
J. Functional Programming 10 (6): 561–605, November 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

561

Compilation of a specialized functional
language for massively parallel computers

PASCAL FRADET and JULIEN MALLET

IRISA, Campus de Beaulieu, 35042 Rennes, France

(e-mail: {fradet,mallet}@irisa.fr)

Abstract

We propose a parallel specialized language that ensures portable and cost-predictable im-

plementations on parallel computers. The language is basically a first-order, recursion-less,

strict functional language equipped with a collection of higher-order functions or skeletons.

These skeletons apply on (nested) vectors and can be grouped into four classes: computation,

reorganization, communication and mask skeletons. The compilation process is described as

a series of transformations and analyses leading to spmd-like functional programs which can

be directly translated into real parallel code. The language restrictions enforce a programming

discipline whose benefit is to allow a static, symbolic and accurate cost analysis. The paral-

lel cost takes into account both load balancing and communications, and can be statically

evaluated even when the actual size of vectors or the number of processors are unknown. It is

used to automatically select the best data distribution among a set of standard distributions.

Interestingly, this work can be seen as a cross-fertilization between techniques developed

within the Fortran parallelization, skeleton and functional programming communities.

Capsule Review

The scientific computing world is notoriously (or admirably!) conservative in its adoption

of new programming models. This paper describes a system which combines and builds on

ideas from a range of approaches beloved of readers of this journal, in order to offer both

portability and accurate cost-prediction to parallel scientific programmers. It is noteworthy

for its combination of theoretical rigour with concern for practicalities.

1 Introduction

A good parallel programming model must be portable and cost predictable. General

purpose languages such as Fortran achieve portability, but cost estimations are

often very approximate. A precise cost analysis is especially important in this

context, since the goal of parallelization is efficiency, and its impact on the overall

cost is, at best, a division by a constant. So, orders of magnitude or maximum

complexities are insufficient to guide parallel implementation choices.

The approach described in this paper is based on a restricted pure functional

language that is portable, and allows us to design an automatic and accurate cost

analysis. The language restrictions can be seen as enforcing a programming disci-

pline that ensures a predictable performance on the target parallel computer (there

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

562 P. Fradet and J. Mallet

will be no ‘performance bugs’). General recursion and conditionals are replaced by

skeletons that encapsulate control and data flow in the sense of Cole (1988) or

Darlington et al. (1993). The skeletons, which act on (potentially nested) vectors,

can be grouped into four classes: the computation skeletons (classical data parallel

functions), the reorganization skeletons (creating and structuring vectors), the com-

munication skeletons (data motion over vectors), and the mask skeletons (conditional

data parallel functions). The skeletons and data structures have been chosen with

scientific computing in mind. Matrix computations and nested for loops are easy

to describe, and many standard numerical algorithms have been expressed easily in

our kernel language. Concerning the target parallel architecture, we aimed at mimd

(Multiple Instructions Multiple Data) computers with shared or distributed memory,

but simd (Single Instruction Multiple Data) computers could be accommodated as

well.

The compilation process is described as a series of program transformations

leading to spmd-like (Single Program Multiple Data) functional programs which can

be directly translated into true parallel code. Each compilation step transforms a

skeleton-based language into another closer to a code with explicit parallelism. The

main compilation steps consist of a size analysis, an update-in-place analysis, a

transformation making all communications explicit, transformations implementing

data distribution, and a symbolic code analysis. Note that using a functional lan-

guage avoids the dependence analysis needed by imperative languages to determine

the computations which can be executed in parallel. A key task in the compilation

of data parallelism is the choice of the distribution, since it determines both the

load balancing and the communications between processors. In our approach, the

restrictions imposed by the source language make it possible to choose automatically

the globally best data distribution among a set of standard distributions. This choice

relies on the cost analysis which evaluates accurate parallel execution times. One

of the main challenges of our work was to tackle this problem without knowing

the actual size of vectors or the number of processors. In other words, the analysis

ought to be symbolic.

The contributions of this work are both technical and methodological.

• The compilation is efficient and original: it integrates very different analysis

techniques in a sequence of program transformations. Maybe the most impor-

tant contribution lies in the definition of the specialized language. We establish

the necessary language restrictions to ensure the accuracy of a symbolic cost

analysis. The compilation takes advantage of the analysis to choose the best

parallel implementation from among a set of standard implementations. The

analyses for Fortran nested loops (Gupta and Banerjee, 1992; Feautrier,

1994) do not evaluate precisely the cost of the communications. In particular,

collective communications (diffusion, translation etc.) cannot be automati-

cally detected in Fortran programs. In our approach, the analysis takes into

account both load balancing and communication costs, since the collective

communications appear explicitly through communication skeletons. Most ex-

isting skeletons implementations (Blelloch et al., 1994; Darlington et al., 1995)

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 563

are based on fixed implementations for each skeleton. This local view may

lead to redistributing data before each skeleton application, and therefore be

very inefficient. Finding the best, global distribution is more complex but more

efficient, since it takes into account compromises (i.e. trading a local cost

increase for a global improvement).

• At the methodology level, this work is a rare example of cross-fertilization be-

tween three different research fields: the automatic parallelization of Fortran,

skeleton based languages and functional programming. The Fortran com-

munity has worked on symbolic complexity analyses for subsets of Fortran.

We adapt and extend this work to define the cost analysis in our context.

Skeleton-based languages with their collection of data parallel functions pro-

vide a framework to define specialized parallel languages. We build upon this

approach, and provide two new collections of skeletons to the programmer:

the communication skeletons and the mask skeletons. The community of func-

tional programming has produced a large body of work on typing, program

transformation and analysis. Our compilation process, made of a collection of

program analyses and transformation, relies on this work.

The article is structured as follows. Section 2 is an overview of the compilation

process. Section 3 presents the source language and the target parallel language.

Sections 4–8 describe each compilation step in turn. We report some experiments

done on mimd distributed memory computers in section 9. Section 10 justifies

a posteriori the source language restrictions, reviews related work, and suggests

directions for further research.

2 Overview

The compilation process consists of a series of program transformations:

L1
Gl //L2

Ec // L3
Abs // L4

Dist // L5

Opt // L6
Tra // Parallel Code

Each arrow represents a transformation compiling a particular task by mapping

skeleton programs from one intermediate language (Li) into another (Li+1). The

source language (L1) is composed of a collection of higher-order functions (skele-

tons) acting on vectors (see section 3.1). It is primarily designed for a particular

domain where high performance is a crucial issue: numerical algorithms. L1 is best

viewed as a parallel kernel language embedded in a general sequential language

(e.g. C). Only parts of programs written in L1 will be executed in parallel, whereas

others parts will be executed sequentially, for example, on the host computer of the

parallel machine.

The first compilation step is the type/size analysis of L1 programs. The analysis

computes the shape (size) of all the vectors occurring in the program (section 4).

It must infer symbolic sizes because the sizes of input vectors may be unknown at

compile time. As a byproduct, the analysis infers conditions ensuring that no vector

access error occurs at runtime.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

564 P. Fradet and J. Mallet

The first transformation (L1 → L2) deals with in-place updating, a standard

problem in functional programming with aggregates (section 5). The program is

analyzed to check that all vectors can be safely modified in place. If the program

does not pass the analysis, it must be transformed by inserting explicit vector copies.

This can be done automatically (the analysis indicates the places where to insert

copies) or manually (the programmer may want to restructure the program to insert

fewer copies). This step is also used to guarantee that vectors are either returned as

result or are explicitly deallocated (i.e. a garbage collector is not needed).

The transformation Ec (L2 → L3) makes all communications explicit (section

6). Intuitively, to execute an expression such as map (λx.x + y) in parallel, y must

be broadcast to every processor before applying the function. The transformation

makes this kind of communication explicit. In the languageL3, all communications

are expressed through skeletons.

The transformations fromL3 toL6 concern automatic data distribution (Section

7). First, λ-abstractions and variables are removed by threading an explicit environ-

ment throughout the program (transformation Abs, section 7.1). This transform-

ation, reminiscent of abstraction algorithms, prepares the distribution transformation

Dist (L4 → L5). We consider a set of standard distributions of the input vectors.

A vector can be distributed cyclicly, by contiguous blocks, or allocated to a single

processor. For a matrix (vector of vectors), this gives nine possible distributions

(cyclic cyclic, block cyclic, row cyclic, etc.). Distribution transforms programs so that

they act on a single vector whose elements represent the processors. This implies, in

particular, to change all vector accesses according to the distribution (section 7.2).

Finally, distributed programs are optimized (Opt: L5 → L6) using a set of local

transformations (section 7.3). After distribution, some vector copies become useless.

They are removed in order to improve the sequential execution time. L6 programs

apply on a vector of processors and simulate an spmd code.

To choose the best distribution, an L4 program is transformed according to all

the possible distributions of its input parameters leading to a set of L6 programs.

The symbolic cost of each version is evaluated and the smallest one chosen (section

8). For most numerical algorithms, the number of input vectors is small and this

approach is practical. In other cases, we would have to rely on the programmer to

prune the search space.

The transformation Tra (L6 → Parallel Code) is a straightforward translation

of the spmd skeleton program to an imperative program with calls to a standard

communication library. We currently use C with the mpi (Message Passing Interface)

library along with the C compiler of the host machine (section 9 presents experiments

on an Intel Paragon XP/S and a Cray T3E).

All the transformations are automatic. Nevertheless, the user can interact with the

compiler, for example to insert explicit copies in the L1 → L2 step, or to guide the

choice of the best distribution in L5.

For each transformation Ti: Li → Li+1, three correctness properties must be

proved. First, it must be shown that the transformation Ti transforms programs of

Li into programs of Li+1, formally:

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 565

Property 1

∀Prog ∈ Li ⇒ Ti[[Prog]] ∈ Li+1.

Secondly, the transformationTi must preserve the semantics of programs, formally:

Property 2

∀Prog ∈ Li, Ti[[Prog]] = Prog

Thirdly, it must be checked that the update-in-place property still holds on trans-

formed programs.

Property 3

∀Prog ∈ Li (i > 1) , Up(Prog)⇒ Up(Ti[[Prog]])

Since transformations are defined on the structure of expressions, the proofs of

these properties usually boil down to a routine inspection of the different cases. Due

to their number and length, we do not describe them in this paper. A few examples

of proofs are sketched in Appendix B.

The source language comprises 16 skeletons, plus a number of other constructions

(pairs, operators, affine expressions, etc.). Further, new skeletons are added as the

language gets closer to an spmd language. Presenting the six compilation steps (analy-

ses and transformations) for the whole language would be lengthy and tiresome.

After presenting the complete source and target languages in the next section, we

chose to focus on a tiny sublanguage for the rest of the presentation. A simple

example (written in the sublanguage) is taken throughout the paper and illustrates

the different steps.

The treatment of a more complete language (having at least one skeleton of each

type) can be found in Appendix A. The interested reader will find a description of

transformations, analyses and proofs for the whole language in Mallet (1988a)1. A

previous conference paper (Mallet, 1998b) focuses on the cost analysis, and can be

seen as a short introduction to this work.

3 Source and target languages

3.1 The source language L1

The source language L1 is basically a strict, pure, first-order, recursion-less func-

tional language, extended with a collection of higher-order functions (the skeletons).

We have restricted ourselves to a reasonable number of standard skeletons; new

ones, especially among the computation and reorganization classes, could be inte-

grated as well. The main data structure is the vector which can be nested to model

multidimensional arrays.

The syntax ofL1 is defined in figure 1 (its type system will be described in section

4). A program is a main expression followed by definitions. A definition is either a

function definition or the declaration of input variables with their types. The types

1 Actually, the language presented here is slightly different (it considers a larger class of mask skeletons)
than that in Mallet (1998a)

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

566 P. Fradet and J. Mallet

Prog1 ::= Exp1 where Decl1
Decl1 ::= Decl1 Decl1 | f = Fun1 | x :: Type1

Type1 ::= (Type1, . . . , Type1) | Vect LinF1 Type1 | Int | Float | Bool

Exp1 ::= Fun1 Exp1 | (Exp1,. . . ,Exp1) | x | k
Fun1 ::= iterfor LinF1 Fun1 | Op1 | λ(x1, . . . , xn).Exp1 | f

| CompSkel1 | ReorgSkel1 | CommSkel1 | MaskSkel1
Op1 ::= + | − | ∗ | div | exp | log | cos | . . .

LinF1 ::= LinF1 + LinF1 | LinF1 − LinF1 | k∗LinF1 | x | k
CompSkel1 ::= map Fun1 | fold Exp1 Op1 | scan Exp1 Op1

ReorgSkel1 ::= zip | unzip | append | makearray LinF1

CommSkel1 ::= brdcast LinF1 | transfer LinF1 LinF1

| rotate LinF1 | scatter LinF1

| gather LinF1 | allgather | allbrdcast

MaskSkel1 ::= polyn λ(x1, . . . , xn).Ineq1 Fun1 Fun1

Ineq1 ::= Ineq1 ∧ Ineq1 | LinF1 < LinF1 | LinF1 = LinF1

x, x1, . . . , xn ∈ VarIdent. f ∈ FunIdent. VarIdent ∩ FunIdent = ∅. k ∈ Constant.

Fig. 1. Skeleton language L1.

of input vectors bear their numerical or symbolic size. An expression (nonterminal

Exp1) is either an application, a tuple, a variable or a constant. Functions are unary

λ-abstractions, unary operators or the predefined iterator iterfor. It can be defined in

Haskell (Hudak et al., 1992) as follows:

-- iterfor e f x = f(e ...,f(2,f(0,x))...)

iterfor e f x = let until p f x = if p x then x else until p f (f x)

in (snd.until(\(x,_)->x>e)(\(i,x)->(i+1,f(i,x))))(0,x)

iterfor n f a behaves like a loop; it applies n + 1 times its function argument f on

a. Further, it makes the current loop index (henceforth called the iterator index)

accessible to its function argument.

Four classes of skeleton manipulate vectors: computation, reorganization, com-

munication and mask skeletons.

