Beos20) (6.11b)

recalling that Iy, = 0. . B

We first consider the case with |B| < 1. Equation (6.115) immediately implies that 6
is periodic, which can also be seen in the general formalism of (3.13) and (3.16) by
setting a = —E%,, b=0, c=—E%B and g = (a® — b* — cA)!/2 = |[E%,|(1 - B)/2 > 0,
This dynamics corresponds precisely to that of planar Jeffery orbits (Jeffery 1922), as
generalised by Bretherton (1962) and identified in planar shape-changing swimmers by
Gaffney et al. (2022a).

We also have that yg is periodic, as can be deduced by observing that the system is
conservative, with

dH 0, H:=y /9—0 ! (I B W A Vo w) dyr
— =0, =y0 — _ coSs 1 cos — ——sin .
dr Yo 0 1—Bcos2y ve Eikz
(6.12)
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Figure 3. Systematically averaged dynamics of a reciprocal swimmer in stationary shear flow, a scenario
schematically illustrated in figure 1 with a depiction of 6, y. In the above, note that 6o, Y, are the fast time scale
averages of the leading-order approximations, that is 6p, yo, to the variables 6, y. In the above, we illustrate
the semiperiodic phase space that corresponds to a reciprocal swimmer in stationary shear flow, shown both as
dynamics on a cylinder and in the plane. We showcase three qualitatively distinct regimes: in (@) and (d), we
have (Iy.B, B) = (0, 0.5), leading to no motion at leading order; in (b) and (e), we have (Iy.B, B)=(1,0.5)
and long-time periodic motion; in (c) and (f), we have (Iy. B, B)=(1, 1.5) and progression. In (f), the dashed
lines correspond to stable states of the angular dynamics.

Thus, as H is constant, we have that yy is an integral of a smooth, bounded integrand with
periodic limits, up to an additive constant. Hence, yo is bounded and periodic for all time.
It inherits the period of 6y, which here is given by

2 2 2

q (a2—cHl2 IE%, (1 _BH12

(6.13)

in units of the slow time scale.

Now suppose that |B| > 1, a case that requires extreme shape elongation (Bretherton
1962). This gives rise to fundamentally different dynamics, with the swimmer no longer
tumbling. Instead, its angle asymptotes to a constant that, in turn, induces a drift to infinity
along the e; direction (perpendicular to the flow direction) for large time. This is even true
for reciprocal swimmers if Iy7. B 7 0. In other words, it is possible for a highly elongated
reciprocal swimmer with fore—aft symmetry to self-propel indefinitely across pathlines in a
stationary shear flow via the interaction between shear flow and the swimmer deformation.

The range of possible leading-order dynamics for a reciprocal swimmer (V =0) in
various flows is illustrated in figure 3, with figure 3(b,e) showcasing periodicity on a long
time scale Jeffery orbit. Non-trivial motility is highlighted in figure 3(c,f), in which the
reciprocal swimmer approaches a steady state of the angular dynamics and achieves net
propulsion across pathlines of the flow.
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6.4. Motility in oscillatory shear

A natural generalisation of stationary shear flow is oscillatory shear flow. For such a flow,
we have Ej; =0 and £2*(T) = —E7},(T) # 0, without loss of generality. The equations of
motion simplify to

dx _ - _ _ _

=2 =2E},¥o+ Efylue sinfo + EflycB sinfy cos 260 + V cosfp.  (6.14a)
Ao o

T E},Iyc cos by — Ef,y Iy B cos 6y cos 260 + V sin 6, (6.14b)
o, E},B _

2 =—FE5 [1- 222 cos 26y | (6.14¢)
di e

noting the appearance of an effective Bretherton parameter of EY,B/E}, in (6.14c).
Importantly, this quantity need not have magnitude less than unity, even if [B(T)| <1
for all T. Here, one could replace E}, with the usual simple shear rate y via the relation
y(T) :=—=2E},(T), corresponding to u* = —y (T')ye;, though we do not do so here.

Below, we only consider cases where the effective Bretherton parameter has a magnitude
greater than unity, noting that this does not necessitate the geometrical constraint of severe
elongation, though it does mean the angular dynamics is asymptoting. In this case, the
angular dynamics evolves to an asymptotically constant angle at large time. This holds
even if the average shear rate is zero (i.e. EY, = 0) but ET, B # 0, in which case we instead
have

&by —— -
y = E, B cos 20y (6.15)

and the angular dynamics evolves to an asymptotic state with cos 26y = 0.

For the moment, we assume that EY, #0 and define C = E},/E},B € [—1, 1] as the
reciprocal of the effective Bretherton parameter, the long-time asymptote for cos 26y. We
also assume that the long time asymptote is a stable equilibrium and, thus, exclude edge
cases of an initial condition at an unstable equilibrium for 6. We then have that the long-
time asymptote for 6 is either in the interval 6y € (0, 7r/2) or the interval 6y € (7, 37/2)
and, thus, the signs of sin 6y and cos 6y are the same for the long-time asymptote. With
this, we have

A:= (Ef,1yc sin 0o+ E,IycB sin 09 cos 200 + V cos bp) e (6.16a)
cos 26p=
[ JT=C VJI+C |
i ve (Eflue + EflucBC) + =5 | (6.16b)
B:= (E},Iy. cos 0y — E,IycB cos 0o cos 26y + V sin 6) ) (6.16¢)
cos 26p=C
V1+C VJ1-C
=+ | (Eflue — EflucBC) + =5 | (6.16d)
In turn, for large time, we have
dy, B
dxo  A+2E}7
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Neglecting the asymptotically small errors in this approximation, one may integrate to give

Bxo =K + Ay + E 3, (6.18)

where IC is a constant. Thus, excluding possible edge cases, the long-time swimmer
trajectories are parabolic, regardless of the details of the flow and the swimming. One such
edge case is B =0, which gives the limiting case of a line of constant Yy, for instance.

