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From anthropogenic litter carried by ocean currents to plant stems travelling through the
atmosphere, geophysical flows are often seeded with elongated, fibre-like particles. In
this study, we used a large-scale laboratory model of a tidal current – representative of
a widespread class of geophysical flows – to investigate the tumbling motion of long,
slender and floating fibres in the complex turbulence generated by flow interactions with
a tidal inlet. Despite the non-stationary, non-homogeneous and anisotropic nature of this
turbulence, we find that long fibres statistically rotate at the same frequency as eddies
of similar size, a phenomenon called scale selection, which is known to occur in ideal
turbulence. Furthermore, we report that the signal of the instantaneous transverse velocity
difference between the fibre ends changes significantly from the signal produced by
the flow in the fibre surroundings, although the two are statistically equivalent. These
observations have twofold implications. On the one hand, they confirm the reliability
of using the end-to-end velocity signal of rigid fibres to probe the two-point transverse
statistics of the flow, even under realistic conditions: oceanographers could exploit this
observation to measure transverse velocity differences through elongated floats in the field,
where superdiffusion complicates collecting sufficient data to probe two-point turbulence
statistics at a fixed separation effectively. On the other hand, by addressing the dynamics
of inertial range particles floating in the coastal zone, these observations are crucial to
improving our ability to predict the fate of meso- and macro-litter, a size class that is
currently understudied.
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1. Introduction
The dynamics of fibre-like objects and their interaction with fluid flows concern many
environmental and industrial problems, such as pollutant dispersion (Nepf 2012), marine
snow formation (Arguedas-Leiva et al. 2022), pulp production in the paper industry
(Butler & Snook 2018), and many other phenomena of ecological or industrial relevance
(Lundell et al. 2011; Du Roure et al. 2019). Hence it is essential to understand how fibres
disperse in a fluid drift and tumble, depending on the flow conditions.

In most real-world applications, particle-laden flows are turbulent (Brandt & Coletti
2022). In this context, the dynamic behaviour of the fibres depends on their size compared
to the smallest active scales in the flow (Voth & Soldati 2017). Moreover, the effect of
the shape of the inertial particles (spheres, discs and rods) has been studied recently in
the case of turbulent open channel flows (Sanness Salmon et al. 2023). Discs and rods
showed different accelerations compared to spheres, in terms of statistical distributions,
most probably due to the mechanism known as inertial filtering (Bec et al. 2006; Toschi &
Bodenschatz 2009) that describes how different objects may resist and interact with
different scales of turbulence within the flow due to their characteristic shapes. On the one
hand, non-inertial and infinitesimal fibres (whose length is much shorter than the viscous
length scale) follow the trajectories of the fluid parcels without significant feedback to
the flow, rotating and deforming due to their coupling with the velocity gradient tensor
(Jeffery 1922; Ni et al. 2015; Allende et al. 2018). On the other hand, predicting the
motion of finite-sized fibres (whose length falls into the inertial range of turbulence) is less
trivial, as their dynamics is affected by the interaction with a range of eddies of different
sizes (Frisch & Kolmogorov 1995). Moreover, finite-sized fibres might modify the flow at
inertial scales so that at sufficiently high concentrations, they modulate the global energy
budgets (Olivieri et al. 2020; Cannon et al. 2024).

Focusing on the very dilute case, the statistical properties of the tumbling and defor-
mation of isolated fibres in turbulence have been studied extensively through laboratory
experiments and numerical simulations (see e.g. Marchioli et al. 2010; Alipour et al. 2021;
Olivieri et al. 2022; Giurgiu et al. 2024). Regarding rigid fibres, Parsa et al. (2012) and
Parsa & Voth (2014) measured the mean square tumbling rate as a function of their length
in three-dimensional Homogeneous and Isotropic Turbulence (HIT), ranging from viscous
to inertial scales. The Authors found that this quantity is self-similar in the inertial range
and follows a power law derived from the Kolmogorov theory (Kolmogorov 1941a,b; K41
in the following). Adding the effect of flexibility, fibres were found to behave as rigid
most of the time at viscous scales due to the combined action of flexural rigidity and fluid
stretching (Allende et al. 2018). However, as their length extends into the inertial range,
fibres can transition to a flexible state (Brouzet et al. 2014) where the magnitude of their
longitudinal oscillations is consistent with the K41 predictions (Rosti et al. 2018, 2020).

A recent line of research has explored the possibility of using fibre-like objects to
measure flow properties at both inertial and viscous scales. Using two-way coupled direct
numerical simulations (DNS) of HIT based on the Immersed Boundary Method (IBM),
Rosti et al. (2018, 2020) showed that the two-point longitudinal structure function can be
probed at a separation corresponding to the fibre length, by tracking the endpoints of a
sufficiently flexible fibre. Following the same approach, Hejazi et al. (2019) attempted to
measure the full velocity gradient tensor at viscous scales by tracking the rotation and
deformation of small flexible triadic particles in both two-dimensional shear flows and
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three-dimensional turbulence. A similar approach has been applied to rigid fibres rather
than flexible ones.

In Cavaiola et al. (2020), it has been verified that rigid fibres can effectively probe the
velocity gradient tensor in steady, unsteady regular and chaotic cellular flows by means of
Lagrangian tracking of assembly of rigid fibres, employing two-way coupled IBM DNS in
two- and three-dimensional spatially periodic flows. These simulations, characterised by
Lagrangian chaos, were designed to conduct a direct and reliable comparison between the
sampling of the unperturbed flow and the velocity increments measured through the fibre
endpoints. If a single rigid fibre is used, then only one component of the velocity gradient
tensor can be sampled, corresponding to the direction orthogonal to the fibre orientation.
However, by tracking a suitably built assembly of rigid fibres, the whole velocity gradient
tensor can be recovered from the velocities at its endpoints. Moreover, Cavaiola & Mazzino
(2021) extended this concept by demonstrating that even self-propelled slender objects,
pusher or puller swimmers, can sample hydrodynamic signals with reasonable accuracy
over a wide range of both flow and swimmer Reynolds numbers.

Combining IBM DNS with laboratory experiments, Brizzolara et al. (2021) showed
that rigid fibres can also sample the inertial range statistics of the transverse velocity
structure function in HIT. In particular, they suggested that this method – named Fibre
Tracking Velocimetry (FTV) – may be useful for measuring structure functions at a fixed
length scale (the fibre length) in geophysical domains such as open ocean or atmosphere,
where superdiffusion is known to lead to non-converging statistics at a fixed separation
(Richardson 1926).

Much less has been done in non-homogeneous, non-stationary and non-isotropic
turbulence, which are the most common flow conditions as far as geophysical flows are
concerned. This work explores the feasibility of using slender, rigid fibres to probe the two-
point statistics of the surface turbulence generated by a large-scale, chaotic geophysical
flow. This is done by performing a laboratory experiment in which simultaneous FTV
and Particle Image Velocimetry (PIV) are employed for three fibre lengths and several
flow conditions. To our knowledge, this is the first attempt to exploit FTV as a measuring
tool in such non-idealised conditions (non-homogeneous, non-stationary and non-isotropic
turbulence). The flow under examination is a tidal current generated in a laboratory facility,
representing a class of geophysical flows that occur in the coastal zone (Boyd et al.
1992; Bosboom & Stive 2021). This complex flow periodically generates a large number
of eddies at different scales, due mainly to the interaction with coastal features or the
orographic profile of the coast (Kapolnai et al. 1996; Vethamony et al. 2005; Branyon et al.
B2022). As an additional note, in geophysical contexts, this flow has been documented to
produce both direct (Kolmogorov 1941a; Boffetta 2007) and inverse (Bruneau et al. 2007;
Boffetta et al. 2023) energy cascades, or in some cases, even multiple cascades (Alexakis
& Biferale 2018; De Leo et al. 2022a).

