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Abstract

Let T; be the B-transformation on [0,1). When B is an integer Tp is ergodic with respect to Lebesgue
measure and almost all orbits {7 x} are uniformly distributed. Here we consider the non-integer case,
determine when T,, Tg have the same invariant measure and when (appropriately normalised) orbits are
uniformly distributed.
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1. Introduction and results

Let B > 1 be a real number. The B-transformation is the map Tz : [0, 1) ~ [0, 1)
given by

Tex = Bx — [Bx], forallx €[0,1)

where [?] is the largest integer which is not greater than . Ergodic properties of
B-transformations are studied by many authors (see [1,3-5,8]). Foreach 8 > 1,
T; possesses a probability invariant measure, g, which is equivalent to Lebesgue
measure, and T is ergodic with respect to vg. We ask when is p, = p15? The related
map S on [0,1), defined by

Tyx ifx < [B1/B,
x = [BD/(B—1B) ifx = [B)/B.

Sﬂx =
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preserves Lebesgue measure and is ergodic (see [2, pp. 168-172]). Forx € [0, 1), we
define a sequence

Tyx if T;"'x < [B)/8.

n )=
P [wa—wninyuzwm,

and ask when is {y,(8)} uniformly distributed for almost all x € [0, 1)?

In the case where «, B are integers it is well-known that v, = vz is Lebesgue
measure and that {y,(8)} is uniformly distributed for almost all x, so the interested
cases are non-integer cases. Let

o ={B: B> lsatisfiesx>? —kx —1=0, k,leZ k=>1>1)}.
Our results can be stated as follows.

THEOREM 1. Suppose that B > 1 is not an integer. If B € of then we have
g = [gs1. For any other a # 8 we have p, # ug.

THEOREM 2. Suppose that B > 1 is not an integer. If B € &/ then for almost all
x, {y.} is uniformly distributed. If B ¢ & then for almost all x, {y,} is not uniformly
distributed.

For x € [0, 1), we define x,(8) = Igx. By the ergodicity of T, for almost
all x, the sequence {x,} is ug-distributed. When B is an integer, since ug is the
Lebesgue measure restricted to [0, 1), then {x,(8)} is uniformly distributed for almost
all x € [0, 1). We may rewrite the definition of {y,(8)} as

Xn ifxn—l < [ﬁ]/ﬂ’

yn(ﬂ) = {x”/(ﬁ — [ﬂ]) ifx,._l Z [;B]/ﬂ

Clearly, if B is an integer then {x,} and {y,} coincide. We may define z,(8) = Sjx.
Since Sy preserves Lebesgue measure, we see that {z,(8)} is uniformly distributed for
almost all x. Comparing the definitions of {y,(8)} and S, it may seem plausible that,
for any 8 > 1, {y.(B)} should be uniformly distributed for almost all x.

It is also interesting to compare Theorem 2 with the results of [6]. Schweiger in
1972 studied sequences similar to our {y,(B)} for some special Oppenheim series
[6,7]. The Oppenheim series is defined as follows: Let a, be a decreasing sequence
with ¢, = 1 and lim, ,ca, = 0. Let b, > 1. Themap T : [0,1) — [0,1) is
piecewise defined as

X — Qpyy

Tx = ——
bn(an - an+1)

X € [Gny1, Gn).
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We define TO = O, if necessary.

Forx € [0, 1), let u, = T"x and v, = by, u,, if u,_| € [ar +1, a,). Schweiger [6]

showed that in cases

1. a, =1/n,b, =1 (Liiroth’s series);

2. a, =1/n, b, = n (Engel’s series) and

3. a, =1/n, b, =n(n+ 1) (Sylvester’s series)
{v,} is uniformly distributed for almost all x € {0, 1).

If, for non-integral 8 > 1, weletaq, = 1,a, = ([Bl+2—n)/B,n=2,...,[B]+2
anda, = O0forn > [B]+2,and let b, = 1/(8 — [B]) and b, = 1 for n > 1, then
the map T is just the B-transformation T, and {v,} is just {y,(B)}. Again, this may
suggest the possibility of uniform distribution of {y,(8)}.

Before giving the proofs let us develop some background concerning -expansions.
For x € [0, 1) we have

(1.1) X=—o =t

where ¢, = [B T,;"lx]. Equation (1.1) is called the S-expansion of x. Suppose that
the B-expansion of 8 — [B] is

ﬁ_[ﬁ]=2+2+....

