A NOTE ON QUOTIENT FIELDS OF POWER SERIES RINGS

HUAH CHU AND YI-CHUAN LANG

ABSTRACT. Let *R* be an integral domain with quotient field *K*. If *R* has an overring $S \neq K$, such that *S*[[*X*]] is integrally closed, then the "algebraic degree" of *K*((*X*)) over the quotient field of *R*[[*X*]] is infinite. In particular, it holds for completely integrally closed domain or Noetherian domain *R*.

In this note, any integral domain R is commutative with identity. It is well known that if R is an integral domain with quotient field K, then the quotient field of R[X] is K(X). But it is not the case for the power series rings.

If *K* is a field, the quotient field of the power series ring *K*[[*X*]] is the Laurent series ring *K*((*X*)). In general, the quotient field Q(R[[X]]) of R[[X]] is properly contained in *K*((*X*)). Gilmer [2] gave a necessary and sufficient condition for the ring Q(R[[X]]) = K((X)): For any sequence $\{(a_i)\}_{i=1}^{\infty}$ of nonzero principal ideals of R, $\bigcap_{i=1}^{\infty}(a_i) \neq (0)$. In particular, if there exists $a \in R \setminus \{0\}$ such that $\bigcap_{i=1}^{\infty}(a)^i = (0)$, then Q(R[[X]]) is properly contained in *K*((*X*)). Sheldon [5, Theorem 2.1] showed that the transcendental degree of *K*((*X*)) over Q(R[[X]]) is infinite.

We shall prove that if R has an overring S such that S[[X]] is integrally closed, then the "algebraic degree" of K((X)) over Q(R[[X]]) is infinite. In particular, if R is completely integrally closed or Noetherian, the algebraic degree is infinite. (For a discussion of rings R such that R[[X]] be integrally closed, we refer to Ohm [4].) We also remark that R is completely integrally closed if and only if $Q(R[[X]]) \neq Q(S[[X]])$ for any subring $S, R \subset S \subseteq K$ [5, Theorem 3.4].

Let *R* be an integral domain which is not equal to its quotient field *K*. A ring *S* is called an *overring* of *R* if $R \subset S \subset K$. Let R[[X]] be the power series ring over *R* and K((X)) the Laurent series ring over *K*. If Q(R[[X]]) is the quotient field of R[[X]], then $Q(R[[X]]) \subset K((X))$. Let *L* be the algebraic closure of Q(R[[X]]) in K((X)).

THEOREM. If R has an overring S such that $S \neq K$ and S[[X]] is integrally closed, then the algebraic degree [L : Q(R[[X]])] is infinite.

PROOF. Since $S \neq K$, we can choose $a \in R$ which is not a unit in S and let

$$f(T) = T^{n} - aT^{n-1} + X \in S[[X]][T] \subset S[T][[X]].$$

© Canadian Mathematical Society 1994.

The first author was partially supported by the National Science Council of the Republic of China under grant NSC82-0208-M002-061.

Received by the editors September 15, 1992; revised November 30, 1992.

AMS subject classification: Primary: 13F25; secondary: 12F05, 13B22.

Key words and phrases: power series ring, quotient field, algebraic degree, completely integrally closed, Noetherian.

FIRST STEP. f(T) is irreducible in S[T][[X]]. Suppose that

(1)
$$(T^n - aT^{n-1}) + X = \left(p_0(T) + p_1(T)X + p_2(T)X^2 + \cdots \right) \\ \left(q_0(T) + q_1(T)X + q_2(T)X^2 + \cdots \right)$$

is a nontrivial factorization of f(T) in S[T][[X]]. Since $p_0(T) + p_1(T)X + \cdots$ and $q_0(T) + q_1(T)X + \cdots$ are not units in S[T][[X]], $p_0(T)$ and $q_0(T)$ are not units in S[T]. From (1), we have

$$p_0(T)q_0(T) = T^n - aT^{n-1}.$$

So we may assume that

$$p_0(T) = (T-a)T^i,$$

 $q_0(T) = T^j, \quad i+j = n-1, \ j \ge 1.$

Considering the coefficient of X in (1), we have

$$p_0(T)q_1(T) + p_1(T)q_0(T) = 1$$

(T-a)Tⁱq_1(T) + p_1(T)T^j = 1.