From another perspective, this paper investigates experimentally the tumbling dynamics
of large floating rigid fibres on a free surface complex turbulence representing a widely
diffused type of geophysical flow. These elongated particles mimic a class of plastic litter
in the sea, namely meso-(5–25 mm) and macro-(>25 mm) plastic (Crawford & Quinn
2017; Núñez et al. 2023). Therefore, investigating this problem is essential to understand
the dynamics of this type of litter in the coastal zone.

2. Material and methods
For the present analysis, we employed the same laboratory facility described in detail
in a series of previous works (De Leo & Stocchino 2022; De Leo et al. 2022a,b;
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Figure 1. Sketch of the experimental tidal flume and the image acquisition system. The inset shows a close-up
of the field of view (FoV).

De Leo & Stocchino 2023). The large-scale experimental flume geometry, forcing tidal
flow, and measuring technique are briefly described in § 2.1. The rigid fibres preparation
and the proposed fibre-tracking algorithm based on deep learning are then described in
detail.

2.1. The experimental set-up
The laboratory flume (figure 1) consists of two main components: a compound tidal
channel that is 23 m long and 2.5 m wide, and a rectangular basin representing open
sea conditions, approximately 6 m long, 2.2 m wide and 0.5 m deep. This latter depth
is denoted by hb in the inset of figure 1, whereas the channel and the basin widths are
marked by wch and wb, respectively. The basin is connected to the tidal channel through
an inlet made of two vertical barriers, whose length lw is 0.86 m. The net inlet entrance
width wi is 0.7 m. The channel has a symmetric composite transversal profile with a deep
main channel and wide lateral tidal flats.

A volume wave generator, located at the end of the basin, generates the periodic tidal
wave following a monochromatic wave with a time law of the type η(t) = a sin (2πt/T ),
where η is the free surface elevation, a is the tidal amplitude, T is the tidal period, and t
is the time.

For the present experiments, we kept the mean water level at the channel inlet (D0)
and the tidal wave period constant at 0.12 m and 100 s, respectively. Consequently, the
inviscid tidal wavelength Lg = T

√
gD0 was also kept constant. In table 1, we reported the

main parameters of the experiments together with the estimate of the Reynolds number
defined as Re = UL/ν, where U is the maximum velocity registered at the tidal inlet, ν

is the kinematic fluid viscosity, and L is an integral length scale, set equal to the length
of the inlet barrier lw, consistent with previous work by De Leo & Stocchino (2022). This
choice of scales for the characteristic Reynolds number is determined by the fact that
the surface turbulence is expected to be driven primarily by the shedding of large-scale
vortices generated by the interaction between the tide and the inlet barriers in a jet-like
shape.

Based on the above large length and velocity scales, we also evaluated the Kolmogorov
length scale as ηk = lw Re−3/4 and the associated velocity scale as uη = ν/ηk (Tennekes &
Lumley 1972). The Kolmogorov scales are used in the following to characterise the fibres
and to provide dimensionless values of key variables, namely the flow and fibre structure
functions.
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Experiment no. T (s) U (m s−1) ε Re Lg (m) ηk (m) uη (m s−1)

1 100 0.074 0.0083 63640 108.5 2.1×10−4 4.7×10−3

2 100 0.109 0.0117 93740 108.5 1.6 ×10−4 6.2×10−3

3 100 0.135 0.0183 116100 108.5 1.4 ×10−4 7.3×10−3

4 100 0.163 0.0258 140180 108.5 1.2 ×10−4 8.4×10−3

Table 1. Main experimental parameters: T is the tidal period, U is the maximum velocity registered at the tidal
inlet, ε = a/D0 is the non-dimensional tidal amplitude, where a is the amplitude and D0 is the mean water
level, Re is the Reynolds number, Lg is the inviscid tidal wavelength, and ηk and uη are the Kolmogorov
length and velocity scale, respectively.

2.2. Fibre characterisation and Stokes numbers estimation
In this work, we investigated three different classes of rigid fibre-like dipoles, consisting
of two small polystyrene spheres (radius 5 mm) connected together with a rigid wooden
rod of 1 mm diameter. The three classes of fibres, labelled Class 01, Class 02 and Class
03, had centre-to-centre lengths 40, 60 and 90 mm, respectively, with error ±1 mm, and
they were released into the flow with a random orientation distribution, with starting point
placed always outside the field of view (FoV); see figure 1. Moreover, the dispersed fibres
always float on the water surface remaining on the x−y plane.

For the present analysis, it is important to ensure negligible rotational inertia, which
means having the fibre rotational Stokes number St much smaller than unity. In general, St
is defined as the ratio between the relaxation time of the fibre (τp) and a typical time scale
of the flow (τ f ), i.e. St = τp/τ f . As far as τ f is concerned, a natural choice when dealing
with tidal flows is the tidal wave period T (Toffolon et al. 2006; Cai et al. 2012).

To estimate St , we first convert the geometry of our rigid fibre into an equivalent prolate
spheroid; see Voth & Soldati (2017). In particular, we assumed that the area originally
occupied by the fibre would be redistributed over the surface of an equivalent prolate
spheroid in such a way that its major axis corresponded to the length of the fibre, L .
From the equivalence of the areas, the evaluation of the minor axis of the spheroid B is
straightforward. Once the dimensions of the spheroid are known, we can define the aspect
ratio λ as the ratio of the major axis to the minor axis, λ= L/B.

Then two distinct approaches to estimate St are adopted. The first approach consists in
employing the relationship proposed by Shapiro & Goldenberg (1993), Zhao et al. (2015)
and Voth & Soldati (2017), which reads

S(a)
t = 2

9T

ρp

ρ f

B2

ν

λ ln
(
λ+ √

λ2 − 1
)

√
λ2 − 1

, (2.1)

where T is the tidal period, ρp = 900 kg m−3 and ρ f = 1000 kg m−3 are the fibre and
fluid densities, respectively, B is the minor axis, λ is the aspect ratio of the equivalent
prolate spheroid, and ν is the kinematic fluid viscosity (10−6 m2 s−1).

The second approach estimates the Stokes number by means of the fibre rotational
relaxation time using the formulation by Bounoua et al. (2018) as

S(b)
t = 1

48
ρp

ρ f

(
B

ηk

)4/3 (
B

L

)2/3
[

1 + 3
4

(
B

L

)2
]

, (2.2)

where ηk is the Kolmogorov length (Kolmogorov 1941a,b) and L is the centre-to-centre
pole distance as in table 2.
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Fibre class L (m) λ S(a)
t S(b)

t

01 0.04 28.38 0.0160 0.0249–0.0547
02 0.06 57.38 0.0104 0.0105–0.0230
03 0.09 112.06 0.0070 0.0047–0.0103

Table 2. Main fibre parameters: L is the fibre length, λ is the aspect ratio of the equivalent prolate spheroid,
and St is the Stokes number. The superscripts (a) and (b) indicate St computed with (2.1) and (2.2),

respectively.