Finally, for the case where there is no net shear, we have E Tz =0 and assume that

E7, B # 0. Here, the trajectory is also linear, even though naive averaging would predict
that the reciprocal swimmer has no net motion. In particular, we have C =0 and A = 5,
regardless of whether V =0 or V # 0. Then we have

dyo

~ 1, 6.19
N (6.19)

so that the trajectories are simply straight lines of unit gradient, independent of the
details of the flow, swimmer and initial conditions, at least once the angular dynamics is
asymptoting. Example such trajectories are shown for reciprocal swimmers in figure 4(b),
with the associated angular dynamics illustrated in figure 4(c). This highlights two explicit
examples of reciprocal swimmers in a zero-mean oscillating shear swimming across
pathlines, breaking Purcell’s scallop theorem. Notably, extensive swimmer elongation is
not required to be in this dynamical regime.

7. Discussion and conclusions

We have considered swimmers that are characterised by a separation of time scales,
with motility driven by fast time scale processes such as swimmer treadmilling and
shape changes. These drivers are independent of the background flow and induce motility
associated with a slower time scale, as frequently observed (Smith et al. 2009; Curtis
& Gaffney 2013; Ishimoto & Gaffney 2014; Pak & Lauga 2015). The swimmer may
also induce its own rotation on the fast time scale, though we have assumed a degree
of symmetry throughout the motion. In particular, the swimmer is assumed to possess
helicoidal symmetry together with additional symmetries associated with reflection planes
or rotation axes. These symmetries are summarised in § 2.2, with the simplest case
corresponding to a body of revolution and fore—aft symmetry.

Within this framework, we have derived the equations of motion for both the swimmer
translational and angular motility, making use of multiscale asymptotic methods that
exploit the ratio of time scales to generate simplified equations for the leading-order
dynamics on the slow time scale. As expected, given the restrictions imposed on the
swimmer, any motion perpendicular to the plane of the flow decouples and we essentially
neglect this trivial aspect of the flow. The angular dynamics and the planar translation
dynamics are given by a rapid periodic oscillation induced by the swimmer activity,
superimposed with angular changes and trajectories that evolve on the slow time scale.

The full system of governing equations is intricate, involving the large number of
variables and parameters summarised in tables 1 and 2. In analysing the slow dynamics,
however, it is clear that the resulting motion can be extensively characterised by only two
groups of variables, whose roles we have identified systematically. These are

—2
a? 2%

Wior := m and  Wygpg := 5 (7.1)

—)
Ef, +E}
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Figure 4. Behaviours of reciprocal swimmers (V =0) in unsteady shear flow with zero average shear. (a)
An illustration of the oscillatory flow field. (b) Swimmer trajectories within the oscillatory shear, with the
associated angular dynamics and parameters shown in (c¢). The fast time scale oscillations are clearly visible,
as well as the emergent long time behaviours, which can include net motion across pathlines despite reciprocal
swimming. The numerical solution of the effective governing equations of (6.14) is shown for two parameter
sets as black dashed curves, demonstrating excellent agreement with the average behaviour of the full system. In
all cases, the orientation # asymptotes to a root of cos 26, here 7 /4, and the gradient of the swimmer trajectory
asymptotes to unity, as predicted by the asymptotic analysis. Note that only two curves are visible in (c), as two
parameter sets have identical averaged angular dynamics. These are universal predictions for swimmers with
sufficient symmetry (such as maintaining a shape that is always a body of revolution with fore—aft symmetry).

which describe the swimming activity and the background flow in turn. Here, a is the fast
time scale average of the angular velocity of the swimmer and the background flow, while
b* + ¢? measures the impact of the fast time scale average of the fluid rate of strain on

— —2
the swimmer’s angular dynamics. Similarly, £2* is the fluid angular velocity and (E o+

E T22)1/ 2 is a measure of the rate of strain, both averaged over the fast time scale. Hence,
the behaviour of the system is characterised by whether or not angular velocity dominates
the impact of rate of strain for both the swimmer and the fluid.