The computation skeletons are the classical higher order functions map, fold, and

scan. For example, the fold skeleton is defined, using the standard array library of

Haskell (Hudak et al., 1999) as:

-- fold e f [a0;...;an] = f(...f(f(e,a0)...,an)

fold e f v = iterfor n (\(i,acc)->f(acc,v!i)) e

where n = sizeRange (bounds v) - 1

Many other computation skeletons could have been considered. Note that fold or

scan expressions are considered as parallel constructs only if their operator (Op1) is

associative. Otherwise, they are compiled, analyzed and implemented as sequential

constructs.

The four reorganization skeletons are zip, unzip, makearray and append. They allow

the programmer to create and restructure vectors. The skeleton zip transforms a pair

of vectors into a vector of pairs. The skeleton unzip transforms a vector of pairs

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 567

into a pair of vectors. The skeleton append appends its two vector arguments. The

skeleton makearray a b creates a vector of size a of elements b, for example:

makearray 5 1 = [1; 1; 1; 1; 1]

There are seven communication skeletons which describe families of data motion

within vectors. When applied to a vector representing the parallel machine (as inL6

programs), these motions will denote (and will be implemented as) communications.

They have been chosen because of their availability on parallel computers as hard-

wired or optimized communication routines. The first three have type Vect n α →
Vect n α (i.e. they map a vector of size n to a vector of the same size):

• brdcast e v returns a vector whose elements are equal to the e+ 1th element of

v. It can be expressed in Haskell as follows:

-- brdcast i [a0;..;ai;..;an] = [ai;...;ai]

brdcast e v = array (0,n) [(i,v!e) |i<-[0..n]]

where n = sizeRange (bounds v) - 1

• transfer s d v returns a vector identical to v except for the d+ 1th element that

has the value of the s+ 1th element of v.

• rotate d v returns a vector whose elements are equal to the elements of v but

shifted circularly of d positions to the right.

The next three communication skeletons have type Vect m (Vect n α)→ Vect m

(Vect n α).

• gather i m returns a matrix such that its i + 1th row is equal to the i + 1th

column of m and other elements are equal to m’s,

• scatter i m returns a matrix such that its i+ 1th column is equal to the i+ 1th

row of m and other elements are equal to m’s,

• allgather m returns the transpose of m.

Finally, allbrdcast v has type Vect n α→ Vect n (Vect n α) and returns a vector whose

elements are equal to v.

The mask skeletons are the only form of conditional provided by L1. They are

a family of data-parallel skeletons, written polyn, where n is less or equal to the

number of dimensions of its vector argument. For example, poly1 applies on a vector

of type Vect n α and polyk on a vector of type Vect n1 (. . . (Vect nk α) . . .). The

skeleton polyk p f1 f2 v applies the function f1 to the elements of v contained in the

k-dimensional polytope2 described by the predicate p and the function f2 on the

elements outside the polytope. For example, poly2, which takes a matrix (vectors of

vectors) as argument, can be defined in Haskell as follows:

2 An n-dimensional polytope is a finite n-dimensional polyhedron. An n-dimensional polyhedron is a set of
points whose integer coordinates (i1, . . . , in) satisfy a set of inequalities between affine expressions. An
affine expression has the form a1 x1 + . . .+ an xn + an+1 where xi denotes a variable and ai a constant.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

568 P. Fradet and J. Mallet

j

i

Fig. 2. Data motion (brdcast 0) and mask skeleton (poly2 (λ(i, j).(i < j))).

poly2 p f g v

= array (0,n)

[(i,array (0,m) [(j,if p(i,j) then f(v!i!j) else g(v!i!j))

| j<-[0..m]])| i<-[0..n]]

where n = sizeRange (bounds v) - 1

m = sizeRange (bounds (v!0) - 1

Note also that poly1 (λi.i = i) f Id is equivalent to map f.

To enable a precise symbolic cost analysis, additional syntactic restrictions are

necessary. The scalar arguments of communication skeletons, of the iterfor operator,

of mask skeletons, and of makearray must be affine expressions of variables denoting

iterator indexes or sizes. This restriction is formalized by the nonterminal LinF1,

which defines affine expressions of such variables. We rely on the type system with

simple subtyping (described in the next section) to ensure that variables in LinF1

expressions are only index or size variables.

Also, if the grammar makes the first order restriction clear, it does not restrict the

use of recursion. The constraint that user-defined functions are not recursive must

be checked separately (i.e. check that the call graph is acyclic).

Example 1

The following simple program will be used throughout the paper to illustrate the

compilation steps:

f m where

m :: Vect n (Vect n (Float,Float))

f = λm.(poly2 (λ(i, j).(i < j)) (+) (−) (brdcast 0 m), m)

where m is a matrix of pairs of integers.

First, brdcast 0 m builds a matrix made of copies of the first row of m (the data

movements are depicted by arrows in the left matrix of figure 2). Then, the pairs

belonging to the upper triangle of the matrix are summed (represented by white

dots in the right matrix of figure 2) and those belonging to the lower triangle

(represented by black dots) are subtracted (poly2 (λ(i, j).(i < j)) (+) (−)). The result

is a pair composed of the computed matrix and the initial one.

The interested reader will find other examples of L1 programs in Appendix C

(namely, LU decomposition and the n-body problem).

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 569

3.2 The language L6

The target language L6 expresses spmd computations. A program acts on a single

vector (which is given the special type Vectproc) whose elements represent the pro-

cessors or, more precisely, their local data spaces. An L6 program is a composition

of parallel computations separated by communications. Typically, a program has

the following form:

. . . pimap f ◦ Comm ◦ pimap g . . .

where pimap is a version of map that makes the processor index accessible to its

function. The languageL6 introduces new versions of skeletons acting on the vector

of processors. In particular, the new versions of communication skeletons express the

same data motions as before, but on the vector of processors. They model effective

communications and will be implemented as such.

Prog6 ::= FunComm6

FunComm6 ::= FunComm6 ◦ Comm6 | Comm6 ◦ FunComm6

| piterfor FunComm6 | pimap Fun6 | Comm6

Comm6 ::= pbrdcast | ptransfer | protate

| pscatter | pgather | pallgather | pallbrdcast

Exp6 ::= Fun6 Exp6 | (Exp6,. . . ,Exp6) | x | k
Fun6 ::= iterforuc Fun6 | Op6 | λ(x1, . . . , xn).Exp6

| CompSkel6 | ReorgSkel6 | CommSkel6 | MaskSkel6
Op6 ::= + | − | . . . | dealloc | copy | update | lookup

CompSkel6 ::= map Fun6 | folduc Op6 | scanuc Op6

ReorgSkel6 ::= zip | unzip | append | makearrayuc

CommSkel6 ::= brdcastuc | transferuc | rotateuc | scatteruc

| gatheruc | allgatheruc | allbrdcastuc

MaskSkel6 ::= polyn λ(x1, . . . , xn).Ineq6 Fun6 Fun6

Ineq6 ::= Ineq6 ∧ Ineq6 | LinF6 < LinF6 | LinF6 = LinF6

LinF6 ::= LinF6 + LinF6 | LinF6 − LinF6

| k∗LinF6 | p∗LinF6 | n∗Expi6 | x | k
Expi6 ::= div (Expi6, p) | mod (Expi6, p) | ip

x, x1, . . . , xn ∈ VarIdent. ip ∈ ProcIdent. p ∈ ProcNb. k ∈ Constant. n ∈ SizeIdent.

Fig. 3. Skeleton language L6.

The syntax ofL6 is defined figure 3. A program is a parallel function FunComm6

applied to a vector of processors. A parallel function is either the composition (◦)

of a parallel function with a communication, an iteration piterfor LinF6 FunComm6

(which applies LinF6 + 1 times the parallel computation FunComm6 to the vector

of processors), or a parallel computation pimap Fun6 (which applies Fun6 on each

processor). The skeleton pimap can be defined as:

-- pimap f [a0;...;ap] = [f(0,a0) ;...;f(p,ap)]

pimap f proc = array (0,p) [(i,f(i,(proc!i)))|i<-[0..p]]

where p = sizeRange(bounds proc) - 1

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

570 P. Fradet and J. Mallet

The nonterminal Comm6 gathers together the new versions of the communication

skeletons (pbrdcast, ptransfer, protate, pgather, pscatter, pallgather and pallbrdcast). They

describe the same data motion as before but on the vector of processors. The

previous communication skeletons remain in L6 in an uncurried version (commuc).

They are used locally on the processors (they occur only inside pimaps) and represent

local data motion.

Let us describe the communication skeleton pbrdcast. Before the call of this

communication, each local processor memory is a 3-tuple of the form (index of the

broadcasting processor, value, local memory). The broadcasting processor takes the

value (second element of its triple) and sends it to the other processors. The resulting

vector of processors has elements of the form (broadcast value, local memory). Its

functional semantics in Haskell is:

-- pbrdcast [(e,a0,b0);...;(e,ap,bp)] = [(ae,b0);...;(ae,bp)]

pbrdcast proc = array (0,p) [let (_,_,md) = proc!i

in (i,(buf,md))|i<-[0..p]]

where e = first(proc!0)

buf = snd(proc!e)

p = sizeRange (bounds proc) - 1

The sequential skeletons are similar to L1. The only differences lie in the argu-

ments of mask skeletons and new versions of communication and reorganization

skeletons. The polytope argument of the mask skeleton may now include modulo

and integer division (as expressed by the nonterminals LinF6 and Expi6 in L6).

Uncurried versions of the communication and reorganizing skeletons are introduced

(e.g. brdcastuc(e, v) = brdcast e v). Furthermore, Op6 includes four new functions: ex-

plicit vector copy and deallocation (copy, dealloc), lookup which accesses one element

of its vector argument (lookup (e, v) = v!e) and update which modifies one vector

element:

update(e,x,v)

= array (0,n) [(i,if i = e then x else v!i) | i<-[0..n]]

where n = sizeRange (bounds v) - 1

The implementation of L6 programs is relatively straightforward. Functions

inside pimaps represent the sequential programs to be executed by all processors

in parallel. They will be compiled into sequential code using standard techniques.

Communication skeletons (such as pbrdcast) will be implemented as calls to a

standard communication library.

Example 2

If the rows of the matrix m are distributed by blocks on the processors, our simple

example is transformed into the following L6 program:

pimap λ(ip, (buf, x)).(poly2 (λ(i, j).ip ∗ b+ i < j) (+) (−)

◦ makearrayuc(n, buf), x)

◦ pbrdcast ◦ pimap λ(ip, x).(0, lookup(0, x), x)

where m is supposed to have n rows and b is the block size (i.e. n divided by the

number of processors).

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 571

The first parallel computation (pimap λ(ip, x).(0, . . .)) prepares the communication

(pbrdcast) which broadcasts the first row of the matrix to all the processors. Then,

the vector creation (makearrayuc) and the mask skeleton (poly2) are applied locally in

parallel.

4 Type and size inference

Type/size inference has several objectives:

• It checks that programs are well typed.

• It ensures that all vector computations are well defined. For example, brdcast is

defined only if its index argument is within the bounds of its vector argument.

• It makes sure that some arguments are affine expressions depending only on

vector sizes and iterator indexes.

• It computes the symbolic size of each vector expression.

Size inference can be seen both as a static analysis to compute the size of each

vector-typed expression, and as a type system to enforce constraints. The static and

symbolic evaluation of sizes is made possible by several restrictions:

1. the argument and result of iterfor have the same size;

2. indexes and sizes, used by accesses and creations, are affine expressions;

3. vectors are homogeneous, i.e. all the elements of a vector have the same size.

Types are represented as size types whose syntax is described in figure 4. Vectors

are associated with their size and basic types are either scalar types (integers Int,

floating point numbers Float, or booleans Bool), Size or Index types. Intuitively,

an expression has type Size if it is a constant, the size of an input vector, or an

affine expression of Size variables. Similarly, an expression has type Index if it is an

iterator index, has type Size or is an affine expression of Index variables. Size and

Index types bear an affine expression denoting their symbolic value.

For example, the size type Size n → Vect n Int indicates that the function takes

an integer n and returns a vector of size n.

T ::= TExp → TExp

TExp ::= (TExp, TExp) | Vect A TExp | α | B

B ::= Int | Float | Bool | IndexA | SizeA

A ::= A + A | A − A | k∗A | x | k
x ∈ SizeVar, α ∈ SizeType and k ∈ Constant.

Fig. 4. Size types.

The type system integrates subtyping based on the following hierarchy:

Size a ⊆ Index a ⊆ Int ⊆ Float

The subtype relation Size a ⊆ Index a indicates that loop indexes may depend on

sizes but vector sizes cannot be defined in terms of loop indexes. The subtyping rules

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

572 P. Fradet and J. Mallet

for functions, pairs, etc. are the usual ones. The inference rules, described in figure

5, are of the form

C,Γ ` e : T ,C1

which means that e has size type T with size constraints C1 in the environment Γ

with the subtyping constraints C . If the size constraints C1 are satisfied by the input

parameters then the evaluation of e will not produce any vector access error.

Some rules just express unification in terms of an equality constraint between size

types. For example, in the rule [appl], the constraint α = γ unifies the actual and

formal parameters. Some others adds constraints on sizes.

• The rule [const] gives the smallest (most precise) type according to the

subtyping relation (i.e. Size) to constants.

• The type of an addition or a subtraction of affine expressions (rule [linf1]),

is the most general type of its two subexpressions. Further, it introduces a

constraint denoting the value of the result as an affine expression. For example,

the expression (n+ 1), where n is a vector size of type Size n, has the size type

Size s along with the constraint {s = n + 1}. Note that the rule for other

operators (e.g. multiplication) must be different since they do not preserve

affinity in general.

• The rule [brd] forces the first argument of brdcast to have type Index. It also

introduces the constraints (0 6 s1 6 s), which force this index to be within the

bounds of the second (vector) argument. For example, the typing of brdcast 5 v,

where v has the size type Vect n Int, produces the constraint {5 6 n} to ensure

that the index of the broadcast element lies within the bounds of v.

• The rule [poly2] states that the polytope must be defined using arguments of

type Index. It also ensures the two functions have the same type (including

sizes if they have a vector argument) (α1 = α2 and β1 = β2).

As described, the type system is monomorphic. This can be too harsh a limitation,

since user-defined functions could be used only for specific vector sizes. However,

since user-defined functions are not recursive, all the calls can be replaced by the

corresponding function definitions. Such a preliminary unfolding amounts to making

the type system polymorphic.