Note that neither (2.1) nor (2.2) is strictly applicable to the present case. On the one
hand, (2.1) is valid only for infinitesimal particles, which is not the case in our experiments.
On the other hand, (2.2) is derived under the assumption that the fibre tumbling is a
Langevin process driven by a random delta-correlated-in-time forcing, whose variance
is set by using Kolmogorov scaling for the velocity differences. This hypothesis is, in
principle, not valid for non-ideal turbulence. Nevertheless, both (2.1) and (2.2) can be used
to estimate the order of magnitude of St . The results of the different approaches for Stokes
numbers, the values of the fibre slenderness λ, and the Kolmogorov scales are reported in
table 2 for comparison. In all cases, the Stokes number of the fibres considered is much
smaller than unity, i.e. the fibre response time is instantaneous.

2.3. Eulerian flow measurements and fibre tracking algorithm
In the present experiments, we simultaneously measured the fluid Eulerian velocity fields
and the fibre trajectories. In particular, the two-dimensional time-resolved Eulerian free
surface velocity (u(x, t) = (u(x, t), v(x, t))) was measured using the same PIV set-up
employed in previous studies (De Leo & Stocchino 2022; De Leo et al. 2022a,b). Note
that the origin of the coordinate system, x = (x, y), was placed at the inlet opening in the
middle of the channel, with the x-axis pointing towards the end of the main channel, and
the y-axis following the right-hand rule.

Regarding the PIV, the acquisition system consisted of four digital cameras (Teledyne
Dalsa Genie Nano 89 C1280, resolution 1280×1024 pixels) placed on the tidal flume
pointing downward to the free surface and covering a FoV of approximately 4 m times 2.5
m (the entire flume width), see figure 1 for reference. The images recorded separately by
the four cameras, at a frequency of 15 fps, were merged together before the PIV analysis,
which was performed using the software proVision-XS (Integrated Design Tools (IDT),
Inc.). The final spatial resolution of the measured velocity fields was approximately one
vector every 31 mm in both x and y directions. It is worth noting that fibres released
during the experiments did not significantly influence the Eulerian velocities at the scale
resolved by the PIV. This is reasonable to expect since the fibre mass fraction used in
the present experiments is extremely low, and it has been shown that only at very high
fibre concentration the flow is influenced by the presence of the fibres (Olivieri et al.
2022). However, to test this assumption, we repeated experiment 4 twice without the fibres
using the same forcing conditions (tidal amplitude and period) and then compared the
time averaged velocity fields in terms of single velocity components and of the velocity
module. The percentage differences between the two repetitions without fibres were
0.09 ± 0.65 % and −0.09 ± 0.66 % for u(x, t) and v(x, t), respectively, and 0.55 ± 0.78 %
for the velocity modulus. The differences observed between the experiments with and
without fibres lead to values 0.1 ± 0.7 %, −0.08 ± 0.56 % and 0.5 ± 0.75 % for the velocity
components and modulus, respectively. Differences of the order of 1 % are within the
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expected repeatability of the experiments, and the presence of the fibres did not produce
statistically significant differences.

Regarding the fibre tracking algorithm, we employed a novel two-step framework for
multi-object tracing, enabling precise detection and tracking of both fibres and their
poles within frame sequences. Given a sequence of frames V = {v1, . . . , vt , . . . , vT },
where vt represented the t th frame, we identified K distinct fibres, depicted as dt =
{d1

t , . . . , dk
t , . . . , d K

t }, where dk
t denoted the kth fibre. Each fibre dk

t was characterised
by a tuple (fibre_id, xk

1 , yk
1 , xk

2 , yk
2), wherein fibre_id was a unique identifier that persisted

across frames for tracking continuity. The tuple elements xk
1 , yk

1 and xk
2 , yk

2 corresponded
to the pixel coordinates of the fibre’s poles. Our objective was to establish dt for each frame
vt , allowing for the detection of pole trajectories throughout the sequence of recorded
frames.
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In the initial phase, our approach used two YOLOv8-based deep detectors to locate
fibres and their corresponding poles (Li et al. 2023; Talaat & ZainEldin 2023). The
algorithm started by pinpointing fibres, from which it cropped the relevant image regions
for the subsequent step to determine the exact positions of the poles.

The framework then moved into its second phase, focusing on the consistent
identification of each fibre and pole across frames. We introduced a pair of measures
to determine the distance between objects, namely the Euclidean distance and the
Intersection over Union (IoU), an unsupervised tracking algorithm inspired by Bochinski
et al. (2017). The main assumption was that the nearest object in the following frame was
recognised as the subsequent position of the current object.

Given two bounding boxes of two objects Ai and B j , the IoU is calculated as

IoU(Ai , B j ) = area(Ai ∩ B j )

area(Ai ∪ B j )
, (2.3)

where area(Ai ∩ B j ) was the area of the intersection, and area(Ai ∪ B j ) was the area of
the union of the two bounding boxes.

Let (xi , yi ) and (x j , y j ) be the centre coordinates of poles Ai and B j , respectively. Then
the Euclidean distance between them could be calculated as

d(Ai , B j ) =
√

(xi − x j )2 + (yi − y j )2. (2.4)

The novel contribution of our algorithm lies in the implementation of a hierarchical
detection and tracking scheme. We adopted an IoU-based continuity criterion for fibres,
which served as a robust metric for preserving track continuity across consecutive frames.
In contrast, for poles, where the regions of interest were significantly smaller, we used
the Euclidean distance as the tracking metric. The detailed workflow is illustrated in
algorithm 1 through a pseudo-code.

Figure 2 shows a snapshot of the application of the proposed tracking algorithm. The
image represents one frame from experiment 1 of the surveyed region. As a result of
the threshold applied to the original image to remove PIV particle seeding and improve
contrast with the fibre, the background is almost completely black. On the left is still
visible, in white, the tidal barrier that divides the basin (left-hand side) from the tidal
channel (right-hand side). The fibres are clearly visible surrounded by the rectangular
bounding boxes, automatically identified and tracked by the algorithm. In each frame, all
three fibre classes are, on average, always found. Moreover, the density of fibres in the FoV
shown in figure 2 is the typical density maintained during all the experiments.

The number of tracked fibres during the four experiments ranged between 50 (for
experiment 1) to 121 (for experiment 4), with a trajectory time duration between 10 s and
620 s. The wide range of durations observed depended on the initial seeding location of the
fibres and the background Eulerian velocities. Note that the FoV of the acquisition system
did not cover the full length of the flume, thus cases where a fibre entered or exited the
measurement area were unavoidable. However, this issue did not substantially influence
the results of the analysis. Indeed, most of the trajectories lasted for more than a single
tidal period of 100 s, in some cases reaching up to six consecutive periods. Moreover,
the trajectories were almost equally distributed among the three Classes of fibres. In all
experiments, the algorithm detected a total number of objects classified as Class 01, 02
and 03 fibres equal to 143 854, 137 740 and 119 277, respectively. The average estimated
centre-to-centre distances for the three classes were 35.7±1.7 mm, 58.7±2.3 mm and
86.1±3.1 mm, demonstrating the good accuracy of the tracking algorithm. Note that the
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Figure 2. Example of the new tracking algorithm applied to one frame of experiment 1. A threshold has been
applied to the original recorded images before tracking the fibres to remove the PIV seeding particles and
improve contrast between the fibre and the background. The code automatically detects and tracks fibres (white
boxes) as well as lateral poles (red boxes) within image sequences. This frame was taken during a tidal flood
phase, flow from left to right.

obtained standard deviation corresponded to 1 or 2 pixels, with a single pixel equal to
1.6 mm.