B B?
Then we have
€ &y &3
(1.2) 1=E+—ﬁ—5+-ﬁ—3+-'-

where g, = [B] and (1.2) is called the 8-expansion of 1. Notice that to say g € & is
equivalent to say that the B expansion of 1 is

_k + l

B B
We also denote 791 = 1, Tl = B — [B] and T;1 = Ty(T;7'1) forn > 2. B-
expansions have the following properties:

(P) Let (1.2) be the B-expansion of 1. For any x € [0, 1) with the 8-expansion
given by (1.1) and any n > 1 we have

1

(C,,, Cnyls Cng2,y -« ) < (61, £2,€E3, ... ),

where ‘<’ is according to the lexicographical order.
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By (P) we get that for any n > 2
(Ern Entis 8n+2’ ] ) < (81, £2,€3, ... )'

The absolutely continuous invariant measure for T, 4, can be defined as follows
(see [4]). Let

hyx) =) ﬂi

x<T§'1, n>0

Then for any Borel subset E of [0,1),
1
up(E) = — f hg(x)dx,
Cﬂ B

where ¢ = [, hy(x)dx is the normalizing constant.
Theorem 1 will be proved in Section 2 and Theorem 2 in Section 3.

2. Proof of Theorem 1

PROOF. Assume that 8 > 1 is not an integer and that

k1

BB
where k > | > 0. Then
)
T;l:l, 7}31:5, and T,;'1=0 forn > 2.

Hence

1 l
1+4—- if0<x<-—,
B

hg(x) =
1 if— <x <1.
For 8 + 1 we have
l
Tgul=0, Tul=B+1-[B+1l=8~[Bl=

B

and

™|~

, ! !
TTan=0B+ 1)3 -1+ 1)-5] =
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Hence for any n > 1 we have

l
T;+11='E
Therefore
’1+ 1 + ! + .. if0<x<£
hgp(x) = | B+l (B+1y - ,
1 if—<x<l1

( 1 l
1+4—- if0<x<-—,
B B

1 f—<x<1

= hy(x).

This shows that pg = gy
On the other hand, suppose that 1, = p for some o« > 1. Then we must have

1 1+ l if0<x < —l-,

Y = = ha(0) = k) = P
x<Trl, n20 & 1 if— <x <1.

Therefore o must satisfy one of the following two cases:

@ T,1=1/pand T/1 =0forn>2,0r

(b) T'1=1/Bforalln>1.

In case (a) we have

which gives o = B.
In cases (b) we obtain

1 1

1+—+——2+-~- ifo0<x < —,
o «

ha(x)z
1 if—<x <1
( 1
1+ if0<x < —,
.y a—1
1 if—<x <1
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which yields @ = 8 + 1.
Now we assume that 8 ¢ 2. First we assume that the S-expansion of 1 is

2.1) =242, 45

where m > 3 and ¢,, > 0. Suppose that there exists a # g such that u, = ug. If the
«a-expansion of 1 is

22) l=—+—+m+%w%>0

then we would have « = B. In fact if (2.1) holds, then we have T'1 # T/1 for
0 <i < j <n. Since u, = ug, by (2.1) we see that the density function of ., is a
step function with m pieces. Hence we must have n = m. Thus

1 1 1
I+ =4 =hg(0) =h,0)=14+—-+---
+ﬂ+ 4—‘3",_1 s(0) () +a+ +a"'—1
which gives @ = 8. Thereafter we may assume that the a-expansion of 1 is
=242
o o

where there are infinitely many e, > 0. Then we get

1 1 1 1
2.3 1+—=+--- =hs(0) =hy(0) =14 — 4+ —+---
(2.3) +ﬂ+ +ﬂm—l £(0) © +a+a2+
which gives
A" -1
a=_—_ﬂm—1_1 > B.
We have T,;'"’l = &,,/B. Then there must exist i < m such that
£ . e g
24 '—m.:Tm_llzT'_llz—‘ it
(2.4) B ) o " + o +

Then the right hand side of (2.4) is the a-expansion of ¢,/8. Since a > S we get
e; > &£,. By (2.3) and (2.4) we obtain

En  Em .
ﬂ ﬂ2 ﬂm—l
S(Eri e (Gt ) (B )
T+~ (g rm )t G
e  e+te e+ ey t e €+ €yt + ligm
S8 2+1+ +13 +2+._.+ +1 . +m—2
o o o a™
€mit + €ni2+ -+ iy €iy2t € + -t iym
4 Emu +2 mot G2 T € a o
a™ o

We use A to denote the last expression. There are two possibilities:
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(a) Thereexists j withi+1 <j <i+m—2suchthate; > 0, 0or
(b) ey =¢€p =" =¢€m2=0.