The rules in figure 5 constitute a small representative subset of the inference

system. The rules for other skeletons are similar, and the rules for subtyping are

the usual ones. The inference rules can be turned into an algorithm using standard

techniques of subtype inference (e.g. Mitchell, 1991) and of polyhedric computations

(e.g. Wilde, 1993).

Satisfiability of the size constraints is made easy by the fact that constraints are

inequalities between affine expressions. The solutions of a set of such constraints can

be seen as the points of a convex polyhedron. The dimensions of this polyhedron

are the variables denoting sizes and occurring in the inequalities. These variables

can be the size variables introduced by the inference (denoted by si in the rules),

or the symbolic sizes used to express input vector sizes. If s1,. . . , sp are the p

size variables and n1,. . . , nq the q symbolic sizes occurring in the constraints, the

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 573

C,Γ ` e : α, C1 C,Γ ` f : γ → β, C2

C,Γ ` f e : β, C1 ∪ C2 ∪ {α = γ} [APP]
C,Γ ∪ {y : α} ` y : α, {} [VAR]

C,Γ ` e1 : α1, C1 C,Γ ` e2 : α2, C2

C,Γ ` (e1, e2) : (α1, α2), C1 ∪ C2

[PAIR]
C,Γ ` k : Size k, {} [CONST]

∀k ∈ [1, 2] C,Γ ` ek : αsk , Ck C ` α ⊆ Index

C,Γ ` e1 Op e2 : αs3 , C1 ∪ C2 ∪ {s1 Op s2 = s3} [LINF1]

where Op ∈ {+,−}

C,Γ ` e : β, C1 C ` β ⊆ α
C,Γ ` e : α, C1

[COER]

C,Γ ` e : Index s1 , C1

C,Γ ` brdcast e : Vect s α→ Vect s α, C1 ∪ {0 6 s1 < s} [BRD]

∀k∈ [1, 2] C,Γ∪{i :Index , j :Index} ` ek :Index, C,Γ ` fk : αk → βk, Ck

C,Γ ` poly2 λ(i, j).e1 6 e2 f1 f2 : Vect s1 (Vect s2 α1)→ Vect s1 (Vect s2 β1),

C1 ∪ C2 ∪ {α1 = α2, β1 = β2}
[POLY2]

Fig. 5. Size inference (extract).

tuple (s1, . . . , sp, n1, . . . , nq) belongs to the convex polyhedron defined by the affine

inequalities.

Satisfiability amounts to normalizing the constraints to get only inequalities of

affine expressions, and checking that the obtained polyhedron is not empty. The

projection of the polyhedron on (n1, . . . , nq) defines the conditions that the input

vector sizes must fulfil to prevent access errors. The projection can detect unavoidable

access errors (the projection is empty) or guarantee their absence without further

conditions (the projection is the complete q-dimensional space).

The solutions of a size variable s are found by projecting the polyhedron on the

dimensions ni of the symbolic sizes and the dimension corresponding to s. Each size

variable is expressed as an affine expression of symbolic sizes, and we use size types

to annotate each program expression. Note that testing for emptiness and projection

are standard operations of polyhedric libraries (e.g. Wilde, 1993).

Example 3

Let us illustrate the size analysis on our small example:

(poly2 (λ(i, j).i < j) (+) (−) (brdcast 0 m), m)

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

574 P. Fradet and J. Mallet

We have

m :: Vect n (Vect n (Float,Float))

poly2 (λ(i, j).i < j) (+) (−) : Vect s1 (Vect s2 (Float,Float))

→ Vect s1 (Vect s2 Float)

brdcast 0 m : Vect s3 (Vect s4 (Float,Float))

with the following set of constraints:

{s1 = s3, s3 = n, s2 = s4, s4 = n, 0 6 0 6 s2}
By projecting on the n dimension we get s1 = n, s2 = n, s3 = n, s4 = n and, for

example, the mask skeleton has the size type:

poly2 (λ(i, j).i < j) (+) (−) : Vect n (Vect n (Float,Float))

→ Vect n (Vect n Float)

5 Update-in-place analysis

As we use a pure functional language and want to manipulate vectors as efficiently

as possible, we have to tackle the update-in-place problem. The solution must be

precise and fully automatic. However, since this step may have a tremendous impact

on runtime costs, it should also yield useful feedback and allow programmers to

keep complete control of their programs. As a consequence, the update-in-place

analysis is the first step of our compilation chain. The programmer is only able to

read and change programs at this stage. Indeed, the next transformations (e.g. the

distribution, section 7) considerably change the source program, which may become

incomprehensible for the programmer.

Our approach relies on extracting an abstract representation of possible execution

traces, which are then used to check whether all vectors can be modified in place

or not. The abstract execution trace represents the vector access sequences carried

out during the program evaluation. If these access sequences do not satisfy some

criteria, two possibilities arise:

1. copy operations are automatically inserted in the program so that the criteria

hold. Functionally, this new operator is the identity function, but will be

implemented by copying its vector argument.

2. The faulty subexpressions and violated criteria are pointed out to the pro-

grammer, who may insert copies manually or restructure the program before

a new analysis.

The same abstract sequences are used to ensure that that all vectors are either

returned as result or explicitly deallocated (using a new operation, dealloc). In the

following, we present the update-in-place analysis (at a fairly high and intuitive

level), and return to the deallocation problem at the end of this section.

To check the updated in place property, we statically compute a runtime trace

which corresponds to the sequence of vector accesses during execution of the

program. This information is similar to the sequences calculated in Kastens and

Schmidt (1986) which, in general, are described by grammars.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 575

Each vector is annotated by labels (e.g. l1) which serve to represent sharing. The

basic vector accesses may be a read (lr1 denotes a read of the vector with label l1),

a write (l2 lw1) which produces a vector annotated with a fresh label (here l2), a copy

(l2 lc1 where l2 is a fresh label), a vector deallocation (lf1), or vector display (lp1) which

indicates that the vector is returned in the final result. A concrete access sequence

is either a sequential composition of sequences (EV2 ◦ EV1, where the accesses of

EV1 are made before the accesses of EV2), a parallel composition (EV1‖EV2 which

represents any interleaving of EV1 and EV2 accesses), or a vector access.

To represent finitely all the possible sequences of accesses, abstract access se-

quences are described as regular expressions of concrete sequences. An abstract

sequence can be a concrete sequence, the union of abstract sequences EV1+EV2

(i.e. EV1 or EV2), or the repeated composition of abstract sequences (EV1◦)∗EV2

(i.e. EV2 followed by zero or more occurrences of EV1). Mallet (1998a) presents

computation of the access sequences as an abstraction of an instrumented semantics

for the language L1. This allows us to prove the correctness of the static analysis

with respect to the instrumented semantics.

Intuitively, vectors can be safely updated in place if no access of the form l2 lw1 ,

l
f
1 , or lp1 is followed by an access on the form lr1, l2 lc1, l2 lw1 , lf1 , or lp1 in the program

access sequence. In other words, after a write to a vector (say, labeled l1) there

should not be accesses to the previous version (i.e. l1). If this holds, it is clear that

the update/write can be done in place.

We say that an access follows another access if they appear, either in a sequential

composition (◦) or, since it does not enforce any specific order, in a parallel

composition (‖). The update-in-place condition amounts to checking for each created,

copied or modified vector that no access follows a write on this same vector. Let

EV be the access sequence of the program, the condition is expressed formally by

Up (EV) = ∀l.Upl(EV)

The condition for a specific vector (Upl) is defined in figure 6. The condition Upl
for an access sequence EV1◦EV2, and a l-labeled vector, is that either the vector

is not written in EV2 and the condition holds on EV1, or the vector is written in

EV2 and the vector is not accessed in EV1, and the condition holds on EV2. In the

parallel composition case, the condition is that either one sequence does not contain

an access to l and the condition holds for the other, or no write to l occurs in both

sequences. Finally, the condition Upl holds on the sequence EV1+EV2 if it holds on

both sequences EV1 and EV2. For a sequence of the form (EV1◦)∗EV2, it holds if

either the vector is not accessed in EV2 and the condition holds in EV1, either the

vector is not written in EV1 and EV2.

Programs can be automatically transformed so that they respect the property Up.
Any sequence not satisfying the property Up contains accesses to a vector (annotated

by) l following a write to l. Since each access is associated to a unique operation, the

faulty writes are easy to find. To ensure the update in place property, it is sufficient

to insert an explicit copy before each such write operation in the program.

Another possibility is to let the user restructure the program in order to make the

program respect the property. This way, the user keeps complete control of the costs

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

576 P. Fradet and J. Mallet

Upl(EV1◦EV2) = (Upl(EV2)∧ 6 ∃ lA ∈ EV1) ∨(Upl(EV1)∧ 6 ∃ lW ∈ EV2)

Upl(EV1‖EV2) = (Upl(EV2)∧ 6 ∃ lA ∈ EV1) ∨(Upl(EV1)∧ 6 ∃ lA ∈ EV2

∨(6 ∃ lW ∈ (EV1‖EV2))

Upl(EV1+EV2) = Upl(EV1) ∧Upl(EV2)

Upl((EV1◦)∗EV2) = (6 ∃ lW ∈ EV1∧ 6 ∃ lW ∈ EV2) ∨ (Upl(EV2)∧ 6 ∃ lA ∈ EV1))

Upl() = true otherwise

with A ∈ {p, c, r, w, f},W ∈ {w, f, p}.

Fig. 6. Conditions on sequences of accesses.

induced by the program and may potentially minimize the number of necessary

copies. In this case, the access sequence computed by the analysis indicates the

operation that violates the condition Up.
Example 4

The analysis of our example

(poly2 (λ(i, j).i < j) (+) (−) (brdcast 0 m), m)

produces the following access information:

(l3
p‖l′p3 ‖lp1‖l′p1)◦(l3 lw2 ‖l′3 l′w2)◦(l2 lw1 ‖l′2 l′w1)

where the outer vector of m is annotated by the label l1, and its inner vectors by l′1.

The condition Up is violated for the vector annotated l1, which is also written

and returned as a result. So, an explicit copy is inserted just before the write on l1
(done by the skeleton brdcast) leading to:

(poly2 (λ(i, j).i < j) (+) (−) (brdcast 0 (copy m)), m)

The functional language community has proposed many different update-in-place

analyses. They are either syntactic criteria (Schmidt, 1985), semantics-based analyses

(Kastens and Schmidt, 1986; Sestoft, 1989) or type systems (Wadler, 1990; Guzmán

and Hudak, 1990). Most of them analyze whether function parameters or instances

of specific types can be implemented as a global variable. In our context, we want

to check that each vector (taken as input or dynamically created) could be updated

in place. The type-based approach of Wadler (1990) meets this requirement, though

it was not precise enough to prove that the property still held on programs obtained

after the distribution transformation. Our main motivation to design a more precise

analysis was to be able to prove that the update-in-place property was preserved by

the successive transformations.

The same abstract sequences are used to enforce that vectors are explicitly deallo-

cated. This allows us to avoid the need for a garbage collector, which is particularly

important to guarantee that our cost analysis evaluates real runtime costs. On ab-

stract sequences, the criteria are that every vector is either written, deallocated or

displayed as a result. Any vector which is no longer accessed must be explicitly deal-

located. If the criteria are not satisfied, dealloc operations are automatically inserted

just after the last use of vectors. One remaining problem is that pairs are allocated

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 577

in the heap. Since the language L1 is based on vectors, the memory allocated for

pairs is quite small in practice, and our implementation does not include a garbage

collector. However, it would be more satisfactory either to explicitly deallocate pairs

(as we do for vectors), or to implement them in the runtime stack.

6 Making communications explicit

Recall that the target language corresponds to spmd code, i.e. a program is a sequence

made of local computations (a function applied by each processor) followed by

communications (a communication skeleton) between processors. All data appearing

in computations must be local to the processors. In programming terms, it means

that a function to be executed in parallel must be closed. However, there might be

expressions inL2 including free variables that induce communications not expressed

by communication skeletons. For example, in the expression

poly2 (λ(i, j).i < j) (fold e (+)) (fold 0 (+)) m

the variable e occurs free in an expression (fold e (+)) supposed to be executed

locally on each processor.

The transformation Ec produces expressions in the intermediate language L3,

very similar to L2, but in which no free variable occurs in the functional arguments

of map or polyn. It aims at making parallel functions closed and is related to λ-lifting

(Johnsson, 1985). The transformation Ec is defined by local transformations applied

iteratively to the program until a fixpoint is reached. In figure 7, which describes the

rule for poly2, C denotes a context and Fv[[Fun]] denotes the free variable of Fun.

The skeleton poly2 is transformed so that its free variables are abstracted. Each

element of the matrix argument is now associated with the free variables’ values.

This is done using the size (type) of the matrix argument m× n (previously inferred)

and a composition of the skeletons makearray, map and zip.

When the free variables are vectors, they must be explicitly deallocated after

function application to preserve the explicit deallocation property (section 5).

Ec[[C[poly2 P Fun1 Fun2]]]

= C[λv.poly2 P (λ((x1, ..., xp), x).dealloc (x1,. . . dealloc (xq ,Fun1 x). . .))

(λ((x1, ..., xp), x).dealloc (x1,. . . dealloc (xq ,Fun2 x). . .))

(map zip (zip (makearray m (makearray n (x1, ..., xp)),v)))]

with poly2 P Fun1 Fun2 : Vect m (Vect n α)→ Vect m (Vect n β)

and Fv[[Fun1]] ∪ Fv[[Fun2]] = {x1, ..., xp}, 1 6 p,
and ∀ 1 6 i 6 q, xi : Vect ni a, ∀q + 1 6 i 6 p, xi : α 6= Vect ni a

Fig. 7. Transformation Ec (extract).

Example 5

Assuming that the matrix m has size n× n, the above example

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

578 P. Fradet and J. Mallet

poly2 (λ(i, j).i < j) (fold e (+)) (fold 0 (+)) m

is transformed into

(λv.poly2 (λ(i, j).i < j) (λ(e, v).fold e (+) v) (λ(e, v).fold 0 (+) v)

(map zip (zip (makearray n (makearray n e), v)))) m

A n × n matrix of integers e is built and zipped with m. The distribution of the

value e to local processors will be made explicit by the next compilation step which

distributes matrices and introduces communication skeletons.