The final outputs of the fibre tracking algorithm are the positions in time of the two poles
of the fibre, denoted as X A and X B , and of its centre of mass Xc. From the position in
time, we evaluated the Lagrangian velocities V A(t), V B(t) and V c(t), respectively, along
the trajectories.

2.4. Description of the fibre motion
We aim to investigate how the fibre dynamics is coupled with the background Eulerian
flow, and in particular, how the Eulerian fluid velocities at the same positions as the fibre
poles, usually called the fluid seen-by-particle velocities (Jung et al. 2008), drive the fibre
rotation. To this end, we first evaluate the Eulerian velocity in the positions experienced by
the fibre trajectories by interpolating the PIV field (u(x, t)) at the pole positions (X A(t),
X B(t)) and at the fibre centre of mass (XC (t)) using a bi-cubic interpolation algorithm.
Once the Lagrangian fibre velocities (V A(t), V B(t)) and fluid seen-by-particle Eulerian
velocities (uA(t), uB(t)) are known, we compute

δV = V B − V A, δu = uB − uA, (2.5)

where δV and δu are the Lagrangian and Eulerian velocity differences between the fibre
endpoints, respectively.

From (2.5), we then compute the transverse components, namely projection along the
unit vector normal orthogonal to the fibre axis (r̂⊥), as (Cavaiola et al. 2020)

δV⊥ = δV · r̂⊥, (2.6)
δu⊥ = δu · r̂⊥, (2.7)
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where δV⊥ is the Lagrangian projected velocity of the fibre, and δu⊥ is the Eulerian
projected velocity seen by fibre. The transverse velocity differences are indeed the
only component responsible for the fibre rotation. Specifically, the Lagrangian velocity
difference between the fibre endpoints is related to the variation of the fibre’s axis rotation
per unit time, as this equals δV⊥/L . Generally, the Lagrangian and Eulerian transverse
velocity differences are of the same order of magnitude (δV⊥ ∼ δu⊥), as the fibre rotates
preferentially due to the interaction with the eddies of its own size (Parsa & Voth 2014;
Bounoua et al. 2018; Brizzolara et al. 2021). This phenomenon is referred to as scale
selection.

Note that if the fibre moves on a plane, then the projection of the velocity difference of
(2.5) along the direction parallel to the fibre would simply lead to zero, as the fibre is rigid
and inextensible in the present case (Cavaiola et al. 2020).

Different properties of the transverse velocity differences (2.6) and (2.7) can be
analysed. First, a one-to-one comparison of the instantaneous signal is useful to understand
how the fibres drift with the background flow. Second, we can define a rotational slip
velocity as

δus⊥ = δV⊥ − δu⊥, (2.8)

which quantifies to what extent the Lagrangian projected velocity differs from the Eulerian
signal instantaneously.

The properties of δV⊥ and δu⊥ can be further characterised by their statistical
properties, from the probability distribution function to the statistical moments, i.e. the
structure functions. In particular, we focus on the scaling of the second- and third-order
moments of |δV⊥|, which are the FTV-based absolute value transverse structure functions
(Brizzolara et al. 2021)

S⊥
2 = 〈δV⊥2〉, S⊥

3 = 〈|δV⊥|3〉, (2.9)

where 〈·〉 indicates the average over all the fibre trajectories belonging to the same class
length and flow Reynolds number in space and time. We preferred to use the relative third-
order structure function (Arneodo et al. 1996) due to the periodicity of the Eulerian mean
flow, which induces a periodic reversal of the main longitudinal velocity.

3. Results and discussion

3.1. The background Eulerian turbulent tidal flow
The description of the flow under investigation encompasses both Eulerian and Lagrangian
properties, and for details we refer the reader to De Leo et al. (2022b). In the following
paragraphs, we will briefly summarise the main features, which we believe will be helpful
in discussing the present results.

The volume wave arising from the periodic oscillation of the tidal generator
propagates towards the tidal channel with wavelength Lg much longer than the channel
length, avoiding resonant behaviours of the tidal waves (Garrett 1972; Savenije 2001).
Subsequently, the resulting flow remains relatively regular until it encounters the tidal inlet
during the flood phase, i.e. when the mean flow intrudes into the tidal channel. As soon
as the almost uniform flow reaches the lateral inlet barriers, vortex shedding is observed
at the tips of the two plates of length lw. During the flood phase, a series of small-scale
vortices is continuously emitted and merged into a larger recirculating structure occupying
the entire lateral flat, as observed previously by Nicolau del Roure et al. (2009). Recently,
this process has been reinterpreted by De Leo et al. (2022a) through the use of Lagrangian-
Averaged Vorticity Deviation (LAVD) (Haller et al. 2016) and Finite Time Lyapunov
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Exponent (FTLE) dynamics (Haller 2015), which showed the entrainment of small-scale
vortices within the main vortical structure. In particular, detailed analysis of the LAVD
dynamics demonstrated the occurrence of a clear vortex thinning mechanism (Chen et al.
2006), ultimately linked to an inverse energy cascade (De Leo & Stocchino 2022).

During the ebb phase of the tide, an inversion of the mean flow occurs, with the main
flow directed towards the outer basin. This results in the disruption of the large gyres, with
the subsequent large-scale flow carrying the macro-vortices out of the tidal channel. The
observed asymmetry between the vortex shedding at the inlet during the flood and ebb
phase, and the resulting ebb dominance (De Leo et al. 2022b), can be attributed to two
main factors: the geometry of the channel (compound cross-section) and the geometry
of the basin (rectangular cross-section). In contrast, the symmetry of the inlet and tidal
channel geometries with respect to the x-axis implies the existence of symmetry in the
flow along the transverse direction.

If we now consider the phase-averaged velocity fields, also known as residual tidal
currents (Jay 1991), then De Leo et al. (2022b) showed how the pattern of the averaged
velocity fields depends on the main tidal parameters (amplitude ε, period T and tidal
shape factor). In the present case, we decided to keep the tidal period constant and vary
only the amplitude. Figure 3 shows two examples of the residual currents observed in the
present experiments, i.e. experiment 1, with the minimum ε (figure 3a), and experiment
4, with the maximum ε (figure 3b). As expected, increasing the tidal amplitude generates
two symmetric longer gyres downstream of the tidal inlet, whose width is controlled and
limited by the transverse extension of the later floodplains.

3.2. Fibre trajectories
Figure 4 shows all trajectories of the fibres’ centroids (XC (t)) measured during
experiments 1, 2, 3 and 4. The three classes of fibres are shown in different colours. By
inspecting the four panels, it can be observed that a reasonably good coverage of the entire
domain was achieved in the four experiments. The only exceptions are the regions in the
lateral corners at the inlet barriers on the basin side, where no fibres are detected. This is
consistent with the presence of Lagrangian Coherent Structures, which tend to keep those
regions dynamically separated from the most active part of the domain (De Leo et al.
2022a). Moreover, the fibre centroid trajectories clearly mark not only the presence of the
two large-scale gyres as a signature of the residual currents shown in figure 3, but also
the trace of smaller-scale vortices generated during the flood phase, when the main flow
direction is from the open basin towards the tidal channel. It is also possible to detect where
the fibres were not engulfed in the large macro-vortices but rather remained in the part of
the channel where the flow was smoother and periodically reversed the main direction,
approximately for x � 2 m. In fact, fibres released in the farthest part of the tidal channel
tended to remain confined outside the main flow structures, and they showed almost
rectilinear trajectories that reversed every tidal half-cycle, following the flood and ebb
phase cycle. This is again consistent with the Lagrangian Coherent Structures dynamics
reported in De Leo et al. (2022a).