We graphically summarise the key roles of these effective parameters in figure 5,
highlighting a markedly simple classification of the long-time dynamics (excluding edge
cases). Note that the angular dynamics conditionally reduces to that of a generalised planar
Jeffery orbit, linking the angular dynamics to previous investigations, especially Jeffery
(1922) and Bretherton (1962). In particular, whether the swimmer asymptotes to a fixed
angle of swimming or endlessly tumbles on a generalised planar Jeffery orbit depends
only on Wy, which can in turn depend strongly on the level of swimmer symmetry and
the background flow. Hence, determining the angular dynamics of a swimmer involves
detailed knowledge of both the swimmer and the background flow. In contrast, the
character of the translational motion depends only on the flow and not on the properties
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Exponential position Oscillating position

Jeffery’s orbit Jeffery’s orbit

Exponential position Oscillating position

Asymptoting orientation Asymptoting orientation

VVtrans

Figure 5. Long-time swimmer behaviours are a function of two effective parameters, defined in (7.1). One
parameter, Wy,4,s, depends only on the properties of the background flow and governs the translational
dynamics; the other, W,,, determines the orientational dynamics and depends on both the swimmer and the
flow. Stationary shear flows fall on the line Wy,,,s = 1, whilst flows that are irrotational on average (such as pure
strain) correspond to W,,, = 0. This diagram neglects mathematically precise edge cases, which are considered
thoroughly in §§ 4 and 5. Important special cases of resonance for Wy,s and W,,; > 1 and the dynamics for
the Wyuns = 1 are also considered in table 3.

of the swimmer, splitting into trajectories that are exponential, oscillatory or linear in time
based on the value of Wy, In combination, these observations of angular dynamics and
motility can extensively inform qualitative features of the swimmer trajectory. This ability
to extensively classify the behaviours of a swimmer via only a two-dimensional (2-D)
parameter space is much simpler than one might initially anticipate. A detailed summary
of these behaviours, including some subcases, is presented in table 3, with examples
of translational dynamics in each case shown in figure 6. We highlight that knowledge
of the time-dependent shape parameters and self-induced velocities is key to applying
the results of this study. To the best of our knowledge, these functions are unknown
(but can in principle be calculated) for all but one microswimmer (Chlamydomonas
reinhardtii (Omori et al. 2022)). Hence, in order to apply this understanding of swimmers
in flows, a broad, classifying study of microswimmer shape and swimming profiles is
warranted.

One can also immediately note instances where the interaction of the swimmer with
the background flow can induce progressive motion even for reciprocal swimming, where
no net motion is generated in the absence of background flow. This occurs with motion
across pathlines for the linear, zero-mean oscillatory flows and shear flows of § 5.2 if the
swimmer acquires a fixed angle at long time, as further illustrated for the special cases
with an oscillating shear flow. Thus, the interaction of the swimmer with a background
flow provides another means to break Purcell’s scallop theorem that supplements other
mechanisms, such as the introduction of viscoelasticity or inertia (Lauga 2007, 2011; Qiu,
Lee & Mark 2014; Derr et al. 2022). Conversely, the characterisation of the swimmer also
highlights when progressive swimming can be converted to oscillatory trajectories by the
background flow, in particular for the linear zero-mean oscillatory flows of § 5.2, where
the swimmer tumbles.

As well as these general considerations, special cases of the dynamics for these
swimmers in planar flows were considered, restricting attention to specific background
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Angular Translational Trajectories and observations

dynamics dynamics

Asymptoting Exponential The trajectory drifts to infinity at an exponential rate in the slow

or tumbling Wians < 1 time scale once the average background flow strain rate dominates
the average angular velocity, independent of the swimmer details.
See figure 6(a).

Asymptoting Oscillating The long-time swimmer trajectory is an oscillation on the slow

—2 2 =2
Wror < 1 Wirans > 1 time scale of period 271/(9*2 —Ej, —E}, Y172, Progressive

swimmer motion is converted to oscillatory motion by the
background flow, independent of the swimmer details. See

figure 6(b).
Tumbling Oscillating Whether the long-time dynamics is oscillatory or unbounded
Wit > 1 Wians > 1 depends on whether resonance occurs. Resonance can require

parameter fine-tuning, but not always, e.g. a body of revolution
with fore—aft symmetry in a rotational background flow. See

figure 6(c).
Asymptoting Linear, A=0, Trivial background flow is excluded. The swimmer will drift to
Wit < 1 Wirans = 1 infinity linearly in time if the net swimming speed V is non-zero.

Infinite drift can also occur even if there is only reciprocal
swimming, highlighting that Purcell’s theorem can be broken by
a zero-mean oscillatory flow. See figure 6(d).

Tumbling Linear, A=0, The swimmer does not drift to infinity, independent of the

Wior > 1 Wirans = 1 swimmer details, except fore—aft asymmetry is necessary to
satisfy the tumbling condition. See figure 6(e).

Asymptoting Linear, A#0, These flows are equivalent to a shear flow. The swimmer will drift

Wiot < 1 A2=0, Wygns =1 to infinity, with even reciprocal swimming capable of generating

motion perpendicular to the pathlines, breaking Purcell’s
theorem. See figure 6(f).
Tumbling Linear, A# 0, These flows are equivalent to a shear flow. The swimmer will drift
Wior > 1 A2=0, Wy =1 to infinity along the pathlines but will not drift indefinitely
perpendicular to the pathlines, independent of the swimmer
details. See figure 6(g).

Table 3. A summary of swimmer behaviours in planar linear background flows. Edge cases, where parameter
fine tuning leads to behaviours distinct from the more general cases, are not summarised here. Examples of
corresponding swimming trajectories are shown in figure 6.

flows and highly symmetrical swimmers. Our first example considered a rotational flow,
where tumbling is observed for the symmetric swimmer considered. In turn, this induced
resonance once the swimmer had a non-zero net swimming speed (V #0). This also
demonstrates that swimmer motility need not be converted to oscillations for sufficiently
symmetric swimmers in rotating flows. Nonetheless, it is possible for the swimmer to enter
the regime of an asymptoting angle despite the presence of a rotational background flow.
For example, it may break fore—aft symmetry to rotate in the opposite direction to the
background flow angular velocity. Then, in this regime, progressive motility is converted
to oscillation (e.g. table 3). Hence, we can observe that, despite numerous observations
in table 3 being independent of the details of the swimmer, aspects of inertialess motility
in background flows can be sensitive to the details of the swimming gait. For instance,
the gait may allow passage between the different types of behaviour in parameter space
associated with the parameter groupings of (7.1).