Since $j \ge 1$, i = 0. Let T = 0. Then $-aq_1(0) = 1$ and a is a unit in S. A contradiction.

SECOND STEP. f(T) is irreducible in S[[X]][T]. Suppose that

(2)
$$T^{n} - aT^{n-1} + X = \left(T^{\ell} + f_{\ell-1}(X)T^{\ell-1} + \dots + f_{0}(X)\right) \\ \left(T^{m} + g_{m-1}(X)T^{m-1} + \dots + g_{0}(X)\right)$$

is a nontrivial factorization of f(T) in S[[X]][T]. Since $f_0(X)g_0(X) = X$, one of f_0 and g_0 is a unit in S[[X]]; say $f_0(X)$ is a unit. Because $T^{\ell} + f_{\ell-1}(X)T^{\ell-1} + \cdots + f_0(X)$ is not a unit in S[[X]][T], $\ell \ge 1$. We regard $T^{\ell} + f_{\ell-1}(X)T^{\ell-1} + \cdots + f_0(X)$ as an element in S[T][[X]]. It is not a unit since $\ell \ge 1$.

If $T^m + g_{m-1}(X)T^{m-1} + \cdots + g_0(X)$ is a unit in S[T][[X]], then $T^m + g_{m-1}(0)T^{m-1} + \cdots + g_0(0)$ is a unit in S[T]. But $X \mid g_0(X)$ in S[[X]], so $g_0(0) = 0$. This is impossible. Hence (2) is also a nontrivial factorization of f(T) in S[T][[X]]. This contradicts the First Step.

THIRD STEP. f(T) is irreducible in Q(S[[X]])[T], and hence it is irreducible in Q(R[[X]])[T].

Since S[[X]] is integrally closed and the monic polynomial f(T) is irreducible over S[[X]], it is irreducible over Q(S[[X]]) by [6, p. 260, Theorem 5]. The second statement is obvious.

FOURTH STEP. f(T) has a root in K((X)).

Let $\sigma: K[[X]] \to K[[X]]/(X) \cong K$ be the canonical homomorphism. Then $\sigma f(T) = T^n - aT^{n-1} = T^{n-1}(T-a)$. Since T^{n-1} and T-a are comaximal in K[T], by Hensel's

Lemma [1, p. 215, Theorem 1; 3, p. 189, Theorem (44.4)], there exist monic polynomials $g(T), h(T) \in K[[X]][T]$ such that $\sigma g = T^{n-1}, \sigma h = T - a$ and f(T) = g(T)h(T). Thus h has degree one and it gives a root of f(T) in K[[X]].

CONCLUSION. For any *n*, the root is an element in K((X)) which is algebraic over Q(R[[X]]) of degree *n*. Thus $[L : Q(R[[X]])] = \infty$.

COROLLARY. If R is completely integrally closed or Noetherian, then the degree |L:Q(R[[X]])| is infinite.

PROOF. If R is completely integrally closed, then R[[X]] is integrally closed [1, p. 313, Proposition 14; 4]. Hence the corollary follows by theorem.

If R is Noetherian, then the integral closure S of R is a Krull domain [3, p. 118, Theorem (33.10)]. Hence S is completely integrally closed [1, p. 480, Theorem 2] and S[[X]]is integrally closed. Hence the result.

REFERENCES

1. N. Bourbaki, Elements of Mathematics, Commutative Algebra, Addison Wesley, 1972.

2. R. Gilmer, A Note on the quotient field of the domain D[[X]], Proc. Amer. Math. Soc. 18(1967), 1138-1140. 3. M. Nagata, Local Rings, Interscience Publishers, 1962.

4. J. Ohm, Some counterexamples related to integral closure in D[[X]], Trans. Amer. Math. Soc. 122(1966), 321-333.

5. P. B. Sheldon, How changing D[[X]] changes its quotient field, Trans. Amer. Math. Soc. 159(1971), 223-244

6. O. Zariski and P. Samuel, Commutative algebra, Vol. I, Van Nostrand, New York, 1958.

Department of Mathematics National Taiwan University Taipei, Taiwan 106 Republic of China

164