A better insight into the qualitative behaviour of the fibre trajectories could be inferred
by analysing some examples of fibre trajectories, as shown in figure 5. The plots in
each row correspond to a single experiment, from experiment 1 to experiment 4. For
each experiment, two trajectories are shown as examples: Class 01 in figures 5(a2,d1),
class 02 in figures 5(a1,b1,d2), and class 03 in figures 5(b2,c1,c2). The trajectories are
displayed as two lines corresponding to the two poles of the fibre: the path of pole A is
in orange, and the path of pole B is in green. The initial position of each fibre is marked
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Figure 3. Example of residual velocity fields: (a) experiment 1 (ε = 0.0082, T = 100 s), and (b) experiment 4
(ε = 0.0258, T = 100 s).

with a dot of the colour of the corresponding pole. All displayed trajectories lasted for
more than a tidal period, thus experiencing all phases of the background flow, namely
the accelerating and decelerating flood that controls the generation of vortices in a wide
range of scales (up to large gyre occupying the entire channel expansion area) and the
accelerating and decelerating ebb when the flow reverses and destroys the large-scale
vortices in the channel.

An interesting feature that is easily identified in the fibre trajectories is that they
tend to remain confined in the half of the channel where they were initially released
or tracked. Very few exceptions to the latter behaviour were observed: two cases
are shown in figures 5(a1,c1), for experiments 1 and 3, respectively. In general, the
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Figure 4. All recorded fibre trajectories for the four experiments: (a) experiment 1, (b) experiment 2, (c)
experiment 3, (d) experiment 4. Different colours identify different fibre classes: class 01 in black; class 02
in light blue; class 03 in pink.

fibres are engulfed inside the lateral macro-vortices, producing looping trajectories, like
the cases in experiment 4. Moreover, it is evident that fibres often exhibit tumbling
trajectories on scales much smaller than the lateral macro-vortices; see, for example,
figures 5(b1,c1,c2,d1,d2). In these cases, the tumbling frequencies are clearly much higher
than the tidal period, and it is reasonable to assume that they are driven by the Eulerian
flow structure at the scale of the fibre. This aspect will be discussed in detail in the
following sections.

3.3. Instantaneous and projected velocity signals
In this section, we compare the instantaneous velocity signals of the fibres’ centroids,
resulting from the FTV (Lagrangian) and PIV (Eulerian) measurements, and the projected
velocities computed using (2.6) and (2.7). All velocities are made dimensionless using the
velocity scale U , reported in table 1.

Figure 6 shows the comparison between the dimensionless Lagrangian velocity com-
ponents of the fibres’ centroids (VC = (UC , VC )) and the corresponding dimensionless
Eulerian velocity components interpolated at the centroid location (the fluid flow seen by
fibre; uC = (uC , vC )).

To help the presentation and the discussion of the velocity signals, we considered
only some examples of fibre trajectories shown in figure 5 as prototypes of the possible
fibre behaviours. In fact, we can observe that the fibres exhibit different velocity trends
depending on their position in space and on the tidal phase. Based on the overall behaviour
of the fibres, we tried to group their trajectories into three categories. Note that this was
done without following any quantitative criterion, instead considering their time evolution
and the Eulerian flow structures that they experienced.
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Figure 5. Examples of fibre trajectories observed during the experiments: (a1) experiment 1, fibre of class 02;
(a2) experiment 1, fibre of class 01; (b1) experiment 2, fibre of class 02; (b2) experiment 2, fibre of class 03;
(c1) experiment 3, fibre of class 03; (c2) experiment 3, fibre of class 03; (d1) experiment 4, fibre of class 01;
(d2) experiment 4, fibre of class 02. Here, A and B refer to the fibre ends, and the dots indicate the initial
positions of the fibres’ poles.
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Figure 6. Comparisons between the non-dimensional fibre centroid Lagrangian velocities (blue lines) and
the corresponding Eulerian fluid velocities (red lines): (a,c,e) longitudinal velocities of trajectories in
figures 5(b1,a2,d2), respectively; (b,d,f ) transversal velocities of the same trajectories. The signals are
normalised with the velocity U ; see table 1.

First, we identified fibres whose motion strictly follows the mean periodic flow
(controlled by the tidal period), with the longitudinal velocity as the main component.
Examples are the trajectories shown in figure 5(a1), whose instantaneous velocity
components are shown in figures 6(a,b), and in figure 5(b1). The comparison between
panels (a) and (b) suggests that the longitudinal component UC/U is much higher than
the transversal component VC/U . Moreover, the periodicity of UC/U is consistently
equal to the tidal period T for most of the trajectory duration, approximately six tidal
periods. However, oscillations of UC/U with a period much shorter than T are observed as
transient events (time range between t/T ∼ 4 and t/T ∼ 5), associated with the interaction
of the fibre with Eulerian flow vortices with a typical size of a few fibre lengths L .
As further proof, the transversal velocity VC/U shows similar oscillations compared to
UC/U in intensity and periodicity, with a phase shift between the velocity components as
a signature of fibre tumbling.

A second group of fibre trajectories is characterised by instantaneous velocities time
signals UC/U and VC/U as the ones reported in figures 6(c,d). In this case, the intensities
of the velocity components are closer compared to the previous case. Moreover, the
periodicity with T is less evident, and the signals seem to oscillate over a broader
frequency spectrum. This behaviour is ascribed to trajectories of the kind shown in
figures 5(a2,b2), where the fibres are transported within the lateral macro-vortices.

Whenever the fibres experience flow structures much smaller than the lateral macro-
vortices, the instantaneous velocities show a periodic behaviour in both velocity
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components with a much shorter period than the main tidal forcing. Examples are shown
in figures 6(e,f ), in particular for 6 < t/T < 6.5. The velocities shown in these plots
correspond to the trajectory in figure 5(d2), but we obtained similar observations whenever
small-scale looping trajectories are identified, e.g. figures 5(c2,d1).

Finally, a few general aspects can be discussed based on the above results. The time
signals of the Lagrangian and fluid seen by fibre velocities (Eulerian) seem to overlap
in all cases, but only when short-period events occur. In these cases, the fibre velocities
are set in oscillations, with a relatively high amplitude, by the small-scale flow structures,
whereas the fluid seen by the fibre signal seems to smooth them out. Another important
point is that the behaviours described above are qualitatively valid regardless of the fibre
class and the Reynolds number. Differences might arise in terms of velocity intensities
while preserving the typical frequencies of oscillations. We will return to this aspect later
in the paper.

Regarding the projected velocities, figure 7 compares the Lagrangian (δV⊥) and
Eulerian (δu⊥) transverse projected velocities, which are responsible for the fibre’s
rotation ((2.6) and (2.7)). These signals are shown along with their confidence levels,
calculated starting from the known uncertainties of the measured quantities, namely the
displacements. We then propagated the error to all variables derived from the direct
measures with the assumption of treating uncorrelated variables and a nonlinear variance
propagation (Ku 1966; Taylor 1997; Fornasini 2008). Moreover, the rotational slip velocity
(δus⊥) in (2.8) is also reported as a solid black line.