For irrotational flows with a highly symmetric swimmer, we observe that the swimmer
has an asymptoting angle for large time and the long-time trajectory forms a hyperbola
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(a) (b)

(©) (d)
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Figure 6. Example trajectories in the flow plane corresponding to the cases described in table 3, illustrating
the variety of possible translational behaviours. Rapid oscillations and emergent long-time behaviours can be
seen in all panels. Panels (a)—(g) correspond to rows 1-7 of table 3. Axes are scaled independently for visual
clarity and all cases shown are reciprocal swimmers (V = 0) with w = 50. In (g), the observed net motion is
along vertical flow pathlines.
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in the plane of the flow. Furthermore, the observation of hyperbolic trajectories is robust
to many features of the swimmer, though this can be disrupted by the introduction of a
sufficiently large average angular velocity, §2(7T'), induced by the swimmer in the absence
of a background flow, which requires a fore—aft symmetry breaking of the swimmer.

In shear flows, there is in general a drift in the direction of fluid flow, but motility
across pathlines is also possible. For stationary shear and a highly symmetric swimmer,
this can only occur with extensive swimmer elongation, as such dynamics requires that

the Bretherton parameter B satisfies B 1. Otherwise, the dynamics across pathlines is
oscillatory. In contrast, for background shear flows that have an oscillating contribution,
such extreme elongation need not be required for indefinite drift across pathlines. More
generally, for highly symmetric swimmers that do not tumble, the long-time trajectory is
in the shape of a parabola, except for edge cases. Furthermore, if the mean shear flow is
zero for a highly symmetric non-tumbling swimmer, the trajectory reduces to a line with
unit gradient (given one axis is aligned along the direction of the flow and the convention
of figure 1). The latter is one of many examples of the previously known observation that a
priori averaging, that is the averaging of oscillations without considering the details of the
particular model, can generate incorrect results, as reported for example by Walker et al.
(2021, 2023).

While swimmers in shear flow have been subject to extensive study, for instance by
Karp-Boss, Boss & Jumars (2000), Hope et al. (2016b), Gaffney et al. (2022a) and Walker
et al. (2022a), we see that swimmer behaviour in a pure steady shear flow truly is a
special case. The introduction of oscillations can fundamentally change the character of
swimmer behaviour, leading to parabolic trajectories emerging. Similarly, small changes to
the background flow can extensively change the swimmer behaviour. For example, a small
change in the flow so that the flow angular velocity dominates the rate of strain (if only
weakly) induces an oscillatory motion of a non-tumbling swimmer rather than a drifting
motion. In contrast, if the small change is such that the rate of strain dominates then there
is a drift to infinity, as may be inferred from the summaries of figure 5 or table 3.

This raises the question of how further changes in the flow influence swimmer dynamics.
A pertinent question concerns rheotaxis, which has been observed and predicted for
swimmers in a Poiseuille flow (Omori et al. 2022; Walker et al. 2022b) and sperm cells
under relatively general circumstances, for instance swimming in shear flows (Miki &
Clapham 2013; Kantsler et al. 2014; Ishimoto & Gaffney 2015), as well as predicted for
squirmers close to a no-slip wall (Uspal et al. 2015; Ishimoto 2017). These observations,
however, do not fall into the remit of the analysis presented here in that they involve a
reorientation in the swimming plane, perpendicular to e3 = €3, due to a flow that varies in
the e3 direction, while we have only considered flows that are in the swimming plane and
not perpendicular to it, except for the trivial case of a constant flow in this direction. Hence,
such observations do not contradict the observation here that, at leading order in 1/w, no
predictions of rheotaxis have emerged for a swimmer in a plane in response to a linear flow
restricted to the same plane. The absence of rheotaxis is illustrated by the hyperbola and
the parabola of (6.10) and (6.18) in special cases, for example, and is also apparent from the
prediction that the final swimming direction angle for an asymptoting swimmer depends
on the initial swimming direction, as may be inferred from (3.16). The consideration
of nonlinear flows, surfaces and spatially non-constant flow angular velocities and rates
of strain are further pertinent examples left for future work. In particular, such features
may induce behaviours profoundly different from those observed here, with one example
concerning angular rocking back and forth, which is not present in the scope of the
dynamics considered here, but nonetheless has been observed in the oscillating rheotaxis
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of artificial swimmers in response to Poiseuille flows within small microchannels (Dey
et al. 2022).