7 Distribution

This step is decomposed into three transformations. The transformationAbs replaces

program variables by combinators. Dist transforms the resulting program according

to a distribution choice for each input vector. Afterwards, some optimizations

become possible and are described as program transformations. This transformation

chain produces spmd programs, and can be described as

L3
Abs // L4

Dist // L5

Opt // L6

7.1 Abs transformation

The transformationAbs is comparable to the abstraction algorithms used to compile

the β-reduction with combinators (Turner, 1979). For example, the SKI abstraction

algorithm suppresses the variable x from an expression E by transforming E into

the expression [x]E such that

([x]E)x = E

In our case, each expression E is transformed into an expression Abs[[E]]
−→
X such

that

(Abs[[E]]
−→
X)
−→
X = (E,

−→
X)

where
−→
X is made of nested pairs representing the free variables of E. Initially

−→
X rep-

resents the program input variables. More generally,
−→
X represents the environment

which is explicitly threaded throughout the program (taken as the argument and

returned as the result by each sub-expression). This is the data structure that will

be distributed over the vector of processors. The transformation Abs also unfolds

the program. Each function call is replaced by its definition. A L4 program is a

variable-free, call-less expression.

The rules ofAbs for our sublanguage are given in figure 8. In order to express the

transformation, new functions are introduced. First, as can be expected, environment

management is expressed using combinators. The family of restructuring combina-

tors extract
−→
X ,
−→
Y (defined as λ

−→
X .
−→
Y) restructures and accesses the environment. For

example, the standard combinators fst and snd can be expressed as extract(x,y),x and

extract(x,y),y , respectively. The function ftuple2 takes two functions and a pair, and

applies the first (resp. second) function to the first (resp. second) pair component.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 579

Composition ◦ (Fun1 ◦ Fun2 = λx.Fun1(Fun2 x)) and a curried pair operator

(pair = λx.λy.(x, y)) are introduced. Finally, new uncurried versions of functions are

needed (e.g. brdcastuc(e, v) = brdcast e v).

The initial call of Abs on a program Prog is Abs[[Prog]]
−→
X where

−→
X are the

Prog’s free variables. The transformed program is

(extract(x,y),x◦Abs[[Prog]]
−→
X)
−→
X

where (extract(x,y),x deletes the threaded environment, and yields the final result.

The Abs transformation propagates variable values to the places at which they

are used. An access to a variable x now returns a pair made of its value extracted

from the environment
−→
X and the environment itself. For functions with several

arguments (e.g. brdcast), the initial function is substituted by its version with one

argument. For example, the expression brdcast v x is transformed into brdcastuc(v, x).

Note that, due to the previous transformation Ec, the rule for poly2 does not apply

recursively Abs on Fun1 and Fun2 because they are closed.

Abs[[Fun Exp]]
−→
X = Abs[[Fun]]

−→
X ◦ Abs[[Exp]]

−→
X if Fun 6= brdcast

Abs[[brdcast Exp]]
−→
X = ftuple2 brdcastuc Id ◦ extract(a,(b,c)),((a,b),c)

◦ ftuple2 Id (Abs[[Exp]]
−→
X)

Abs[[(E1,E2)]]
−→
X = extract((a,b),(a,b)),((a,a),b)

◦ ftuple2 (Abs[[E1]]
−→
X) (Abs[[E2]]

−→
X) ◦ extractx,(x,x)

Abs[[x]]
−→
X = extract

−→X ,(x,−→X) (x ∈ −→X)

Abs[[k]]−→X = pair k

Abs[[copy]]
−→
X = ftuple2 copy Id

Abs[[poly2 P Fun1 Fun2]]
−→
X

= ftuple2 (poly2 P Fun1 Fun2) Id

Fig. 8. Transformation Abs (extract).

Example 6

Our simple example

(poly2 (λ(i, j).i < j) (+) (−) (brdcast 0 (copy m)), m)

is transformed into the variable-free expression

(ftuple2 (poly2 (λ(i, j).i < j) (+) (−) ◦ brdcastuc ◦ pair 0 ◦ copy) id

◦ extractx,(x,x))(m)

It duplicates (combinator extractx,(x,x)) its argument, then applies the composition of

skeletons (poly2 . . . ◦ . . . ◦ copy) to the first component and the identity to the

second one (returned as result).

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

580 P. Fradet and J. Mallet

7.2 Dist transformation

A distribution d can be seen as a function restructuring vectors. Intuitively, trans-

forming the program P according to the distribution d amounts to starting from

the equivalent program P ◦ d−1 ◦ d and pushing d−1 to the left until the program is

of the form d′−1 ◦ P ′ ◦ d. After transformation, the program (P ′) takes and returns

a single vector whose elements can be seen as the local memory of each processor.

We give to this data structure the special type Vectproc.

Distributions

The data distributions define the allocation of data on the processors. They are

functions of the type α→ Vectproc p α, where p is the number of processors.

We consider a fixed set of standard distributions. For a vector, there are three

distributions: block, cyc and seq.

• The distribution block p breaks up the vector in p blocks of contiguous elements

and allocates each block to a processor (e.g. block 2 [1; 2; 3; 4] = [[1; 2]; [3; 4]]).

• The distribution cyc p distributes cyclicly each vector element on the p proces-

sors (e.g. cyc 2 [1; 2; 3; 4] = [[1; 3]; [2; 4]]).

• seq yields a vector with a single processor containing the data vector (e.g.

seq [1; 2; 3; 4] = [[1; 2; 3; 4]]).

They can described using the general distribution dist defined as

dist b p v

= array (0,p-1)

[(i,array (0,m) [(j,v!((div j b)*p*b+i*b+mod j b))

|j<-[0..m]]) |i<-[0..p-1]]

where m = (div (rangeSize (bounds v)) p) - 1

This function distributes cyclicly blocks of size b on p processors. So, let s be the

size of v, we have:

• block p v = dist (div s p) p v,

• cyc p v = dist 1 p v,

• seq v = dist s 1 v.

A degenerate case is the distribution of a scalar data. The distribution const p

allocates its scalar argument to each processor in a vector of processors of size p

For example, const 5 0 = [0; 0; 0; 0; 0].

These distributions can be combined using higher-order functions (dp and de) to

deal with nested vectors and pairs.

The distribution dp d1 d2 allocates a pair on the processors. The first pair compo-

nent is allocated according to the distribution d1, and the second one according to

d2. The result is a vector of processors containing pairs. For example,

dp seq seq ([1; 2], [10; 20]) = [([1; 2], [10; 20])]

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 581

The distribution de d1 d2 allocates the top-level vector according to d1 and the

inner vectors according to d2. This distribution takes a vector of vectors and returns

a processor vector of vectors of vectors. For matrices (vector of vectors), this entails

nine different distributions: sequential (de seq seq), row block (de (block p) seq), ...

Example 7

A row cyclic distribution on two processors:

de (cyc 2) seq [[1; 2]; [3; 4]; [5; 6]; [7; 8]]=[[[1; 2]; [5; 6]]; [[3; 4]; [7; 8]]]

A row cyclic, column block distribution on four processors:

de (cyc 2) (block 2) [[1; 2]; [3; 4]; [5; 6]; [7; 8]]=[[[1]; [5]]; [[2]; [6]]; [[3]; [7]]; [[4]; [8]]]

Each distribution defines a bijection. We write blocki, cyci, seqi, consti, dei and dpi

for the corresponding inverse distributions.

Transformation rules

The transformation Dist assumes that Abs has been applied and that the program

is of the form Fun
−→
X where

−→
X represent the program input parameters. Let d be the

distribution of input parameters considered, then Fun is rewritten into the equivalent

program Fun ◦ d−1 ◦ d. We do not consider different choices of distribution for

dynamically allocated vectors. Vectors created by makearrayuc are allocated on a

single processor and copied vectors (produced by copy) are distributed as their

copy. Considering other distributions for these vectors would potentially entail

communications. In this respect, it is very similar to the problem of redistribution

that we mention in the future work section (section 10.3).

Figure 9 presents the transformation rules required by our simple example. It

uses functions (pimap, pbrdcast, lookup, etc.) presented along with the target language

in section 3.2. The rules propagate the inverse distribution d−1 to the left. Note

that since that an inverse distribution d−1 has type Vectproc p α → α, a function

Fun having the type τ1 → τ2 is transformed into a function FunComm with type

Vectproc p τ1 → Vectproc p τ2.

The rule for the composition F1 ◦ F2 ◦ di consists in transforming first the

function F2 ◦ di. This yields an equivalent expression of the form di′ ◦ F ′2. Then,

the transformation is recursively called on F1 ◦ di′. The final expression is of the

form di′′ ◦ F ′1 ◦ F ′2 where F ′1 and F ′2 are spmd functions acting on a unique vector of

processors.

The transformation of the restructuring combinator extractx,(x,x) (which duplicates

its argument) consists in duplicating the local memory of each processor. The

resulting inverse distribution is an inverse distribution that distributes its pair

argument identically (dpi di di).

The rules for copy and the identity function Id consist in applying it to the local

memory of each processor. The inverse distribution is unchanged. In the same way,

distributing the pair k function (where k is a constant) consists in applying the

function to each local memory. The resulting inverse distribution distributes the first

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

582 P. Fradet and J. Mallet

Dist[[F1 ◦ F2 ◦ di]]

= let di’ ◦ F2’ = Dist[[F2 ◦ di]]

in Dist[[F1 ◦ di’]] ◦ F2’

Dist[[extractx,(x,x) ◦ di]]

= dpi di di ◦ pimap (extract(ip,x),(x,x))

Dist[[Fun ◦ di]]

= di ◦ pimap (Fun ◦ extract(ip,x),x) where Fun ∈ {copy, Id}
Dist[[pair k ◦ di]]

= dpi (consti p) di ◦ pimap (pair k ◦ extract(ip,x),x)

with di: Vectproc p α→ α

Dist[[poly2 P F1 F2 ◦ dei (blocki p) seqi]]

= dei (blocki p) seqi

◦ pimap (λ(ip, v).poly2 (P ◦ λ(i1, i2).(ip ∗ b+ i1, i2)) F1 F2 v)

with blocki p : Vectproc p (Vect b α)→ Vect n α

Dist[[brdcastuc ◦ dpi (consti p) (dei (blocki p) seqi)]]

= dei (blocki p) seqi

◦ pimap (λ(ip, (buf, (e, v))).brdcastuc(0, (update (0,buf,v))))

◦ pbrdcast ◦ pimap (λ(ip, (e, v)).(div (e, b), lookup (mod (e, b),v),(e, v)))

with blocki p : Vectproc p (Vect b α)→ Vect n α

Dist[[ftuple2 F1 F2 ◦ dpi di1 di2]]

= let di’1 ◦ F’1 = Dist[[F1 ◦ di1]]

di’2 ◦ F’2 = Dist[[F2 ◦ di2]]

in dpi di’1 di’2 ◦ Fus[[(F’1, F’2)]]

Fig. 9. Transformation Dist (extract).

component of its pair argument according to consti p (where p is the number of

processors) and the second according to the original distribution (di).

The rule for the mask skeleton poly2 modifies the index in the inequalities describing

the polytope (P) according to the distribution. After transformation, each processor

applies the mask skeleton to its local vector. The inequalities still define a polytope

thanks to the restricted set of distributions. This key property would not hold for

more general forms of distribution. Figure 9 presents the transformation rule for a

row block distribution only (a more complicated generic rule exists also). Note that

the symbolic size computed by the size inference (section 4) is used by this rule. The

rule is based on the fact that an element whose indexes are (i1, i2) in the distributed

matrix has indexes (ip∗b+ i1, i2) in the initial matrix (where ip denotes the processor

index and b the size of blocks, that is the number of rows n divided by the number

of processors p). For example, the expression

poly2 (λ(i, j).i < j) f g

applied to an 8×8 matrix returns the matrix given in figure 10 where the function f

has been applied on white dots and g on black ones. After a row block distribution

on four processors, each processor must apply poly2 on the elements contained in

their local memory The local function f must be applied to the elements (i, j) such

that 2 ∗ ip+ i < j.

To give the idea of the transformation for the communication skeleton brdcastuc,

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 583

bProc 0

Proc 1

Proc 2

Proc 3

j

i

Fig. 10. Impact of a row block distribution on poly2 (λ(i, j).i < j) f g

let us consider a specific distribution: dei (blocki 2) seqi i.e. the inverse of a row

block distribution on two processors. The transformed expression consists of a local

access to the matrix (preparing the communication), a communication pbrdcast and

a brdcastuc executed by each processor. For example, let b be the size of blocks, the

expression brdcastuc ◦ dei (blocki 2) seqi is transformed into:

dei (blocki 2) seqi

◦ pimap λ(ip, (buf, (e, v))).(brdcastuc(0, update(0, buf, v)))

◦ pbrdcast ◦ pimap λ(ip, (e, v)).(div (e, b), lookup (mod (e, b), v, (e, v)))

The first function builds a triple containing the number of the broadcasting

processor, a value lookup (mod (e, b), x) (on the broadcasting processor it will be the

value to broadcast), and the local memory. Then, the value is broadcast (pbrdcast),

bound to buf, integrated in the local matrix (update) to be copied locally to all the

vector elements (brdcastuc).

Fus[[(pimap F1,pimap F2)]]

= pimap (ftuple2 F1 F2 ◦ (λ(ip, (x, y)).(F1(ip, x),F2(ip, y))))

Fus[[(F1 ◦ F2,pimap (λ(ip, x).x))]]

= Fus[[(F1, pimap (λ(ip, x).x))]] ◦ Fus[[(F2, pimap (λ(ip, x).x))]]

Fus[[(pbrdcast,pimap (λ(ip, x).x))]]

= pimap (λ(ip, (a, (c, d))).((a, c), d)) ◦ pbrdcast

◦ pimap (λ(ip, ((a, b, c), d)).(a, b, (c, d)))

. . .

Fus[[(F1,F2)]]

= Fus[[(F1,pimap (λ(ip, x).x))]] ◦ Fus[[(pimap (λ(ip, x).x),F2)]]

Fig. 11. Transformation Fus (extract).

The distribution of the function pair ftuple2 consists in propagating the distri-

butions associated with each function, and merging the resulting spmd functions

into a single parallel function.