Comparing individual trajectories, both Lagrangian and Eulerian signals follow similar
overall trends, indicating that the general motion patterns are consistent between
the two perspectives. However, figure 7 highlights higher differences, particularly in
correspondence of localised peaks, which result in significantly non-zero rotational slip
velocities. Furthermore, we can note that the discrepancies between the two signals vary
according to the trajectory considered, i.e. the spatial domain explored by each fibre
and the phase of the tidal cycle. This means that variations in location and phase, i.e.
flow scales experienced by the fibre, can lead to differences in velocity intensities. For
example, when the fibres’ trajectories are driven mainly by the large-scale tidal flow
(e.g. figure 5b1), both instantaneous and projected fibre Lagrangian velocities nicely
overlap with the Eulerian counterpart; compare figures 6(a,b) and 7(a). On the contrary,
the high frequency oscillations detected for example in figures 6(e,f ) result in an even
larger difference in the projected velocities; see figure 7(c) for t/T > 6. Surprisingly,
the differences between δV⊥ and δu⊥ of figure 7(b) are relatively large in several time
intervals, e.g. t/T ∼ 2.8 and t/T ∼ 3.5, despite the similarities in the instantaneous
signals (same plot of figures 6c,d). This is apparently in contrast to previous works where
projecting the velocities increased the superposition between the Lagrangian and Eulerian
velocities along single fibre trajectories (Cavaiola et al. 2020), at least at low Stokes
numbers. The main reason could be ascribed to the different nature of the underlying
Eulerian flow, which is turbulent at moderate Reynolds number in the present case.

Finally, it appears that the instantaneous velocity signals of the centroids (related to
translation) are almost indistinguishable between the Eulerian and Lagrangian samplings
(figure 6). In contrast, the velocity projections (related to rotation) are generally more
dissimilar. In the latter regard, it can be seen that even if the two signals have
similar patterns, they may differ significantly instantaneously when the fibre rotation
experiences strong fluctuations. This effect can be attributed to the sub-resolution
turbulent fluctuations, which are not probed in the Eulerian measurements (see § 3.1), but
it can nevertheless contribute to the instantaneous fibre rotation (Shapiro & Goldenberg
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Figure 7. Comparisons between Lagrangian (δV⊥, blue lines) and Eulerian (δu⊥, red lines) transversal
projected velocities. The black solid line is the rotational slip velocity (δus ), namely the difference between
Lagrangian and Eulerian signals (2.8). The signals are normalised with U in table 1. Projected and slip velocity
inferred by: (a) instantaneous components of figures 6(a,b); (b) instantaneous components of figures 6(c,d);
(c) instantaneous components of figures 6(e,f ).

1993). In this regard, it is worth noting that an infinitely resolved PIV measurement at
the fibre location would not change these observations, as it would probe the no-slip
condition imposed by the fibre on the flow, resulting in a trivial equivalence between the
two signals. In fact, past experiments always relied on a coarse-graining of the velocity
gradients field in the fibres’ surroundings for a meaningful comparison (Parsa et al. 2011;
Ni et al. 2015; Pujara et al. 2019), which is, in our case, provided by the PIV resolution
directly. Finally, comparing the coarse-grained flow to the fibre velocity requires to assume
that the feedback of the fibre on the flow at scales larger than the fibre length is negligible.
This assumption is justified in our experiments by the small mass fraction occupied by the
fibres (Olivieri et al. 2022), even compared to the volume of fluid in their surroundings.
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Figure 8. Probability distributions of the projected velocity fluctuations for all experiments and all fibre classes.
Rows (a), (b) and (c) correspond to the fibre Class 01 (short), 02 (intermediate) and 03 (long), respectively. The
numbers from 1 to 4 (columns) correspond to the experiment labels, from the smallest to the largest Reynolds
number.

3.4. Flow and fibre related statistics
In the previous section, we presented and discussed the observations considering the single
fibre in terms of both trajectories and velocities time series. Herein, we are interested in
analysing the fibre dynamics from a statistical point of view, using a few important target
quantities, namely the projected velocities and the structure functions. In particular, we
aim to compare the Lagrangian (fibre) statistics with the Eulerian (fluid) statistics, and
to understand to what extent we could consider the fibre as a proxy for the underlying
turbulent Eulerian flow.

Figure 8 shows a comparison between the Lagrangian and Eulerian probability density
functions (PDFs) of the normalised projected velocity fluctuations for each fibre class and
experiment, i.e.

(δV⊥ − U⊥)/σU⊥, (δu⊥ − U⊥)/σU⊥, (3.1)

where U⊥ = 〈δu⊥〉 and σU⊥ = 〈(δu⊥ − U⊥)2〉1/2 are the Eulerian mean and standard
deviation, respectively, calculated for each fibre class and experiment. Note that both
the Lagrangian and Eulerian projected velocity fluctuations have been calculated by
subtracting the same mean value (U⊥) and normalising with the same standard
deviation (σU⊥).

The Lagrangian and Eulerian PDFs show a fairly good agreement over the whole
range of normalised projected velocity fluctuations, suggesting that the two frameworks
are statistically equivalent despite their instantaneous differences. As a consequence, this
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Figure 9. Normalised second- and third-order absolute value structure functions. The solid lines are obtained
from the Eulerian signals, whereas the markers are from the fibres’ statistics. (a) Normalised Eulerian (solid
lines) and Lagrangian (markers) second-order structure functions. The red triangle represents the K41 power
law, while the blue triangle marks the 1.7 slope. (b) Normalised Eulerian (solid lines) and Lagrangian (markers)
third-order absolute structure functions. The red and blue triangles show the linear and cubic power laws,
respectively. The inset shows the S⊥

3 /u3
η distribution for experiments 3 and 4 over the full range of scales

observed.

result might suggest that the sub-resolution velocity fluctuations, below the PIV resolution,
can influence the instantaneous transverse velocity differences but not their means
and standard deviations. The major differences between the Eulerian and Lagrangian
distributions are observed for the larger values of the projected velocity fluctuations,
corresponding to the extreme events of the distribution, as can be seen, for example, in
figures 8(a1,b4,c3).

This observation may be attributed to the effect of the small yet finite fibres
inertia, which would, however, lead to weaker tails for more inertial fibres (see the
observation of Parsa & Voth (2014) in HIT, where longer fibres possess weaker tails).
However, in our case, we do not observe any clear trend with fibre length or flow
Reynolds number. Furthermore, in some cases – see e.g. the short fibres of Class 01 in
figures 8(a1,a2,a3,a4) – the Eulerian PDF tails exceed the fibre one: this can be due to
the effect of sub-resolution eddies, which can contribute the fibre rotation but are not
captured by the PIV measurement.

We then compared the second- and third-order transverse absolute value structure
functions (S⊥

2 , S⊥
3 ) obtained by the Eulerian (PIV) and Lagrangian (FTV) measurements;

see (2.9). The structure functions have been normalised using the Kolmogorov velocity
scale, and similarly the fibre length using the Kolmogorov length scale.