Since individual dynamics often feature in the construction of population models for
swimmers (Ezhilan er al. 2013; Saintillan & Shelley 2013; Junot et al. 2019), this study
also offers the prospect of facilitating the development of collective swimmer models in
more general background flows than has typically been considered. Furthermore, given
the classification of swimmer behaviours, one can also consider how one may control
a swimmer (or mobile microrobot) in a background flow, assuming that it cannot swim
with sufficient speed to render the background flow as a small perturbation that can be
ignored in terms of navigation. In particular, manipulating the swimmer cannot control
the trichotomy of the translational dynamics (into those of exponential, oscillating and
linear character) as these depend only on the background flow. However, the swimmer
can always, at least in principle, be switched from tumbling to asymptoting in its
angular behaviour, for instance by controlling its self-induced rotation £2(7). While
such switching does not have an impact on the exponential translation case, switching
to tumbling angular dynamics in the case of linear translation increases the prospect of
localised trajectories rather than drifting, with potentially the opposite for oscillating flows
if a resonance occurs in the latter case with tumbling, as again may be inferred from table 3.

A final direction concerns the extent to which this study generalises on relaxing the
swimmer symmetry restrictions of § 2.3, which are further documented in Appendix B.
This is an open question. Further progress may possibly be feasible using a generic
approach, such as that of Gaffney et al. (2022b). However, some restriction is likely
to be required for progress, as the more general case couples in-plane and out-of-plane
dynamics. One less-symmetric instance where it might nonetheless be possible to make
further progress concerns swimmers whose shapes throughout the gait cycle have only two
planes of symmetry, as studied by Thorp & Lister (2019). However, assessing the extent
to which, and how, the results presented here may extend to less symmetric swimmers
requires detailed investigation and is beyond the scope of the present study. Similarly, an
investigation of the role of stochastic effects would also be pertinent, especially given the
observed effects of noise on passive Jeffery orbits (Talbot ez al. 2024).

In summary, the equations of motion for a swimmer possessing modest spatial
symmetry in a linear planar background flow have been derived using the assumption
of inefficiency. That is, we have assumed that the swimmer’s net motion is much slower
than the deformations and treadmilling required to generate its motion, noting that this
is commonplace in microswimming. The resulting solutions allow for a classification of
swimmer behaviour based on just two key parameters, W,,; and Wy, of (7.1), which
measure the ratio of the background flow angular velocity to rate of strain, and the
ratio of the swimmer and flow angular velocity to the swimmer’s interaction with the
flow rate of strain. Thus, via this multiscale analysis, we have demonstrated that this
complex system can be extensively understood in terms of only two degrees of freedom.
Furthermore, the present study highlights the need both for detailed measurement of
time-dependent swimmer properties and careful averaging in analysing the equations of
motion, whilst observing that the interactions between a swimmer and a background flow
can provide a further mechanism for circumventing Purcell’s scallop theorem. Common,
nearly universal behaviours are also predicted, such as long-time parabolic trajectories for
swimmers in oscillatory shear flows. Furthermore, the examples considered here highlight
when swimmer navigation in background flows is futile, together with when and how the
swimmer is capable of switching from localised trajectories to inexorable drift, or vice
versa, enabling an element of rational control over swimmer and microrobot movement in
linear background flows.
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Appendix A. Deriving the governing equations

Here, we derive the governing equations for the translation and rotation of shape changing
and treadmilling swimmers in time-dependent planar linear background flows, assuming
that the swimmer moves in the plane of the flow and with sufficient swimmer symmetry,
as detailed in § 2.3, to ensure a relatively simple generalisation of idealised models. We
first reduce the problem to that of treating the swimmer at a fixed time as a rigid particle,
enabling rigid particle methods, such as that presented in the appendices of Dalwadi et al.
(2024D).

We inherit the notation of the main text, for example with x = xe + ye> + zes3 denoting
the position of a point relative to the laboratory-frame basis, {e1, e2, e3}, while {€1, &>, €3}
denotes the swimmer frame basis, with origin at x., the swimmer centroid. Hence,

e1 =cosfe; +sinfe;, e,=—sinbe; +cosber, é3=es3, (AD)

and the background flow field is given by
w*x,T)=u;(T)+ *(T) Ax + E*(T)x (A2a)
=u; +2°(T)N(x —xc) + E*(T)(x —x,), (A2b)
where T = ot is the fast time scale, u}.(T) denotes the spatially constant translational
aspect of the background flow. Here, E*(T) and 2*(T) denote the rate of strain and
angular velocity, respectively, which are spatially constant by flow linearity. Below, we

use u) =u*(x.(t, T), T) to denote the background flow at the swimmer centroid if the
swimmer was absent from the domain.

A.l. Model mechanics and the grand mobility tensor

With u denoting the velocity vector field of the flow including the swimmer, in contrast
to the background flow u* which excludes the swimmer, we have that the fundamental
equations for the displacement flow, u% =u — u*, with disturbance pressure p?r are
given by

Vphr =v2udr, V.ulr =0, (A3)

exterior to the particle with decay boundary conditions at spatial infinity. Noting that the
swimmer shape deformations and treadmilling are independent of the external flow, the
boundary conditions for # on the swimmer surface, x € d A, are given by

u(x)=uS(x, T)+ U(T, u*) + (T, u*) A (x —x.) —u*(x, T), (Ada)
=uS(x, T)+ [U(T, u*) — u}]
+[2(T, u*) — X(T)| A (x —xc) — E*(T)(x — x¢). (A4D)

Here, x. =x.(¢, T) is the location of the swimmer centroid and u} =u}(x.(t,T), T)
is the background flow at the swimmer centroid. In addition, u’s (x, T) is the surface
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velocity, accommodating shape-shifting and tread-milling, which is 2w -periodic in T,
while U(T, u*) denotes the swimming speed of the particle in the background flow, u*,
at time 7. Also, £2(T, u*) denotes the angular velocity of the body fixed frame relative to
the inertial frame in the background flow, u™(x, T).