Merging is performed by the auxiliary transformation Fus (figure 11). When

each function of the pair is a pimap then the pair is rewritten into a single pimap

function. Otherwise, we have to sequentialize the two functions (last rule of figure 11).

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

584 P. Fradet and J. Mallet

Each function is associated with the identity function for the vector of processors

(i.e. pimap (λ(ip, x).x)) and composed together. The fusion of a communication

function and the identity requires to restructure the local data of the processors

before and after the communication operation (to thread the unused element of

the pair argument). For example, in the case of a pbrdcast, the number of the

broadcasting processor and the value to broadcast must be in the first and second

components of the local processor memory. The reorganization is carried out by

pimap (λ(ip, (a, (c, d))).((a, c), d)) and pimap (λ(ip, ((a, b, c), d)).(a, b, (c, d))).

Example 8

Given a row block distribution de (block p) seq, our example is transformed into the

spmd function:

pimap λ(ip, (x, y)).(poly2 (λ(i, j).ip ∗ b+ i < j) (+) (−) x, y)

◦ pimap λ(ip, (buf, (x, y))).brdcastuc(0, update (0, buf, x), y)

◦ pbrdcast ◦ pimap λ(ip, (x, y)).(0, lookup (0, x), (x, y))

◦ pimap λ(ip, x).(copy x, x)

Given a column block distribution (de seq (block p)), we would get the following

function:

pimap λ(ip, (x, y)).(poly2 (λ(i, j).i < ip ∗ b+ j) (+) (−) x, y)

◦ pimap λ(ip, x).(brdcastuc(0, (copy x)), x)

7.3 Optimizing transformations

The transformations described in this section aim at simplifying and optimizing

local (sequential) and parallel computations. This step is described as a set of local

program transformations. For example, the following rules are applied:

• merging of pimaps

pimap F ◦ pimap G = pimap (λ(ip, v).F(ip, G(ip, v)))

• merging of rotates

rotateuc ◦ ftuple2 f rotateuc = rotateuc ◦ λ(e1, (e2, v)).(f e1 + e2, v)

In the rest of this section, we concentrate on an optimization that removes vector

allocations (copy or makearrayuc) that have been made useless by the distribution.

The impact of this optimization on performances can be considerable.

The local optimization rules are described as rewrite rules in figure 12. In order

to preserve the update-in-place property (section 5), these local transformations are

applied only if they do not violate a criterion on access sequences. This condition

remains implicit in the rules.

There are two classes of rules: transformations propagating the vector allocation to

the left of the expression (P.n rules); and transformations performing the elimination

(E.n rules). Elimination becomes possible when an allocation has been shifted next

to its deallocation.

Propagation transformations amount to delaying vector allocations. The rule [P.1]

transforms function applications whose argument contains an allocation.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 585

Fun1(Exp1,...,Expi−1,Fun2 Expi,...,Expn)

 Fun1 ◦ ftuplen Id . . . Id Fun2 . . . Id

(Exp1,...,Expi−1,Expi,...,Expn)

if copy, makearrayuc ∈ Fun2 [P.1]

pimap (λ(ip, (x1, ..., xn)).Exp) ◦ pimap (ftuplen Fun1. . . Funn ◦ Fun)

 pimap (λ(ip, (x1, ..., xn)).Exp[xi 7→ Funi xi])

◦ pimap ftuplen Fun1. . . Id . . . Funn ◦ Fun

if Funi is closed and copy, makearrayuc ∈ Funi [P.2]

brdcastuc ◦ ftuple2 Fun copy

 λ(e, v).makearrayuc(n, lookup (Fun e, v))

where copy : Vect n α→ Vect n α [P.3]

dealloc ◦ ftuple2 copy Fun

 Fun ◦ extract(x,y),y [E.1]

Fig. 12. Copy elimination (extract).

For example, the expression

dealloc (brdcastuc(1, x), copy y)

is transformed into

(dealloc ◦ ftuple2 Id copy)(brdcastuc(1, x), y)

The rule [P.2] applies to a composition of pimaps and propagates the vector

allocation occurring in the first pimap into the second one.

The rule [P.3] indicates that copying a vector and broadcasting its ith value is

similar to fetching and duplicating the ith value. The copy is transformed into a

makearrayuc and the allocation is shifted to the left.

The rule [E.1] applies to the case where an allocated vector is immediately freed.

It eliminates both the vector allocation and its deallocation.

Example 9

The previous distributed version of our example with a column block distribution

which is

pimap λ(ip, (x, y)).(poly2 (λ(i, j).i < ip ∗ b+ j) (+) (−) x, y)

◦ pimap λ(ip, x).(brdcastuc(0, copy x), x)

is transformed into

pimap λ(ip, (x, y)).(poly2 (λ(i, j).i < ip ∗ b+ j) (+) (−) x, y)

◦ pimap λ(ip, x).(makearrayuc(n, lookup (0, x), x))

using rules [P.1] and [P.3]. The copy of the complete matrix is avoided and replaced

by the allocation of a single row.

8 Cost analysis

This step aims at automatically evaluating the cost of L6 programs in order to

select the most efficient distribution. The complexity analysis is based on polytope

volume computations (Tawbi, 1994; Pugh, 1994; Clauss, 1996), and yields accurate

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

586 P. Fradet and J. Mallet

symbolic costs. This approach is made possible by the restrictions of L1 and the

fixed set of data distributions considered. Together, they guarantee that the cost of

all transformed source programs can be expressed as a sum of polytope volumes.

The goal is to find the most efficient L6 program from among the different dis-

tribution choices considered. First, an abstraction function Ca transforms programs

into their symbolic parallel cost. Costs are expressed using inequalities, sums and

maxima. Then, standard methods to compute the volume of polytopes are applied

to get a symbolic cost in polynomial form. Finally, symbolic costs are simplified and

compared using a symbolic math package.

8.1 Cost abstraction

The abstraction function Ca extracts cost information from parallel programs. The

main rules are shown in figure 13. We use a non-standard notation for indexed

sums: we write
∑

i { 06i
i6n} instead of

∑n
i=0. This notation is needed because polytopes

(introduced by the polyn skeletons) may be defined by more than two inequalities.

The abstraction relies heavily on the size information present in types (see section

4). The cost of (pimap Fun) is the maximum of the costs of Fun on each processor.

Communication costs are expressed as polynomials whose constants depend on the

target computer. For example, the cost of pbrdcast involves the parameters αtransf and

αinit which denote respectively the time of one-word transfer between two processors

and the message startup time on the parallel computer considered. Further, we use

the function size which returns a polynomial representing the symbolic size of the

argument type. Basic arithmetic operators are also given a machine dependent cost

(αOp). One has to set those constants to adapt the analysis for a specific parallel

machine. The cost of the mask skeleton poly2 is the sum of the cost of the first

function for elements belonging to the polytope λ(i, j).Ineq, and of the cost of

the second one for elements belonging to the complementary (written Ineq). The

complementary polytope is expressed as the difference between the whole (i, j)-

domain and the polytope λ(i, j).Ineq. This is a standard operation of polyhedric

libraries that yields a union of polytopes.

The cost expression obtained is then applied to symbolic arguments and reduced

to remove all the λ-abstractions. Since we deal with terminating programs, any

abstracted expression will have a normal form. Moreover, since costs do not depend

upon scalar values the normal form boils down to generalized sums (G-sum) and

generalized maxima (G-max). A G-sum is of the form
∑

i1 ,...,in
{Ineq} Poly where Ineq

are inequalities made of affine expressions of loop indexes and vector sizes and Poly

is a polynomial whose variables are vector sizes or the processor number. A G-max

is of the form
k

max
i=0

Ei and denotes the maximum among the expressions E0, . . . , Ek .

Let us emphasize that writing the source program in L1 is crucial to get an

accurate symbolic cost. First, without a severe limitation of the use of recursion,

no precise cost could be evaluated in general. Further, the restrictions imposed by

L1 ensure that the mask skeletons (which limit conditional application to polytope

domains), the communication and the computation skeletons all have a complexity

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 587

Ca[[Fun1 ◦ Fun2]] = (λx. Ca[[Fun1]](Fun2 x) + Ca[[Fun2]] x)

Ca[[pimap Fun]] = (λx.
p−1

max
ip=0
Ca[[Fun]](ip, x!ip))

where pimap Fun : Vectproc p α→ Vectproc p β

Ca[[pbrdcast]] = (λx.(αtransf ∗ size β + αinit) ∗ p)
where pbrdcast : Vectproc p (α, β, γ)→ Vectproc p (β, γ)

Ca[[Op]] = (λx.αOp)

Ca[[poly2 λ(i, j).Ineq Fun1 Fun2]]

= (λx.
∑

i,j

{
06i<n1
06j<n2
Ineq

}
Ca[[Fun1]](x!i)

+
∑

Ineq′∈Ineq

∑
i

{ 06i<n1
06j<n2
Ineq′

}
Ca[[Fun2]](x!i))

where poly2 λ(i, j).Ineq Fun1 Fun2 : Vect n1 (Vect n2 α)→ Vect n1 (Vect n2 β)

Fig. 13. Cost abstraction function Ca (extract).

which depends polynomially upon vector sizes. Their costs can be described as

nested sums. Another important restriction is that expressions involving iteration

indexes (mask skeletons, communication skeletons and iterfor bounds) are affine.

This restriction, expressed by the nonterminal LinF1 in the definition of L1, along

with the standard distributions considered which keep vector accesses affine, ensures

that the inequalities of G-sums are affine.

Example 10

The following expression is extracted from our example after a column block

distribution.

pimap λ(ip, (x, y)).(poly2 (λ(i, j).i < ip ∗ b+ j) (+) (−) x, y)

Its cost is expressed as

Ccol ≡ p−1
max
ip=0

∑
i,j

{
06j<b∧06i<n
i<ip∗b+j

}
α+ +

∑
i,j

{
06j<b∧06i<n
ip∗b+j6i

}
α−



8.2 Symbolic cost analysis

If the vector sizes and the number of processors are known at compile time, the

cost comparison is done directly by evaluating the value of the abstracted cost

expression. An enumeration of the polytope points makes it possible to obtain the

accurate numerical value of the execution time on the target machine. The best

distribution is that whose cost value is the smallest.

For unknown vector sizes, the cost computation consists of a symbolic evaluation

which yields a polynomial expression. This computation is decomposed into two

transformations: the first one evaluates polytope volumes symbolically by reusing

existing techniques; and the second one removes G-maxs by calculating the maximum

value of the polynomial.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

588 P. Fradet and J. Mallet

Parametrized polytope volume computation

The method of Clauss (1996) makes it possible to obtain an accurate computation

of the polytopes volumes. The computation principle is based on the fact that such

a volume is equal to an extension of polynomials (Ehrhart’s pseudo-polynomials),

such that the coefficients of its monomials vary according to the remainder of integer

division of the symbolic sizes by a constant.

However, this method cannot be simply extended when the processor number is

unknown at compile time. In this case, the coefficients of affine expressions in the

inequalities can contain an unknown. The volume of this kind of polytope cannot

be represented by a pseudo-polynomial.

When we want to keep the number of processors as a parameter, the technique

described in Tawbi (1994) can be used. It consists of cutting out the polytope by

breaking up the inequalities into several subsets such that each of them contains only

two inequalities for each variable and that the lower limit is lower than the upper

limit (to rule out null polytopes). After this step, traditional formulae of symbolic

summation can be applied and polytope volumes are expressed by polynomials

whose variables are symbolic sizes. Integer divisions are approximated by their

real division minus a constant representing the average difference between the two

operations (e.g. b i
2
c is approximated by i

2
− 1

4
). The evaluated cost is no longer

absolutely accurate but the introduced approximations appear to be negligible in

practice.

Example 11
Using Tawbi’s technique, Ccol is simplified into

p−1
max
ip=0

(
b2 (α+ − α−) ip + b2

(α+

2
+
α+

2
+ (p− 1) α−

))
G-max removal

Before comparing symbolic costs, G-maxs occurring in cost expressions must be

removed. This can be done by computing the maximum value taken by the polyno-

mial on the symbolic interval of the G-max. This calculation is based on the fact

that a polynomial defined over a finite interval [0..n] reaches its maximum value

at 0, n, or one of the zeros of its derivative. There can be several maximums, de-

pending on conditions on symbolic sizes. A G-max can be rewritten as a collection

of polynomials, each polynomial being defined on an interval (i.e. the conditions

on sizes) where a zero of the derivative maximizes the original expression. This

technique removes G-maxs without any approximations. It may however creates

complex symbolic expressions for high-degree polynomials. In such cases, simpler,

approximated solutions exist (e.g. considering only the bounds of the interval).

Example 12
With the hypothesis α+ ≡ α−, the former expression of Ccol is simplified into

p−1
max
ip=0

(
b2 (α+ − α−) ip + b2

(α+

2
+
α+

2
+ (p− 1) α−

))
= b2pα+

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 589

8.3 Symbolic cost comparison

The last task is to compare the symbolic costs obtained for different distribution

choices. It amounts to computing the symbolic intervals where the difference of

two costs (i.e. polynomials) is positive or negative. Symbolic math packages such

as Maple (Char et al., 1992) can be used for solving this problem. It may be the

case that a distribution is definitely better than another and Maple will determine

it. But in general, it will depend upon sizes and the number of processors. In such

cases, Maple can be seen as a simplifier that will produce symbolic conditions (e.g.

Cost1 > Cost2 iff n > p). The programmer may have to indicate if these conditions

are satisfied or not. Another (automatic) solution is to use these conditions as

run-time tests which choose between several versions of the program.

For our example, the column block distribution is always better than the row

block one because local computations are identical in both cases but the column

distribution does not entail any communication between processors.

9 Translation and experiments

9.1 Translation

The spmd programs produced by the compilation chain are translated into a sequen-

tial language with calls to a communication library. In the current implementation,

we use the C language and the mpi library (Clarke et al., 1994). These are de facto

standards which guarantee portability across many different parallel machines.

Since functions are strict, first-order, and vectors are single-threaded (property

guaranteed by the update-in-place transformation, section 5), the translation of L6

programs into C is straightforward. The single program executed by all the processors

is made of the local functions (argument of pimaps), the loops (piterfor) and calls to

mpi. The composition (◦) is simply translated, locally, by the sequence (;); it does not

represent a synchronization barrier. The only synchronization between processors is

introduced through parallel communications (e.g. pbrdcast).