Figure 9 shows the normalised structure functions (S⊥
2 /u2

η, S⊥
3 /u3

η) against the
normalised fibre length (L/ηk) for all experiments. Solid markers represent the values
obtained by averaging the structure functions over the fibres of each class, i.e. we obtained
three values for each experiment. The Eulerian S⊥

2 /u2
η and S⊥

3 /u3
η have been computed

starting from the PIV fields.
The results suggest that the FTV-based structure functions can probe the Eulerian

structure functions with reasonable accuracy for all four experiments, i.e. for the whole
range of Reynolds numbers investigated. In particular, the second-order structure function
(figure 9a), which represents the standard deviation of the transverse velocity fluctuations
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(see (2.9)), is almost indistinguishable between the two frameworks, whereas the third-
order structure function shows slightly higher differences. The latter could be ascribed
to the experimental errors, which tend to be amplified with the order of the structure
function. However, a more physical explanation could be found in the dynamics of the
fibres under more extreme conditions. In fact, as discussed above, also the PDF of the
projected velocity fluctuations showed a worse comparison at the extrema of the observed
range. It is not surprising that S⊥

3 /u3
η turns out to be more sensitive to the higher velocity

difference, where the fibre showed a longer adaptation time. Nevertheless, the similarity
between the structure functions of the Eulerian and fibre-related signals confirms that the
eddies of size comparable to the fibre length still drive the fibre rotation, regardless of the
specific turbulence structure.

It is now interesting to discuss the scaling of the observed S⊥
2 /u2

η and S⊥
3 /u3

η. It is well
accepted that in case of HIT, power-law structure functions of the form Sn ∼ (L/ηk)

n/3 are
expected to hold (Frisch & Kolmogorov 1995; Pope 2000). This power law behaviour was
originally predicted by the K41 theory (Kolmogorov 1941b), assuming a constant energy
flux across inertial range scales.

However, De Leo & Stocchino (2022, 2023) pointed out that in the flow under
consideration, the energy cascade exhibits a direct or an inverse behaviour, depending
on the phase of the tide. Indeed, the Eulerian structure functions and the corresponding
Lagrangian values show a strongly non-K41 behaviour (see the comparison with the 2/3
and 3/3 slopes, in red in figures 9a,b) with an S2 exponent closer to 1.7, a value often
observed in two-dimensional turbulence (Belmonte et al. 1999; Goldburg et al. 2001;
Rivera et al. 2003; Paraz & Bandi 2019). Note that the range of scales covered by the
three fibre classes is 190 � L/ηk � 800, i.e. within the inertial range.

However, the peculiar scaling of both S2 and S3 can result from a combination of causes,
such as the free surface compressibility (Rivera et al. 1998), the presence of a sustained
external force (Boffetta & Musacchio 2010), the non-homogeneity of the domain, i.e.
water depth variability acting as a geometric constraint on the turbulent flow (Stocchino
& Brocchini 2010; Stocchino et al. 2011), and in general, the strongly non-idealised flow
conditions. The typical signature of an inverse energy cascade is the change of sign of
the nonlinear energy fluxes at the injection scale (Boffetta & Musacchio 2010; Alexakis
& Biferale 2018). In the present context of periodical turbulent flow, the injection scale
was found to be proportional to the length of the tidal barrier (lw). Moreover, De Leo &
Stocchino (2022) showed that the dominant energy process, after averaging in space and
time (over the tidal period), was indeed an inverse energy cascade. The two-dimensional
inverse energy process studied in configuration space, i.e. using the velocity increments,
yields a specific scaling for the longitudinal and transversal structure functions, namely
S3(l)∝ l3 for scales smaller than the injection scale, and S3(l)∝ l for scales larger than
the injection scale, where l is the increment (Boffetta & Musacchio 2010; Alexakis &
Biferale 2018). Figure 9(b) shows the distribution of S⊥

3 /u3
η together with the theoretical

power laws (blue and red triangles) in the range covered by the fibre length (main plot)
and for a wider range in the inset. In the latter, only two experiments (3 and 4) are
shown for clarity. In a previous study of the tidal flow under investigation, the injection
scale was estimated to be proportional to the inlet barrier length lw, and specifically
lin j ∼ 0.2lw, which corresponds to lin j/ηk ≈ 1000−2000 using the Kolmogorov length
scale for normalisation. Thus theoretically, we expect a change in slope at l/ηk ≈ lin j/ηk .
The distribution of S⊥

3 /u3
η in our experiment shows a two-slope behaviour, with a steeper

value for l/ηk < lin j/ηk , and tending towards linearity for l/ηk > lin j/ηk . In the first range,
which corresponds to a direct energy cascade, we estimate exponent 2.5, which is slightly
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lower than the theoretical value 3, as shown in the case of forced turbulence discussed
in Boffetta & Musacchio (2010), in particular, for their numerical experiment with the
highest Reynolds number. This discrepancy might be ascribed to two main reasons. First,
the Reynolds number of the present experiment attains only moderate values, and it might
affect the power laws expected for infinite Reynolds number (Antonia et al. 1982; Boffetta
& Romano 2002; Antonia et al. 2019). Second, we used the absolute or relative third-order
structure function, whose slopes might be slightly different from the standard definition
(Arneodo et al. 1996). However, the second-order structure function is expected to be
quadratic in association with a direct energy cascade, and indeed, our experiment shows a
value close to the theoretical one (Casciola et al. 2001; Kellay & Goldburg 2002; Boffetta
& Ecke 2012), thus reinforcing the conclusions on the existence of an inverse energy
process presented in De Leo & Stocchino (2022, 2023).

3.5. Signatures of the turbulence non-ideality on the fibre dynamics
The section analyses the effect of non-ideal turbulence on the fibre dynamics, focusing
mainly on the periodicity and non-stationarity of the flow. The time-averaged statistical
analysis presented in § 3.4 cannot fully capture the complex interplay between the fibre
motion and the turbulent Eulerian flow. Indeed, at every cycle, a transient energy cascade is
produced (De Leo & Stocchino 2022), which may interact with the fibres in different ways
depending on the tidal phase. During the early flood phase, a jet of water enters the basin,
and the wall inlet sheds small eddies that merge in two separated large-scale stable macro-
vortices that could, in principle, rotate the fibres. However, the typical size of these large
eddies, approximately equal to the integral length scale of the flow, is much larger than the
fibre length, which falls into the inertial range. Thus the fibres are mainly advected and
not significantly rotated by these eddies. During the ebb phase, the large eddies fragment
and periodically produce an extended turbulent cascade that contains eddies comparable
in size with the fibre length. Quantitatively, this process can be described by the wavelet
maps of the fibre transverse velocity increments averaged over the fibre ensemble at each
time. Indeed, while a simple Fourier analysis does not reveal the interplay between the
fibre dynamics and the transient energy cascade, this is visible when considering wavelets,
which are complete time-frequency transforms, thus better at examining localised-in-time
features in the fibre rotational dynamics (Aswathy & Rosti 2024).

Figure 10 summarises the results of the wavelet analysis for the three classes of fibre
during experiment 4 (highest Reynolds number). Figures 10(a,c,e) show the wavelet
transform scalogram corresponding to Classes 01, 02 and 03, respectively. The frequency
normalised to the tidal period T is reported as log10( f T ) as a function of the non-
dimensional time t/T . With this choice, the dominant non-dimensional tidal frequency
(1/T ) corresponds to the value 0. In the same plots, two other important frequencies
are reported as dash-dotted lines. The red line indicates the normalised fibre tumbling
frequency (T/τp), and the yellow line indicates the mean normalised Eulerian vortex
turnover frequency (T/TT ). The turnover time TT is defined as TT = 1/

√
2Z2, where

Z2 is the total enstrophy (calculated as the ensemble averaged square vorticity ω, Z2 =
〈‖ω‖2/2〉).