As the linear velocity and angular velocity are six degrees of freedom in the unknowns,
six further constraints are required; assuming the swimmer is not also being driven by an
external forcing, such as a magnetic field, these are no net force and torque, that is

/ a-ndS:/ (x—x)AN0-ndS=0, (AS5)
aA aA

where n is the normal, defined to point out of the fluid domain, and
o =—piI+ (Vu¥ + (Vuir)T) (A6)

is the Cauchy stress. A pressure gauge condition is also required to pin the translational
freedom in the pressure p > p% 4 constant.

We decompose the disturbance problem, (A3) to (AS), into two auxiliary problems for
the pressure and velocity fields (p?', ut) and (p92, u2), respectively. The first auxiliary
problem is for the swimmer shape at fixed time 7', with the shape pinned within quiescent
fluid without the freedom to translate or rotate, but nonetheless undergoing the shape
shifting and treadmilling surface changes. Thus, the bulk equations, (A3), are inherited as
are the decay boundary conditions at spatial infinity, but the velocity boundary condition
becomes

u =uS(x,T), xecdA. (A7)

Given a pressure gauge fixing, no further force or torque constraints are required, as the
constraints are now the absence of translation and rotation. Let F(T') define the force
required to be imposed on the particle (for example by microtweezers in practice) to
enforce these constraints, and analogously for T'(T). The net force and torque on the
particle must be zero in the inertialess limit and, hence,

/ o™ -ndS+ F(T)=0, / (x —x) Ao ndS+T(T)=0. (A8)
A 3 fya

The second auxiliary problem similarly inherits the bulk Stokes equations, (A3), the
decay boundary conditions at spatial infinity and the pressure gauge condition. However,
with fixed ¢, T, the velocity boundary condition is taken to be

u®(x)=[U(T, u*) —uf] + [2(T, u*) — (D] A (x —xc) — E*(T)(x — x),
(A9)
where U (T, u*) is the a priori unknown translation speed of the particle in the background
flow at this instant for this problem, and 2 (T, u*) is the a priori unknown angular velocity
of the swimmer frame relative to the inertial frame in the background flow for this problem.
The six additional constraints are taken to be

/ad2-ndS=F(T), /(x—xc)/\ad2-ndS=T(t), (A10)
oA A

so that (p + p%2, u® + u2) provide a solution of the original problem, which is unique
given pressure gauge fixing and, thus, this is the solution. Hence, U (T, u*) and (7T, u™)
in the solution of the above second auxiliary problem are also the swimming speed and
angular velocity of the shape shifting and tread-milling swimmer in the background flow.
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Note that, in the second auxiliary problem, the velocity boundary condition is that of a
rigid particle, with an unknown net force and an unknown net torque prescribed, which can
be framed in the setting of the ‘grand mobility tensor’ framework of Kim & Karrila (2005).
In particular, we proceed by first considering the behaviour of the swimmer in a quiescent
fluid, before then investigating the swimmer dynamics in the background flow, under the
assumption that the shape-shifting and tread-milling are unchanged in the presence or
absence of the background flow.

In the absence of a background flow, u’ = 2* =0, E* =0 and the surface velocity
uS(T) induce a swimming speed U (T, 0) and angular velocity $2 (7, 0). In the framework
of the grand mobility tensor of Kim & Karrila (2005) for the second auxiliary problem,
with a trivial background flow, we have at time T that

~U(T, 0] [AT bT) g0 [FT)
—R(T,0) |=|bT) eT) hT) || T |, (A11)
S 9Ty hT) mT ][ 0

where the T-dependent block entries of the grand mobility tensor relate the force, F(T),
to the velocity of the particle in a quiescent field. While not used here, S denotes the
stresslet associated with the particle motion. Reinstating the background flow with the
shape shifting and treadmilling assumed unchanged, so that F(T), T (T) and the grand
mobility tensor associated with the second auxiliary problem are invariant with the change
of external flow, the analogous Kim & Karrila (2005) relation with a background flow is
given by

*—U(T,u") A(T) b(T) g(T)7] [F(T)
QF—T,u") |=|bT) 1) hT) ||TD ]|, (A12)
s* g(r) hT) mT)] | E*

where S* denotes the stresslet associated with the particle motion in the planar,
background flow.

A.2. The swimmer velocity and the governing equations

The objective is to use (All) and (A12) to determine U(T, u*) and (T, u*), thus
yielding the equation of motion. This requires us to specify U (7T, 0), the linear velocity of
the swimmer in the absence of flow, and $2(T, 0), the angular velocity of the swimmer
in the absence of flow. The linear velocity scales with the frequency of the shape
deformations and treadmilling by the linearity of Stokes flow and the fact that time is
simply a parameter in the absence of temporal derivatives. Thus, we can write the velocity
of the swimmer for #* = 0 in the form

U(T,0)=wU(T)e; +wV¥e, (A13)

where @ >> 1 is the scale of the swimmer deformation speed relative to the background
flow speed, wV* is the average speed along the body axis and U(T) is the swimmer
oscillatory speed, along its swimming direction, ;. The latter averages to zero over a
period, taken to be 27 without loss of generality.