The transformation Tra of local functions is a straightforward translation into

C. For example, the expression e1 + e2 will be translated in

{ int tmp1;

<evaluation of e1>; tmp1 = res;

<evaluation of e2>;

res = tmp1+res

}

Since functions are strict and, in essence, first order, they are implemented by C

functions. Sequential skeletons such as brdcastuc, copy, etc. are translated into nested

loops. Memory management is implemented using the C library functions malloc

and free. The translation of communications amounts to calling the corresponding

communication function of mpi (recall that we have restricted ourselves to com-

munication skeletons having a direct counterpart in the functions implemented in

standard libraries such as mpi).

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

590 P. Fradet and J. Mallet

In all cases, symbolic sizes present in types are needed by the code generation. For

example, the vector size is required by the translation of the sequential communi-

cation skeleton brdcastuc (to set the corresponding loop bound), and by the translation

of the parallel communication pbrdcast (to set the size of the message).

9.2 Prototype

The compiler has nine stages. A parser produces an abstract syntactic tree starting

from the initial program. The size analysis is similar to a type inference. It uses the

library of polyhedric computations PolyLib (Wilde, 1993) to check the coherence

of constraints and to determine the overall size constraints. The update in place

transformation first approximates sharing and the access sequence of the execution.

It then checks the property Up for the abstract access sequences and may insert

automatically vector copies and deallocations. The transformations making communi-

cations explicit and distribution are simple syntactic transformations. The symbolic

cost analysis is relatively complex to implement. Indeed, the cost computation

must inter-operate with PolyLib and Maple. The optimization and the translation

towards the target language (C+mpi) are also syntactic transformations which can

be implemented directly. Lastly, the production of object code is carried out by the

C compiler available on the target machine and by linking with the mpi library.

The compilation stages made up of syntactic transformations are easily written in

Haskell. The static analyses are more complex to implement. For our experiments,

some compilation steps, such as the destructive update step and most of the symbolic

cost computation, were done manually.

9.3 Experiments

We have performed experiments on an Intel Paragon XP/S and a Cray T3E with

a handful of standard linear algebra programs (LU, Cholesky factorization, Jacobi

iteration, etc.). The experiments have two objectives. First, we study the adequacy

between the theoretical execution times produced by the cost analysis and those

measured in practice. Then, we compare the performances of L1 programs with

other implementations (standard sequential C code, hpf, the skeleton language Nesl,

and the linear algebra library Scalapack).

Figure 14 gives the execution times, both measured and theoretical (i.e. statically

evaluated), for LU decomposition on a Cray T3E with a row cyclic distribution and

a row block distribution. The number of processors varies between 1 and 16 and we

give times for two matrix sizes (1024×1024 and 2048×2048). The differences between

the theoretical cost and the measured cost are less than 6%. Such differences are

very hard to avoid. Our cost model does not take into account low level software

and hardware mechanisms like routing protocols or local cache policies. Even if we

can adapt the communication cost to the topology, we cannot model every low-level

functionality available on the target computer. The execution times on the Paragon

with the same example show the same differences with the theoretical cost. Our

experiments suggest that the cost analysis is portable. It is sufficient to change the

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 591

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

Time
in s

Proc. Nb.

meas cyc. ×
×

×

×
×

×

meas bloc. ×

×

×

×

×
×

theo cyc.
theo bloc.

(a) n = 1024

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

Time
in s

Proc. Nb.

meas cyc. ×
×

×

×

×
×

meas bloc. ×
×

×

×

×
×

theo cyc.
theo bloc.

(b) n = 2048

Fig. 14. Theoretic (theo) and Measured (meas) Times for

LU Decomposition on a Cray T3E.

constants representing the basic operations costs to obtain a fairly faithful estimation

of the actual execution times.

Figure 15 gathers the execution times obtained for LU decomposition, Cholesky

factorization, the Householder method, the Jacobi iteration, and the n-body problem

on the Intel Paragon. For all programs, the distribution chosen by the cost analysis

proved to be the best one in practice.

We compared the sequential execution of L1 programs with standard (and port-

able) C versions taken from Press et al. (1986). We also compared our parallel

implementation with High Performance Fortran (a manual distribution approach).

No significant sequential or parallel runtime penalty seems to result from pro-

gramming using skeletons, at least for such regular algorithms. We believe that the

important differences for Jacobi and Nbody are due to the inability of the hpf

compiler to recognize collective communications in general.

We compared our code with the parallel implementation of Nesl, a skeleton-

based language (Blelloch et al., 1994). The work on the implementation of Nesl has

mostly been directed towards simd machines. On the Paragon, the Nesl compiler

distributes vectors uniformly on processors and communications are not optimized.

Not surprisingly, the parallel code is very inefficient (at least fifty times slower than

our code).

Finally, we considered Scalapack, an optimized library of linear algebra programs

designed for distributed memory mimd parallel computers (Choi and Dongarra,

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

592 P. Fradet and J. Mallet

LU (n=256) LU (n=512) Cholesky (n=1024)

Proc. Skel. Seq. hpf Skel. Seq. hpf Skel. Seq. hpf

1 2.14 1.73 2.16 14.77 13.61 15.36 67.45 53.17 65.40

2 1.34 × 1.38 8.43 × 8.67 35.54 × 35.97

4 0.93 × 0.95 5.25 × 5.41 21.35 × 20.65

8 0.76 × 0.77 3.23 × 3.38 14.81 × 13.10

16 0.66 × 0.67 2.97 × 3.06 11.55 × 9.53

32 0.62 × 0.61 2.57 × 2.67 9.91 × 7.83

Householder (n=1024) Jacobi (n=512) N body (n=2048)

Proc. Skel. Seq. hpf Skel. Seq. hpf Skel. Seq. hpf

1 318.16 308.17 325.44 63.42 55.10 56.20 125.15 122.76 127.86

2 159.04 × 164.13 32.98 × 29.81 62.99 × 91.77

4 82.12 × 84.62 17.19 × 16.83 31.53 × 49.04

8 44.59 × 46.32 7.66 × 10.19 15.51 × 27.39

16 26.68 × 27.03 3.90 × 6.93 7.59 × 17.35

32 17.98 × 18.23 1.98 × 5.19 3.64 × 12.68

Fig. 15. Times (in s) for Skeletons and hpf on Intel Paragon XP/S.

LU (n=512) Householder (n=1024) Cholesky (n=1024)

Proc. Skel. Scalapack Skel. Scalapack Skel. Scalapack

1 14.77 3.78 318.16 56.35 67.45 55.80

2 8.43 2.4 159.04 35.23 35.54 34.95

4 5.25 1.84 82.12 22.57 21.35 21.80

8 3.23 1.66 44.59 16.27 14.81 15.56

16 2.97 1.50 26.68 12.82 11.55 12.56

32 2.57 1.41 17.98 10.83 9.91 11.32

Fig. 16. Times (in s) for Skeletons and Scalapack on Intel Paragon XP/S.

1995). In Scalapack, the user may explicitly indicate the data distribution. So, we

indicated the best distribution found by the cost analysis in each Scalapack pro-

gram considered. If our code on one processor is much slower than its Scalapack

equivalent (between 3–6 times slower), the difference decreases as the number of

processors increases (typically, 1.8 times slower on 32 processors). We believe that

much of this difference comes from the machine specific routines used by Scalapack

for performing matrix operations (the Blas library). This suggests a possible in-

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 593

teresting extension of our source language. The idea would be to extend L1 with

new skeletons corresponding to the Blas operations in order to benefit from these

machine specific routines.

Note that Scalapack allows block cyclic distributions with a variable size of

blocks which are a more general form of distribution than ours. This enables the

programmer sometimes to find a better compromise between communication costs

and load balancing by guessing the right block size. This is the case for the Cholesky

factorization where the optimal distribution is block cyclic with a size of blocks

between one and the vector size divided by the number of processors. Integrating

block cyclic distributions (with a variable size of blocks) within our framework is not

obvious. First, the combination of such distributions and the polyn skeletons gives

rise to expressions whose cost cannot be expressed as polytopes. Secondly, it is clear

that an exhaustive analysis of all possible distributions would become unrealistic in

this case. Extending the cost analysis to this kind of distributions would presumably

require approximations and interactions with the user.

10 Conclusions

We have presented the compilation of a skeleton-based language for parallel com-

puters. Our compilation process makes use of a variety of techniques: typing, static

analyses, program transformations, polytope volume computation. Working by pro-

gram transformations in a unified framework simplifies the correctness proofs of the

implementation. One can show independently for each step that the transformation

preserves the semantics, and that the transformed program respects the restrictions

enforced by the target language. We could have described the complete compilation

process in terms of program transformations as in Douence and Fradet (1998).

However, the spmd-like skeleton programs of L6 (strict, first order functions and

single-threaded arrays) are so close to C code that it was more pragmatic to reuse

the C compiler. The most important characteristic of our approach is the source

language restrictions. We now review and justify them.

10.1 Source language restrictions

MostL1 restrictions were guided by our need for an accurate, symbolic cost analysis.

Relaxing any of the following restrictions would not be possible without changing

the approach drastically.

• Restricted recursion. Disallowing general recursion is requisite for an accurate

cost analysis. The existence of a fixpoint operator in the language makes

complexity analysis undecidable. Skeletons are a way to tame recursion, since

the data and control flow are known a priori.

• Restricted vector manipulations. The symbolic cost analysis requires the sym-

bolic size of all vectors. This information is inferred by the size analysis. In

order to do so, the size of a vector should not depend upon scalar values

but only on constants or parameter sizes. A program observing this condition

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

594 P. Fradet and J. Mallet

is called ‘shapely’ (Jay and Steckler, 1998). For example, a skeleton filter p

producing a vector made only of the elements of its vector argument satisfying

the predicate p cannot be allowed. It would produce vectors whose size is

unpredictable.

• Restricted conditionals. One cannot associate an accurate cost to conditionals

whose test depends on scalar values. Only the maximum, the minimum, or,

with probabilistic information, the average complexity could be evaluated in

this case. Moreover, to reuse the powerful tools based on polytopes, costs must

be defined by affine (in)equations depending on symbolic sizes and iterator

indexes. To ensure the affinity of cost expressions, conditionals are constrained

to be mask skeletons whose condition characterizes a convex polytope. Typing

enforces that the condition is an affine expression of symbolic sizes and iterator

indexes only. If this condition were expressed as a polynomial, its cost could

not be expressed as the volume of a polytope.

• Restricted communication skeletons. The communications involved by L1 pro-

grams must be statically predictable. This is ensured by enforcing the argu-

ments of the communication skeletons to be of type Index or Size in order to

infer their symbolic values at compile time.

The following restrictions were chosen because they entailed simplifications or a

more efficient implementation. They could be relaxed to a certain extent.

• The communication skeletons considered are standard collective communica-

tion primitives (broadcast, translation, etc.) which are either hard-wired or

optimized on many parallel machines. However, new communication skeletons

could be taken into account. Similarly, the collections of computation and

reorganization skeletons could be extended.

• We have considered only nested vectors, not multi-dimensional arrays. Nested

vectors are general, but make a distinction between dimensions. For example,

some operations on columns are less easily expressed than the same operations

on rows. It would be possible to include new families of skeletons acting on

2D or 3D matrices.

• User-defined functions are first order. We feel that higher order functions (and

the use of closures) would make the analyses and the implementation much

more complex. However, a simple solution to relax this restriction would be to

use a preliminary transformation removing higher order functions (e.g. Chin,

1990).

10.2 Related work

The existing specialized languages for data parallelism are generally based on

restricted forms of recursion. These restrictions are either syntactic constraints on

the form of recursive calls or the fixpoint operator is replaced by a collection of

skeletons.

The Alpha language (Wilde, 1994) is a first order, strongly typed, functional

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 595

language. An Alpha program is a system of recursive functions where the argu-

ments within recursive calls are restricted to be affine expressions of the function

parameters. These restrictions make it possible to define precise static analyses and

lead to efficient implementations on mimd machines (Quinton et al., 1995). Alpha

was initially introduced to express systolic algorithms, and may seem too restricted

to express less regular programs. A possibility is to relax the affinity restriction, as in

the systolic language Crystal (Chen et al., 1991), but the static analyses lose their

precision.

The Fortran community has studied automatic data distribution through parallel

cost estimation (Gupta and Banerjee, 1992; Chatterjee et al., 1993). If the complete

Fortran language (unrestricted conditional, indexing with runtime value, etc.) is to

be taken into account, communication and computation costs cannot be accurately

estimated. In practice, the approximated cost may be far from the real execution

time leading to a bad distribution choice. Tawbi (1994), Pugh (1994) and Clauss

(1996) focus on a subset of Fortran: loop bound and array indexes are affine

expressions of the loop variables. This restriction allows them to compute a precise

symbolic computation cost based on polytopes. Unfortunately, using this approach

to estimate communication costs is not realistic. Indeed, the cost would be expressed

in terms of point-to-point communications without taking into account hard-wired

communication primitives (Feautrier, 1994). These approaches estimate real costs

too roughly to ensure that a good distribution is chosen.

The skeletons of Cole (1988) and Darlington et al. (1993) can be seen as hard-

wired parallel schemes (e.g. divide-and-conquer, pipe, etc.). Each skeleton comes with

a fixed, optimal, distribution and implementation; this may entail a (costly) redis-

tribution before each skeleton. This approach cannot exploit the nested parallelism

expressed by the combination of skeletons (e.g. only the parallelism of the top-level

map would be taken into account in the expression map (map (+1))). The skeletons

of Darlington et al. (1995) include classic higher-order functions (map, fold, scan)

and coordination and distribution skeletons. In the same vein, Südholt (1997) intro-

duces high-level distribution skeletons much more general than hpf distributions. In

these approaches, data distribution is explicit and chosen by the programmer. The

skeletons of Blelloch et al. (1994) and Cai and Skillicorn (1995) can be nested and

facilitate the expression of algorithms having several levels of parallelism. Finally,

Shafarenko (1995) introduces skeletons to describe sophisticated data motions into

multi-dimensional arrays. A type inference with subtyping is used to detect particu-

lar data motions (e.g. collective communications such as translations or broadcasts).