The wavelet maps in figures 10(a,c,e) show that a particular range of normalised
frequencies between 0.5 and 2 – which is approximately the mean turnover frequency of
the turbulent eddies at the fibre’s scale – turns on intermittently at every tidal cycle. This
is not the case when considering the Eulerian turnover time signal (figure 11a), where the
tidal frequency (10−2 Hz), zero on the vertical axis of the figure, dominates the wavelet
map for all times. The contribution of the fibres’ frequencies becomes dominant when
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Figure 10. (a,c,e) Wavelet maps of the averaged second-order structure functions, along with (b,d,f ) their time
averages, corresponding to the Fourier spectra. The plots are obtained from experiment 4 (the largest Reynolds
number): (a,b) fibre class 01 (short), (c,d) class 02 (intermediate), and (e,f ) class 03 (long). The red dash-
dotted line corresponds to the normalised fibre tumbling frequency (T/τp), and the yellow dash-dotted line to
the mean normalised Eulerian vortex turnover frequency (T/TT ).

they interact with eddies of size comparable with fibre length. Notably, the tidal frequency
becomes more present in the wavelet maps for increasing fibre lengths (from figure 10(a) to
figure 10(e)), as longer fibres can interact even with the integral scale eddies. Furthermore,
the wavelet maps show that the fibre frequencies are activated in a non-perfectly periodic
manner. The main reason for the latter behaviour can be attributed to the fact that the
fibres are non-homogeneously distributed in space, and this, in addition to the spatial
non-homogeneity of the background turbulence, makes them explore regions of different
turbulent intensities and structures in each cycle.

Figures 10(b,d,f ) show the time-averaged wavelet maps, i.e. the Fourier spectra. These
reveal a multi-peaked response of the fibre to the turbulence cascade within the inertial
range frequencies, which is absent in the Eulerian signal (figure 11b).
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Figure 11. (a) Wavelet map of the Eulerian turnover time, along with (b) its time average, corresponding to
the Fourier spectrum. The figure is obtained from experiment 4 (the largest Reynolds number).

4. Concluding remarks
We performed large-scale laboratory experiments to study the dynamics of long (whose
length falls into the inertial range of turbulence) fibres in a non-homogeneous, non-
stationary and non-isotropic free surface turbulence generated by a tidal flow interacting
with a tidal inlet. By combining surface PIV with fibre tracking, we studied the interplay
between fibre motion and flow, sampled at spatial resolution approximately the fibre
length.

Our work reveals that the coupling between the fibre rotational dynamics and the flow
is evident when considering statistical observables. At the same time, the instantaneous
signals differ significantly between the PIV and fibre-based sampling. This fact has
not been observed for short fibres in two-dimensional chaotic flows, where a match
between the fibres’ rotational velocity and the prediction provided by the Jeffery model
was observed experimentally (Parsa et al. 2011). This is also the case for Kolmogorov-
sized fibres in three-dimensional HIT (Ni et al. 2015). However, while all these studies
encompass short fibres, which are expected to obey Jeffery’s model, our fibres are long
(estimated to be between 200 and 800 Kolmogorov scales), and the equivalence between
the instantaneous Lagrangian and Eulerian signals is no longer ensured.

Nevertheless, the transverse velocity differences statistics are well captured by the fibres
in terms of PDFs and structure functions. This means that the scale selection hypothesis,
according to which the fibre rotates primarily due to the eddies of its own size (Parsa &
Voth 2014; Bounoua et al. 2018; Pujara et al. 2019; Brizzolara et al. 2021), generalises to
non-idealised conditions. This can be due either to the universality of small-scale motion,
meaning that the structure functions become more HIT-like at small scale, or to the fact
that the requirements for the scale selection to occur are more general than having ideal
turbulence (e.g. having on average a direct energy cascade).

In conjunction with the third-order structure function, the PDFs show that extreme
events are harder to capture for long fibres. These fibres are well within the inertial
range. The longer the fibre, the less it samples the small-scale velocity fluctuations,
where most extreme events concentrate. However, the fibres should be able to capture
inertial range intermittency, as they are expected to act as (anisotropic) low-pass filters.
This observation may be explained by considering that the small yet finite rotational and
translational inertia could alter the fibres’ sensitivity to extreme events. Indeed, one way
to quantify the rotational inertia of long fibres in turbulence is by using the Stokes number
provided by Bounoua et al. (2018) (St (b)), which considers the fibres to be within the
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inertial range of turbulence. However, to derive their Stokes number, the Authors assume
that the turbulence is K41-like and delta-correlated in time, which is not true in our
experiments because (i) the structure functions are non-K41 (see figure 9), and (ii) the
temporal correlation is strongly non-delta (De Leo et al. 2020, 2021; De Leo & Stocchino
2023).

As the turbulence is non-homogeneous and non-stationary, the question of how its non-
ideality is reflected in the fibre dynamics arises spontaneously. In this regard, the standard
statistical approach to analyse the fibre’s rotational statistics by looking at the PDFs and
the structure functions is overly simplistic. We therefore employed a wavelet transform,
which allowed us to investigate how the fibres coupled with the transient energy cascade
generated by the tidal flow. In this context, we found a scenario in which the fibre rotates
intermittently only when the turbulence cascade propagates down to the scale of the fibre
length. This fact strengthens the generally accepted belief that fibres rotate mainly due to
the eddies of their size, namely the scale selection.

From another point of view, our work could be applied to the transport and rotation
of mesoscale and macroscale floating litter in the coastal zone (Crawford & Quinn 2017;
Núñez et al. 2023). Here, the relevant literature mainly focuses on micro-litters (fragments
whose size is smaller than 5 mm), since most fragments – in number – accumulate at
microscales due to plastic inertia and self-similar fragmentation (see e.g. Cózar et al.
2014). However, considering mass or volume, the largest contribution to the global balance
is provided by meso- and macro-sized litters, with the highest frequency at approximately
30 cm (see the probability distributions provided by Kaandorp et al. 2023). This class of
litter falls into the inertial range of oceanic turbulence, where the Kolmogorov scale ranges
between 0.1 and 10 mm depending on the sea state and the water depth (Gargett 1989;
D’Asaro 2014). Attempts to develop a framework for analysing inertial particle motion in
the surface ocean using a vertically averaged Maxey–Riley set on spherical objects confirm
our findings that the inertial particle velocity exponentially approaches a weighted average
of seawater and air velocities, highlighting the role of anticyclonic mesoscale eddies in
trapping marine debris (Beron-Vera et al. 2019). More complex shapes, such as ellipsoidal
particles, have been studied in wave current flows through a parametric study of the
Maxey–Riley and Euler equations, considering negatively buoyant dispersion and finding
that the settling wave time scale ratio significantly affects particle dispersion (Sunberg
et al. 2024).

In this context, our work contributes to the understanding of the interaction between
large litters and ocean turbulence in the coastal zone, specifically focusing on both
transport and stress. In particular, the first aspect involves the distribution of fragments
in space and time due to the complex flow generated by the tide, whereas the latter offers
a first insight into the gradients that act on the particles. We discovered that despite the
Lagrangian and Eulerian frameworks being quite similar from a purely statistical point of
view, the strong temporal and spatial inhomogeneity of the flow leads the fibres to experi-
ence strongly intermittent gradients, which alternate periods of almost zero gradients with
strong, localised-in-time, peaks that are more likely to break up the fragments (see time
series in figure 7). Our study thus highlights the need to take into account the strong flow
non-ideality when forecasting the fate and transport of mesoscale litter.
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