While o|V*| ~wsupy |U(T)| has been considered in previous analytically based
multiple time scale studies of swimmers in background flow (Walker et al. 2022b),
many swimmers are inefficient and have small net swimming speeds compared with
the velocity of oscillatory motions, or even a zero net-swimming speed in the case of
reciprocal swimmers. This separation of scales is observed for many theoretical swimmers
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(Curtis & Gaffney 2013; Ishimoto & Gaffney 2014; Pak & Lauga 2015), with the three-
link swimmer an extreme example (Curtis & Gaffney 2013), while it also observed for
biological microswimmers. For example, considering the experimental observations of
sperm in Smith et al. (2009), and restricting attention to the effectively Newtonian, low-
viscosity medium, the progressive velocity of the cell is 62ums™!, while its flagellar
wavespeed is 920pm s~

Hence, we consider scales where

w|V¥| < wsup |U(T)|. (A14)
T

For many cases, w|V*| « 1 is not of interest, as the swimmer will be washed out
by the background flow, noting the latter has an ord(1) velocity scale by the non-
dimensionalisation. However, analysing whether Purcell’s scallop theorem generalises
to include swimmer-flow interactions specifically concerns reciprocal swimmers with
V* =0, so this case is also investigated in the main text. We also impose the restriction
that w|V*| % 1, so that there is a substantive interaction between the swimmer and the
flow, rather than the swimmer being only weakly perturbed by the flow. Hence, we have

U(T,0)=wU(T)e1 + Ve, |V|~O0 (sup |U(T)|> ~0(1). (A15)
T

We additionally note that any corrections at higher powers of 1/w < 1 will not feature
in the equations once the multiple scales approximation has been taken. Then, with use
of (A1l) to eliminate F(T) and T (T), we have from (A12) that the governing equations
for the particle velocity and angular velocity in the shear flow are given by

¢

dt

Considering the angular dynamics, the restriction to planar dynamics ensures that we
can write

Q(T,u*)=0es=0e3, R*(T)=R*(T)e;, R(T,0)=(T,0)és. (A17)

=U(T,u*)=ul+woU(T)e, + Ve —gE™. (Al6)

The term 2 (T, 0) represents the angular velocity induced by the shape deformation when
the swimmer is not in a background flow. As these deformations may be on the fast time
scale, we can write

(T, 0) =w2;(T) + 2(T), (A18)

where £2 ¢ (T) is the zero-mean angular velocity on the fast time scale and $2(T') is the first
correction in the expansion of £2(7, 0) in powers of 1/w < 1. In particular, we maintain
generality by including the possibility of a contribution at ord(1), analogously to the
inefficient contribution to translation motion. Similarly, contributions at higher orders of
1/w < 1 do not contribute once the multiple scales approximation has been imposed.

Noting the memoryless property of Stokes flow, both §2/(T), £2(T) inherit the
periodicity of the shape deformation and, thus, are both 27 -periodic. Then, eliminating
F(T) and T (T) analogously to the derivation of (A16), we have

fe3 =063 =R(T,u*)=R2*(T)+ 2(T, 0) — hE* (A19q)
= Q*(T)es + (027 (T) 4+ 2(T)]é; — hE*. (A19b)

Noting the assumption of planarity used in the above, we also require hE* to be parallel to
e3 = e3. While not assured for general particle shapes, this is guaranteed by only relatively
weak symmetry constraints on the swimmer (which must apply throughout its entire

1022 A13-39


https://doi.org/10.1017/jfm.2025.10765

https://doi.org/10.1017/jfm.2025.10765 Published online by Cambridge University Press

E.A. Gaffney, K. Ishimoto and B.J. Walker

deformation), such as those detailed in § 2.3 and Appendix B. Finally, while rotation out
of the plane of flow is not admissible, translation perpendicular to the plane of flow (with
the symmetry broken by the swimmer shape) can be accommodated, so that we do not
a priori require that —gE* has no component perpendicular to the flow plane. In §2.3,
we simplify —hE* and —gE* and proceed to explore the resulting equations of motion.
Finally, in the main text around (3.23), we note that inefficiency forces a further constraint,
in particular that the combination of fast rotational oscillations and fast (but zero-average)
translational dynamics do not interact to produce a net fast swimming speed.

Appendix B. Admissible swimmer shapes

Here, we describe various classes of swimmer shapes that are admissible within the
framework of this manuscript.

B.1. The Cy,, bodies

These are swimmer shapes that, for all times of the gait cycle, possess a helicoidal
symmetry of degree n > 3 along with n reflection planes containing the helicoidal axis.
For such bodies, we have

m=0, =-B, a5, m3, n4#0 (B1)
for n = 3, while for n > 4 we have
As=n=0, A=-—B, n3, ng#0. (B2)

B.2. The Cyy, bodies

These swimmers are a subset of C,,,, bodies and possess an additional reflection symmetry
perpendicular to the helicoidal axis, i.e. a fore—aft symmetry. With this, we have

QiT)=2(T)=As=m=n3=0, AL=-B, n#0 (B3)
for n = 3, while for n > 4 we have
QT)=82(T)=As=m=nm3=n4=0, AL=-B#0. (B4)

Note that the fore—aft symmetry of such swimmers also entails that the angular velocity in
the absence of flow must be zero, as this would otherwise break fore—aft symmetry. Hence,
we also have 2 ¢(T) = £2(T) = 0 for these swimmers.