Shafarenko’s skeletons are much more general than the communication skeletons

of L1 and may describe complex communication schemes whose cost can only be

approximated.

The skeleton community have defined several static analyses (size, cost) for special-

ized languages. Jay and Steckler (1998) defines a shape analysis for a polymorphic

imperative language with arrays (the FISh language). Programs are restricted to be

‘shapely’, i.e. the shape (size) of arrays does not depend upon scalar values. This

restriction makes it possible to evaluate statically the size of arrays. However, the

numerical size of input arrays must be known at compile time. The analysis is

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

596 P. Fradet and J. Mallet

not symbolic and may have the same complexity as the source program. Nitsche

(2000) aims at detecting ‘shapely’ expressions in a standard functional language.

The ‘shapeliness’ property is undecidable in general. His analysis only finds a sub-

set of ‘shapely’ expressions. Herrmann and Lengauer (1998) defines a size analysis

for functional language with nested lists. The analysis is symbolic but incomplete

(recursive functions makes the problem undecidable).

The implementation of skeleton languages are based on cost analyses. Gorlatch

et al, (1999) define precise communication costs for combination of scan and fold

skeletons on several parallel topologies (hypercube, mesh, etc.). Cai and Skillicorn

(1995), Rangaswami (1996) and Jay (2000) define cost analyses for skeleton-based

languages. Their skeletons are less restricted than ours leading to an approximate

parallel cost (communication or/and computation). Furthermore, the costs are not

symbolic: the size of input matrices and the number of processors are supposed

to be known. Bratvold (1993) and Michaelson et al. (1998) use cost estimations

based on profiling to choose the distribution for each skeleton. Such experimental

approaches do not ensure good and portable parallel performances for different

machines, number of processors, or sizes of inputs.

Most implementations use cost information to apply local, cost-reducing, trans-

formations (Darlington et al., 1993) or to choose the best distribution for each

skeleton (Bacci et al., 1999). In both cases, implementation decisions are local and

no arbitration of trade-offs is possible.

In our approach, we start from a high level language (L1) where skeletons can be

freely nested and obtain a skeleton language (L6) with explicit distribution, com-

munication and allocation similar to the source language of Darlington et al. (1995).

Contrary to local optimization approaches, we consider a global distribution and

cost analysis, and we are able to select the best implementation (among a restricted

set of choices).

10.3 Future work

The preliminary results obtained by our prototype are promising but more exper-

iments are necessary to assess both the expressiveness of the language and the

efficiency of the compilation. The expressiveness may be evaluated by encoding a

significant set of examples requiring high performances. The algorithms introduced

in the Cowinchan set (Wilson, 1994) seem a good starting point, since they were

conceived to test the expressiveness and the elegance of parallel programming lan-

guages. It would be possible and useful to introduce new computation skeletons or

to let the user call (possibly recursive) sequential C functions fromL1 programs. For

the latter option, the user should also provide the symbolic cost of the C functions

and indicate whether they update some vector arguments (in such case, copies must

be performed before the call).

Experiments are also necessary to evaluate more thoroughly the precision of the

cost analysis, in particular, the costs associated with the communication primitives.

Another field of experimentation is the evaluation of our compilation process for

simd machines. For such parallel machines, the cost of synchronization is negligible,

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 597

but the load balancing of computations is of primary importance to obtain good

performances. Our cost analysis seems reusable in this context. Experiments are

needed to support this claim, and may also suggest new optimizations specific to

simd machines.

Another research direction is to study dynamic redistributions chosen at compile-

time. Some parallel algorithms (e.g. Alternative Direction Implicit Integration

(Golub and Ortega, 1993)) are much more efficient in the context of dynamic

data redistribution. A completely automatic and precise approach to this problem

would be possible in our framework. However, this would lead to a search space

of exponential size. A possible solution to this problem is to consider (high-level)

interactions with the user.

The language L1 introduces only data parallelism. However, certain algorithms

are more easily expressed in the form of control parallelism such as ‘divide and

conquer’ algorithms. The extension of the language L1 with such skeletons would

be useful to increase the expressiveness of the language. Herrmann and Lengauer

(1999) describe the compilation of ‘divide and conquer’ skeletons into nested se-

quential and parallel loops. This can be seen as transforming control parallelism

into data parallelism. So, a solution to accommodate control parallelism in our

approach would be to characterize a class of control parallelism skeletons that can

be transformed into L1.

More generally, skeletons appear to be an interesting technique to the design

of Domain Specific Languages (dsls). They make it possible to describe high-

level languages enjoying important properties without preventing further extensions

(by adding new skeletons). We believe that this approach to dsls deserves more

consideration.

Acknowledgements

Thanks are due to Rémi Douence, Mario Südholt and the anonymous referees for

their useful comments.

References

Bacci, B., Gorlatch, S., Lengauer, C. and Pelagatti, S. (1999) Skeletons and transformations in

an integrated parallel programming environment. Parallel Computing Technologies: LNCS

1662, pp. 13–27.

Blelloch, G. E., Hardwick, J. C., Sipelstein, J., Zagha, M. and Chatterjee, S. (1994) Implemen-

tation of a portable nested data-parallel language. J. Parallel & Distributed Comput., 21(1),

4–14.

Bratvold, T. (1993) A Skeleton-Based Parallelising Compiler for ML. Proc. International

Workshop on Parallel Implementation of Functional Languages, pp. 23–33.

Cai, W., & Skillicorn, D. (1995) Calculating recurrences using the Bird-Meertens formalism.

Parallel Processing Lett., 5(2), 179–190.

Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B. and Watt, S. M.

(1992) Maple V Language Reference Manual. Springer-Verlag.

Chatterjee, S., Gilbert, J. R., Schreiber, R. and Teng, S. (1993) Automatic array alignment

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

598 P. Fradet and J. Mallet

in data-parallel program. Proc. ACM Symposium on Principles of Programming Languages,

pp. 16–28.

Chen, M., Choo, Y. and Li, J. (1991) Crystal: Theory and Pragmatics of Generating Efficient

Parallel Code. In: Szymanski, B. K. (ed.), Parallel Functional Languages and Compilers,

pp. 255–308. ACM Press.

Chin, W. N. (1990) Automatic methods for program transformation. PhD thesis, Imperial

College.

Choi, J. and Dongarra, J. J. (1995) Scalable linear algebra software libraries for distributed

memory concurrent computers. Proc. IEEE Workshop on Future Trends of Distributed

Computing Systems, pp. 170–177.

Clarke, L., Glendinning, I. and Hempel, R. (1994) The MPI Message Passing Interface

Standard. Programming Environments for Massively Parallel Distributed Systems: Working

conference of the IFIP, pp. 213–218.

Clauss, P. (1996) Counting solutions to linear and nonlinear constraints through Ehrhart

polynomials: Applications to analyze and transform scientific programs. Proc. ACM Inter-

national Conference on Supercomputing, pp. 278–285.

Cole, M. (1988) A skeletal approach to the exploitation of parallelism. Proc. CONPAR,

pp. 667–675. Cambridge University Press.

Darlington, J., Field, A. J., Harrison, P. G., Kelly, P. H. J., Sharp, D. W. N., Wu, Q. and While,

R. L. (1993) Parallel programming using skeleton functions. Proc. of the PARLE: LNCS

694, pp. 146–160.

Darlington, J., Guo, Y. K, To, H. W. and Jing, Y. (1995) Skeletons for structured parallel

composition. Proc. ACM Symposium on Principle and Practice of Parallel Programming,

pp. 19–28.

Douence, R. and Fradet, P. (1998) A systematic study of functional language implementations.

ACM Trans. Programming Languages and Systems, 20(2), 344–387.

Feautrier, P. (1994) Toward automatic distribution. Parallel Processing Letters, 4(3), 233–244.

Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J. and Walker, D. (1988) Solving Problems

on Concurrent Processors. Prentice-Hall.

Golub, G. H. and Ortega, J. M. (1993) Scientific Computing: An introduction with parallel

computing. Academic Press.

Gorlatch, S., Wedler, C. and Lengauer, C. (1999) Optimization rules for programming with

collective operations. Proc. Symp. on Parallel and Distributed Processing, pp. 492–499.

Gupta, M. and Banerjee, P. (1992) Demonstration of automatic data partitioning techniques

for parallelizing compilers on multicomputers. IEEE Trans. Parallel & Distributed Syst.,

3(2), 179–193.

Guzmán, J. C. and Hudak, P. (1990) Single-threaded polymorphic lambda calculus. Proc.

Symposium on Logic in Computer Science, pp. 333–343. IEEE Press.

Herrmann, C. and Lengauer, C. (1998) Size inference of nested lists in functional programs.

Proc. International Workshop on Implementation of Functional Languages, pp. 347–364. Uni-

versity College, London.

Herrmann, C. and Lengauer, C. (1999) Parallelization of divide-and-conquer by translation

to nested loops. J. Functional Programming, 9(3), 279–310.

Hudak, P., Peyton Jones, S., Walder, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman, M. M.,

Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W. and Peterson,

J. (1992) Report on the programming language haskell. Sigplan Notices, 27(5).

Hudak, P., Peyton Jones, S., Wadler, P., Hughes, John, Augustsson, L., Barton, D., Boutel,

B., Burton, W., Fasel, J., Hammond, K., Hinze, R., Johnsson, T., Jones, M., Launchbury,

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 599

J., Meijer, E., Peterson, J., Reid, A. and Runciman, C. (1999) Standard Libraries for the

Haskell 98 Programming Language. Research report, Yale university.

Jay, B. (2000) Costing parallel programs as a function of shapes. Science of Computer

Programming, 37(1), 207–224.

Jay, B. and Steckler, P. (1998) The functional imperative: shape! European Symposium on

Programming: LNCS 1381, pp. 139–153.

Johnsson, T. (1985) Lambda lifting: Transforming programs to recursive equations. Functional

Programming Languages and Computer Architecture: LNCS 201, pp. 190–203.

Kastens, U. and Schmidt, M. (1986) Lifetime analysis for procedure parameters. European

Symposium on Programming: LNCS 213, pp. 53–69.

Mallet, J. (1998a) Compilation d’un langage spécialisé pour machine massivement parallèle.

Doctorat d’université, Rennes I.

Mallet, J. (1998b) Symbolic cost analysis and automatic data distribution for a skeleton-based

language. Euro-par’98 parallel processing: LNCS 1470, pp. 688–697.

Michaelson, G., Scaife, N., Bristow, P. and King, P. (1998) Engineering a parallel compiler

for SML. Proc. of the International Workshop on Implementation of Functional Languages,

pp. 213–226. University College, London.

Mitchell, J. C. (1991) Type inference with simple sub-types. J. Functional Programming, 1(3),

245–286.

Nitsche, T. (2000) Shapeliness analysis of functional programs with algebraic data types.

Science of Computer Programming, 37(1), 225–252.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, Brian P. (1986) Numerical

Recipes in FORTRAN: The art of scientific computing. Cambridge University Press.

Pugh, W. (1994) Counting solutions to presburger formulas: How and why. Proc. Conference

on Programming Language Design and Implementation, pp. 121–134.

Quinton, P., Rajopadhye, S. and Wilde, D. (1995) On deriving data parallel code from

a functional program. Proc. of the International IEEE Symposium on Parallel Processing,

pp. 766–773.

Rangaswami, R. (1996) A cost analysis for a higher-order parallel programming model. PhD

thesis, Edinburgh University.

Schmidt, D. A. (1985) Detecting global variables in denotational definitions. ACM TOPLAS,

7(2), 299–310.

Sestoft, P. (1989) Replacing functional parameters by global variables. Proc. of the Conference

on Functional Programming Languages and Computer Architecture, pp. 39–53.

Shafarenko, A. (1995) Symmetries in data parallelism. The Computer Journal, 38(5), 365–380.

Südholt, M. (1997) The transformational derivation of parallel programs using data-distribution

algebras and skeletons. PhD thesis, Technische Universität Berlin.

Tawbi, N. (1994) Estimation of nested loops execution time by integer arithmetic in convex

polyhedra. Proc. of International Symposium on Parallel Processing, pp. 217–223.

Turner, D. A. (1979) A new implementation technique for applicative languages. Software–

Practice and Experience, 9, 31–49.

Wadler, P. (1990) Linear types can change the world! Programming Concepts and Methods,

pp. 561–581. North Holland.

Wilde, D. (1993) A library for polyhedral operations. Publication Interne 785. IRISA.

Wilde, D. (1994) The ALPHA language. Technical Report 2295, INRIA, France.

Wilson, G. (1994) Assessing the usability of parallel programming systems: The cowichan

problems. Proc. IFIP Working Conference on Programming Environments for Massively

Parallel Distributed Systems.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

600 P. Fradet and J. Mallet

A Transformations and analyses (Addendum)

We describe here additional rules for the size inference and the transformations.

Along with the rules shown in the main text, there is at least one rule for each

skeleton class. The reader is referred to Mallet (1998a) for complete descriptions.