In case (a) we have

Em Em Em €y €y €
7T toTmtmm Tt s
o ] am- o/ it ol —it o titm

Em ! 1 4 1 1 { 1
a-—1 om-! l—a o/ om-!
Em 1 1 1 1
1- . 11— .
a—l( a"‘“)+1—a a”“2< a'"")

v

v

sm+em+ Em __s,,,+e,,,+ &
B B g1 a | a2 T a-—1
If we can show that
1 1 Em
(25) am—2 (1 - a"'—l) = am—l

then we get a contradiction:

Em LBy ! A>B
— — P > = .
ﬂ ﬂ2 ﬂm—l

Inequality (2.5) is equivalent to

™' —1>¢,am 2

Since ¢, < &, = [B] < [}, it is enough to show

am—l -1 > [a]am—-Z
which is equivalent to
1
2.6) 1> o] + .
o am-!

Thus if (2.6) holds we have i, # pg.
If (2.6) does not hold, since there are only m — 1 choices for T'1, i > 1, then we
get

CI l

1=—+—

am aZm—l

+...,
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for some |1 <! < [a]. This is included in case (b).
In case (b) we have

€ € €itm-1

l=—+—+-- + o SRR

o (12 l+m 1

Since there are only m — 1 possibilities for 7/ 1, j > 1, we deduce that

1= € €; € + €;

T Q! itm=1 qi+m—2
Then
. €; €;
TJl=—+ + -
am—] a2m—2

€; 1

2.7 = ] < -2 .

Since ho(x) = hg(x) foreach 1 <1 < m — 1 there would exist 1 < k <m — 1 such
that T;1 = T;1. Then by (2.7) we get

81 Em
(2.8) l=—+—
B
In fact if (2.8) is not true then we have T;l >1/B"2forany 1 <j <m — 1. Now
we have
Em _ om-1y _ it
5= Iy 1=T1,""1
and

52=ﬂ

' i=2
_17;"-11_1 8_’"_
o a B

which gives o = f, a contradiction.

Now we consider those 8 for which the 8-expansion of 1 has infinitely many non-
zero terms. By the above discussion, if @g = 1, for some o then the a expansion of
1 must have infinitely many non-zero terms. Since pg = p, we have

hg(x) = ¢ hy(x)
for some constant ¢. Notice that we have

lin} hgx)y=1= lin} hy(x).
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Then ¢ = 1. We also have

. I 1 B
and
1 1 o
limh,(x) =14+ —-4+—=4+-.- = )
lim h, (x) +a+a2+ —
Therefore, we have @ = B and the proof is complete. 0

3. Proof of Theorem 2

PROOF. Let 8 > 1 be a non-integer. Given a Borel set E, by the ergodicity of T,
for almost all x we have

{[n: n>N, x,(8) € E} = wy(E).

3.1 lim

N-»00 N

For 0 < a < 1, by definition, y,(8) < « if and only if

Wi it (8] [ﬂ]+(ﬁ—[ﬁ])a>
3.2 n— —, 7 .
G2 "'(ﬂ)eg[ﬂ ﬂ)u[ﬁ 5

For convenience, we use E, to denote the right hand side of (3.2). Now for almost all
x we have

:n=<N, y.(B) <
Jil’;{n n < Ny B) a}=uﬁ(Ea)

W it ; 8]+ (6 — [ﬁ])a> ([m)
ZO(F< 8 ) (ﬂ))+ ( B s

where F(t) = pg({x < t}). Let G(t) = pug(E,). Then

195 i+ | B8] ([ﬁ] + (B - [ﬂ])t>
33 G@t)=~ ,
(3.3 () 5 ?_:O p( B ) + B p B

where p(x) = hg(x)/cp is the density function of ps. In order that {y,(8)} be
uniformly distributed, we need that G'(r) = 1. Noting that p(¢) is a decreasing step
function and G(¢) is a distribution function, we obtain that G'(¢) = 1 if and only if
each term in the sum of the right hand side of (3.3) is a constant.
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If 8 € & then the S-expansion of 1 is

and

=1, T)p=—, and T}1=0, n>2.

] o~

Hence

) = l: +1/8  ifx <1/B,

otherwise.

In this case, each term of the right hand side of (3.3) is a constant. Therefore, G'(¢) = 1
which implies that {y,(8)} is uniformly distributed for almost all x.

Now assume that 8 ¢ /. Then we have Tzl # i/ forany 0 < i < [B]. If
i/B<Tl<(i+1)/Bwhere0 <i <[B— 1] then hg(i + t)/B is not a constant for
t € [0, 1). In fact if #,, ¢, satisfies (i + #,)/8 < Tzl < (i + t,)/p then

(5 (5%)= 5

If [Bl/B < Ty < 1then for#, £ € (0,1) with ([8] + (B — [BD0)/B < T3l <
((B1+ (B = [BD1)/ B we have

(B1+ (B~ [ﬂ])tl) ([ﬂ] + (B — [ﬂ])h) 1
h —h —.
g ( 5 ’ B =5
In either case we have G'(¢) # 1. This completes the proof. ]
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