B.3. The D,, bodies

This class of bodies includes swimmer shapes that, for all times of the gait cycle, possess
a helicoidal symmetry of degree n > 4. In addition, they possess dihedral symmetry
associated with n-axes perpendicular to the helicoidal axis, around which a rotation of
7 leaves the body invariant. Then, we have

As=n3=0, AL =-—B, n,ns#0. (BS)

B.4. The D, bodies

These swimmers are a subset of D,, bodies and additionally possess a reflection symmetry
perpendicular to the helicoidal axis, that is a fore—aft symmetry. Then we have

M) =2(T)=As=m=nm3=0, A=-B,n#0. (B6)
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B.5. Bodies of revolution

Swimmers that are bodies of revolution satisfy the symmetries of both the D, and Cp,

(n > 4) bodies and, when possessing additional fore—aft symmetry, the symmetries of both

the D, and Cyj, (n > 4) bodies. In general, however, there are no further simplifications.
Thus, we have the translational equation of motion

dx. " ~ ~ ~ . . ~
” =u, +wlU(T)e1 + Ve —m(T)E}(T, sin 20, cos 20)e3
+ n3(T)Bo(T, sin 20, cos 20)é| — 774(T)E§‘2(T, sin 20, cos 20)e;, (B7)
with
Bo(T sin 26, cos 20) = E*(T) — [Efy(T) cos 20 + E}y(T) sin20] (ere] +eze] )
(B8)
in this case. Analogously, the angular equation of motion simplifies to
de
m =02%T)+ w82 (T) + 2(T) + [/15(T)ET2(T) — B(T)ETI(T)] sin 20
+ [A5(T)ET,(T) + B(T)E{,(T)] cos 26. (BY)

Appendix C. Symmetry simplifications of the leading-order multiscale equations of
motion

Here, we consider further simplifications to the leading-order multiscale equations of
motion given by (3.13) and (3.40) once the swimmer possesses additional symmetries
or does not have a rapid oscillatory motion in a quiescent fluid.

C.1. Fore—aft symmetry and the absence of fast rotation

Suppose that there is no self-induced rapid oscillatory rotation (§2¢ =0), so that the
swimmer rotation rate in a quiescent fluid reduces to

R(T,0)=[wRs(T) + 2(T)] e3=2(T)es. (C1)
Then, we have ¥ = 0 and, hence, for the angular equations we have
Bo(t, T) =0o(1) = 6o (1). (C2)

As a result, the leading-order angular dynamics is no longer displaced from the fast
time scale average 6(¢), which reduces the complexity of the rotational and translational
equations substantially.

Firstly, (3.10) reduces to

b(T) = B(T)E}(T) — As(T)E,(T) = b+(T), (C3a)
c:(T) = —B(T)E}(T) — As(T) Ef (T) = c5(T). (C3b)
Hence, the leading-order angular equation takes the same form as before, i.e.
dbo oz — _ = _
?=a—bs1n200—0005290, a=a;s, b=>b;, c=cy, (4

where the fast-time averages b= b: and ¢ =cz that classify the rotational equations
of motion are simplified significantly according to (C3). Nonetheless, the interpretation
that they represent measures of the rate of strain of the background flow, modulated by
swimmer properties, is still retained.
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Considering the translational equation (3.36), we have the further simplifications that
Ug(T) =Iys(T) =Vys =0, UAT)=U(T), Vye=wUcos¥ =wlU =0,

x(T)=a+(T) — bs+(T) sin 20 — c+(T) cos 20 (C5)

and, thus,
é]()(g()) = CoS 5()81 + sin 5()82 = é]()(é()), (Co)
é20(0o) = — sin Bpe; + cos Bper = &20(Hp). (C7)

Taking u_;k, = 0 without loss of generality by choice of the inertial reference frame, we have
that (3.36) for the motion in the plane of the flow reduces to

dxg _ S —— — =
— =A%+ [IUCA + VI+13(T)Bo(T, sin 209, cos 200)] ¢10(@0)

- [H4E§2(T, sin 26, cos 20¢) + XIUC] €20(00) (C8)

Ef, Ef, — 2] o
=|_ __ __ | Xo+ Vei(0o)
Ep+$2r  —Ej

— [IUC.Q — IUch sin 250 — ]Uch CoS 250] é20(50)

+ [(774ET1 +n3E7,) cos 200 + (4 Efy — 13 Ef) sin 26 ] €20(00)

IUcEY,  TycET
+L c™11 c=12

IUCET2 _IUCETI

} 210(00). (C9)

C.2. The equations of motion for a body of revolution with fore—aft symmetry
For a body of revolution with fore—aft symmetry we additionally have
As=82(T)=mn=m=n=0, (C10)
so that the influence of the rate of strain is only through the Bretherton parameter B(T) =

—A7(T). Then, with u_;‘r = 0 by the choice of the inertial reference frame, the translational
equations of motion further simplify to

dzo
=0 _y, Cll1
” (Clla)
dxo ,_  — N
ek Axo + [IycA + VI 10(00) — xTucér0(6o) (C11D)
= A% + (Iyc BE}, sin 200 — Iy BE?, cos 200)é20(60)
V+1IycEf,  IycEf, ] e
— ——1ei0(0o). (Cllo)
[ IycE}, V—IycE}
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