A.1 Size inference

C ` Int ⊆ α Op ∈ {+,−}
C,Γ ` Op : (α, α)→ α, {} [OP]

C,Γ ` e : αs1 , C1 C ` α ⊆ Float

C,Γ ` k ∗ e : αs2 , C1 ∪ {s2 = k ∗ s1} [LINF2]

C,Γ ` e : Index s1 , C1 C,Γ ` f : (Index s2 , β)→ γ, C2 C1∪C2 ⇒ {1 6 s2 6 s1}
C,Γ ` iterfor e f : α→ α, C1 ∪ C2 ∪ {α = β = γ} [ITE]

C,Γ ∪ {x1 : α1, ..., xn : αn} ` e : β, C1

C,Γ ` λ(x1, ..., xn).e : (α1, ..., αn)→ β, C1

[ABS]

C,Γ ` zip : (Vect s1 α,Vect s2 β)→ Vect s1 (α, β), {s1 = s2} [ZIP]

C,Γ ` e : Size s, C1

C,Γ ` makearray e : α→ Vect s α, C1

[MAK]

C,Γ ` e : β1, C1 C,Γ ` f : (β2, α)→ β3, C2

C,Γ ` fold e f : Vect s α→ β1, C1 ∪ C2 ∪ {β1 = β2 = β3} [FOLD]

A.2 Distribution

Abstraction transformation

Abs[[λ−→X .Exp]]
−→
Y = Abs[[extract(a,b),a ◦ Abs[[Exp]]

−→
X]]
−→
Y

Abs[[iterfor Exp Fun]]
−→
X = iterforuc (Abs[[Fun]]

−→
X)

◦ extract(a,(b,c)),(b,(c,a)) ◦ ftuple2 Id (Abs[[Exp]]
−→
X)

Abs[[Op]]
−→
X = ftuple2 Op Id

Abs[[zip]]
−→
X = ftuple2 zip Id

Abs[[makearray Exp]]
−→
X = ftuple2 makearrayuc Id

◦ extract(a,(b,c)),((a,b),c) ◦ ftuple2 Id (Abs[[Exp]]
−→
X)

Abs[[fold Exp Op]]
−→
X = ftuple2 (folduc Op) Id

◦ extract(a,(b,c)),((b,a),c) ◦ ftuple2 Id (Abs[[Exp]]
−→
X)

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 601

Distribution transformation

Dist[[iterforuc F ◦ dpi (loci p) di]]

= let di ◦ F’= Dist[[F ◦ dpi (loci p) di]]

in di ◦ piterfor F’ with di :Vect p α→ α

Dist[[dealloc ◦ dpi di1 di2]]

= di2 ◦ pimap (λ(ip, x).dealloc x)

Dist[[Op ◦ consti k p]]

= consti k p ◦ pimap (λ(ip, x).if ip = k then Op x else x)

Dist[[zip ◦ dpi fdi fdi]]

= fdi ◦ pimap (λ(ip, x).zip x)

Dist[[zip ◦ dpi (dei fdi di1) (dei fdi di2)]]

= dei fdi (dpi di1 di2) ◦ pimap (λ(ip, x).zip x)

Dist[[folduc Op ◦ dpi seqi (consti k p)]]

= consti 0 p ◦ pimap (λ(ip, (e, v)).if ip = 0 then folduc Op(e, v) else e)

◦ ptransfer ◦ pimap (λ(ip, (v, e)).(k, 0, e, v))

Dist[[folduc Op ◦ dpi (blocki p) (consti k p)]]

= consti k p

◦ pimap (λ(ip, (v1, v2)).if ip = k then folduc Op (v1, v2) else 1Op)

◦ pgather ◦ pimap (λ(ip, (v1, v2)).(k,folduc Op (v1, 1Op), v2))

if Op is commutative

Dist[[folduc Op ◦ dpi (cyci p) (consti k p)]]

= consti k p

◦ pimap (λ(ip, (v1, v2)).if ip = k then folduc Op (v1, v2) else 1Op)

◦ pgather ◦ pimap (λ(ip, (v1, v2)).(k,folduc Op (v1, 1Op), v2))

if Op is commutative

Dist[[folduc Op ◦ dpi (cyci p) (consti k p)]]

= consti k p

◦ pimap (λ(ip, (v1, v2)).if ip = k then folduc Op (cyci p v1, v2) else 1Op)

◦ pgather ◦ pimap (λ(ip, x).(k,x))

Dist[[makearrayuc ◦ dpi (consti k p) (consti k p)]]

= consti k p ◦ pimap (λ(ip, (e, x)).makearrayuc(e,x))

A.3 Cost analysis

Ca[[λ(x1, ..., xn).e]] = λ(x1, ..., xn).Ca[[e]]
Ca[[Fun Exp]] = Ca[[Fun]](Exp)+ Ca[[Exp]]

Ca[[(Exp1, Exp2)]] = Ca[[Exp1]] + Ca[[Exp2]]

Ca[[x]] = 0

Ca[[k]] = 0

Ca[[iterforuc Fun]] = (λx.
∑

i { 06i
i6s } Ca[[Fun]](i, x))

where iterforuc Fun : (Indexs, α)→ α

Ca[[copy]] = (λx.αcopy∗size α) where copy : α→ β

Ca[[dealloc]] = (λx.αdea∗size α) where dealloc : (α, β)→ β

Ca[[zip]] = (λx.αzip ∗ n) where zip : (Vect n α,Vect n β)→ γ

Ca[[makearrayuc]] = (λx.αmake ∗ e ∗ size α) where makearrayuc : (β, α)→ Vect e α

Ca[[folduc Op]] = (λx.
∑

i { 06i
i<n }

(Ca[[Op]](x!i) + αfol
)
)

where folduc Op : Vect n α, β)→ γ

Ca[[brdcastuc]] = (λx.αbr ∗ n ∗ size α) where brdcastuc : (α,Vect n α)→ Vect n α

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

602 P. Fradet and J. Mallet

B Examples of proofs

The compilation process is proven to be correct by showing for each transformation

step three properties (cf. section 2). Proofs are mainly simple structural inductions.

We sketch here the proof for Property 1 for the abstraction Abs and Property 2 for

the distribution transformation Dist.

B.1 Proof of Property 1

The source language of the transformation Abs is L3 which is the language L1

with two additional functions copy and dealloc , and such that the argument functions

of the skeleton polyn are closed.

The target language of Abs is L4 whose syntax is:

Prog4 ::= Fun4 VarTuple4

Fun4 ::= Fun4 ◦ Fun4 | iterforuc Fun4 | Op4 | extract(VarTuple4 ,VarTuple4)

| ftuplen Fun4 ...Fun4

| CompSkel4 | ReorgSkel4 | CommSkel4 | MaskSkel4
Op4 ::= + | − | ∗ | div | exp | log | cos | . . . | copy | dealloc

CompSkel4 ::= map Fun4 | folduc Op4 | scanuc Op4

ReorgSkel4 ::= zip | unzip | append | makearrayuc

CommSkel4 ::= brdcastuc | transferuc | rotateuc | scatteruc

| gatheruc | allgatheruc | allbrdcastuc

MaskSkel4 ::= polyn λ(x1, . . . , xn).Ineq4 Fun4 Fun4

Ineq4 ::= Ineq4 ∧ Ineq4 | LinF4 < LinF4 | LinF4 = LinF4

LinF4 ::= LinF4 + LinF4 | LinF4 − LinF4 | k∗LinF4 | x | k
VarTuple4 ::= (VarTuple4,...,VarTuple4) | x

Property 1 is expressed as:

∀P ∈ Prog3, (Abs[[P]]
−→
X)
−→
X ∈ Prog4 where

−→
X are the free variables of P .

The proof of this property boils down to the proof of the corresponding properties

on (recursive) non-terminals of L3. That is:

• ∀E ∈ Exp3,Abs[[E]]
−→
X ∈ Fun4 where

−→
X contains the free variables of E

• ∀F ∈ Fun3,Abs[[F]]
−→
X ∈ Fun4 where

−→
X contains the free variables of F

This proof is done by structural induction. We show only the case of pairs.

Let E1, E2 ∈ Exp3, we have

Abs[[(E1,E2)]]
−→
X = extract((a,b),(a,b)),((a,a),b)

◦ ftuple2 (Abs[[E1]]
−→
X) (Abs[[E2]]

−→
X) ◦ extractx,(x,x)

By the induction hypothesis, we have Abs[[E1]]
−→
X ∈ Fun4 and Abs[[E2]]

−→
X ∈

Fun4. So ftuple2 (Abs[[E1]]
−→
X) (Abs[[E2]]

−→
X) ∈ Fun4, and the right-hand side expres-

sion belongs to Fun4.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 603

B.2 Proof of Property 2

To prove that the distribution transformation preserves the semantics, we show, for

each transformation rule, that the left-hand side expression is semantically equal to

the right-hand side one.

For example, to prove the poly2 rule, we use the Haskell definition of the inverse

distribution dei (blocki p) seqi :

dei (blocki p) seqi proc

= array (0,p*b-1)

[(ip*b+i, array (0,n-1) [(j,proc!ip!i!j)| j<-[0..n-1]])

| i<-[0..b-1], ip<-[0..p-1]]

where p = sizeRange(bounds proc)

b = sizeRange(bounds proc!0)

n = sizeRange(bounds proc!0!0)

Let dei (blocki p) seqi : Vectproc p (Vect b (Vect n α))→ Vect m (Vect n α),

Then, for all proc : Vectproc p (Vect b (Vect n α))

(poly2 P F1 F2 ◦ dei (blocki p) seqi) proc

= poly2 P F1 F2 (dei (blocki p) seqi proc)

◦ definition

= poly2 P F1 F2

(array (0,p*b− 1) [(ip*b+i, array (0,n− 1) [(j,proc!ip!i!j)

| j<-[0..n− 1]]) | i<-[0..b− 1], ip<-[0..p− 1]])

dei definition

= array (0,p ∗ b− 1)

[(ip*b+i, array (0,n− 1)

[(j,if P(ip*b+i,j) then F1(proc!ip!i!j) else F2(proc!ip!i!j))

| j<-[0..n− 1]]) | i<-[0..b− 1], ip<-[0..p− 1]]

poly2 definition + ! definition

= dei (blocki p) seqi

(pimap λ(ip, v).(array (0,b− 1) [(i, array (0,n− 1)

[(j,if P(ip*b+i,j) then F1(v!i!j) else F2(v!i!j))

| j<-[0..n− 1]])| i<-[0..b− 1]]) proc)

dei definition + pimap definition

= dei (blocki p) seqi

(pimap (λ(ip, v).poly2 P ◦ λ(i, j).(ip ∗ b+ i, j) F1 F2 v) proc)

poly2 definition

= (dei (blocki p) seqi

◦ pimap (λ(ip, v).poly2 P ◦ λ(i, j).(ip ∗ b+ i, j) F1 F2 v)) proc

◦ definition
Thus,

poly2 P F1 F2 ◦ dei (blocki p) seqi

= dei (blocki p) seqi ◦ pimap (λ(ip, v).poly2 P ◦ λ(i, j).(ip ∗ b+ i, j) F1 F2 v

= Dist[[poly2 P F1 F2 ◦ dei (blocki p) seqi]]

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

604 P. Fradet and J. Mallet

C Examples of programs

C.1 LU decomposition

The LU decomposition computes the decomposition of a square matrix M into two

matrices L (triangular lower) and U (triangular higher), such as M = L ∗U.

The L1 program implementing this algorithm is given figure C 1. This program

takes a matrix M of float of size n× n, and returns a matrix containing the matrices

L and U. The algorithm consists of an iteration (main function LU). At the kth

step, the loop body determines the kth row and the kth column of the matrix result.

This calculation is carried out by elimination by taking the element of the row k− 1

and the column k − 1 as pivot. The function calc applies the function fcalc to all

the elements having indexes of row and column greater than k. This computation is

iterated until the calculation of the nth row and the nth column. A Fortran version

of this program can be found in (Press et al., 1986).

LU(M) where

M :: Vect n (Vect n Float)

LU = iterfor (n− 1) loop

loop = λ(k, a).calc(fac(apivot(colrow(k, a))))

calc = λ(k, a, row, piv).poly2 (λ(i, j).k 6 i ∧ k 6 j) fcalc first
(map zip3(zip3(a, row, piv)))

fcalc = λ(a, row, piv).a− row ∗ piv
fac = λ(k, a, row, col, piv).(k, a, row,map (map /) (map zip (zip (col, piv))))

apivot = λ(k, a, row, col).(k, a, row, col,map (brdcast (k − 1)) row)

colrow = λ(k, a).(k, a, brdcast (k − 1) a,map (brdcast (k − 1)) a)

zip3 = λ(x, y, z).map p2t (zip (x, zip (y, z)))

p2t = λ(x, (y, z)).(x, y, z)

first = λ(x, y, x).x

Fig. C 1. LU decomposition in L1.

C.2 The n-body problem

The n-body problem concerns the simulation of N particles interacting via a long-

range force such as gravity.

TheL1 program given in figure C 2 evaluates the new configuration of N particles

after one unit of time. It takes a vector V of size N of a 7-tuple of floats. Each

tuple element represents parameters of one particle (coordinates, speed, weight, etc.)

and returns a vector containing the new parameters of particles. The main iteration

computes the interaction between each pair in turn (function loop). This function

takes two copies of the initial vector, shifts the second copy to the right in order

to compute (function floop) the interaction between each pair of particles. After

(N − 1)/2 iterations, the interactions of all pairs have been computed. The resulting

vector contains the new configurations induced by the interactions of the N particles.

A Fortran version of this program can be found in Fox et al. (1988).

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

Compilation of a specialized functional language for parallel computers 605

NBODY (V) where

V :: Vect N (Float,Float,Float,Float,Float,Float,Float)

NBODY = λv.end(iterfor (div (N − 1) 2) loop (v, v))

loop = λ(i, (p, q)).floop (p, rotate 1 q)

floop = λ(p, q).unzip (map assign(zip3(p, q, (calc(zip (p, q))))))

calc = λv.map (txyz.fac.sq.dxyz) v

dxyz = λ((pm, px, py, pz, a, b, c), (qm, qx, qy, qz, a, b, c)).

(pm ∗ qm, px− qx, py − qy, pz − qz, 0)

sq = λ(a, b, c, d, e).(a, b, c, d, ((b ∗ b) + c ∗ c) + (d ∗ d))
fac = λ(a, b, c, d, e).(a/(e ∗ (sqrt e)), b, c, d, e)

txyz = λ(a, b, c, d, e).(a ∗ b, a ∗ c, a ∗ d)
assign = λ((pm, px, py, pz, pfx, pfy, pfz), (qm, qx, qy, qz, qfx, qfy, qfz), (tx, ty, tz)).

((pm, px, py, pz, pfx− tx, pfy − ty, pfz − tz),
(qm, qx, qy, qz, qfx+ tx, qfy + ty, qfz + tz))

end = λ(p, q).map plus(zip (p, rotate (−(÷N 2)) q))

plus = λ((a1, b1, c1, d1, pfx, pfy, pfz), (a2, b2, c2, d2, qfx, qfy, qfz)).

(pfx+ qfx, pfy + qfy, pfz + qfz)

zip3 = λ(x, y, z).(map p2t(zip (zip (x, y), z)))

p2t = λ((x, y), z).(x, y, z)

Fig. C 2. N-bodies in L1.

https://doi.org/10.1017/S0956796800003816 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003816

