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Abstract
In this paper, an unmanned bicycle (UB) with a reaction wheel is designed, and a second-order mathematical model
with uncertainty is established. In order to achieve excellent balancing performance of the UB system, an adap-
tive controller is designed, which is composed of nominal feedback control, compensating control using extreme
learning machine observer and reaching control via integral terminal sliding mode (ITSM) and barrier function
(BF)-based adaptive law. Owing to the features of BF-based ITSM (BFITSM), not only any uncertainty or distur-
bance upper bound is not needed any longer but also the finite-time convergence of the closed-loop system can be
ensured with a predefined error bound. Moreover, the BF-based control gain can be adaptively adjusted according
to the update of the lumped uncertainty such that the overestimation is removed. The stability analysis of the closed-
loop system is given according to Lyapunov theory. Comparable experimental results on an actual UB are carried
out to validate the superior balancing performance of the proposed controller.

1. Introduction
Unmanned bicycle (UB), which is well known for their ability to maintain balance when steering, has
been becoming increasingly popular and have been widely used in rescue and other tasks within a
narrow space due to its great flexibility and ability in intelligent transportation [1]. However, to accom-
plish particular tasks, the major challenging technical issue of UB is to ensure satisfying self-balancing
performance in different driving scenarios, especially at low or even zero speeds.

Accurate dynamic modelling is the basis of realizing excellent self-balance of the UB system.
Recently, many researches have been carried out from the perspectives of both mathematical models
and control approaches [1–5]. For example, in ref. [6], the dynamics of the UB using Lagrange’s equa-
tions for quasi-coordinates are developed, which considers pure rolling without slipping constraints
between the ground and the two wheels. In ref. [7], the dynamics of bicycles such as self-stabilizing
models and rear wheel steering models are considered and analysed from the perspective of control. In
ref. [8], a dynamic model is presented, which considers the geometric-stabilization mechanisms due to
bicycle trail. It is pointed out that the geometry is the most important factor that affects the stability of the
bicycle. In ref. [9], the dynamics of the Whipple bicycle is analysed, and a complete non-linear model
is constructed, from which the equilibrium point of the bicycle in both straight and circular motions
is determined. In ref. [10], the gyrostabilizer is used as the actuator to keep the UB balance, and the
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dynamic model of the UB together with the gyrostabilizer is developed using Newton–Euler method.
Unfortunately, gyrostabilizers can dramatically increase the bicycle’s mass. Inspired by [11], this work
installs an independent reaction wheel (RW) in the UB. RW is usually used in spacecraft attitude con-
trol due to the advantages of simple structure, low cost and long duration. When the bicycle tilts, a
high-performance motor-driven RW actively provides an anti-roll torque, which counteracts the tilting
torque and balances the bicycle. Owing to the RW, the model of the UB is changed from a conventional
single-input double-output system to a single-input single–output system, and as a result, the balancing
control of the UB is greatly simplified.

On the other hand, the superior control strategy is also crucial for the UB self-balance. Many non-
linear control strategies have been developed for non-linear systems, such as model-predictive control
[12–13], fuzzy control [14–15], robust control [16], adaptive control [17] and sliding mode control
(SMC) [18–20]. Among these methods, as a classical non-linear control algorithm, SMC has been
widely used in a variety of mechatronic systems due to its fast response, high precision and strong
robustness against external disturbances. In ref. [21], a novel adaptive sliding controller based on a
robust disturbance observer is designed for non-linear uncertain robotic systems to deal with the track-
ing control problem. In ref. [22], an adaptive non-singular integral terminal SMC for AUVs is presented
to eliminate the need for pre-known uncertainty bounds, which offers the improved tracking accuracy,
rapid convergence and robustness against uncertainties and disturbances. In ref. [23], an adaptive fast
non-singular integral terminal SMC, based on desired trajectory, is proposed for AUVs, achieving faster
convergence rates in AUV dynamics. In ref. [24], an adaptive non-singular terminal sliding mode track-
ing controller is designed for robotic systems using fuzzy wavelet networks to improve the control
performance. In ref. [25], a novel predefined-time barrier function (BF) adaptive SMC strategy for
robust control of disturbed systems is designed. This approach ensures that, should an escape event
occur at any given time instant, the system trajectory is guaranteed to return to its ultimate bound within
a predefined time frame. SMC has also been applied to UB due to its superior performance and strong
robustness. In ref. [26], a gyroscopic balancer based on fuzzy SMC is used to control the bicycle, wherein
the roll angle is controlled by a backstepping algorithm. In ref. [27], fuzzy SMC is designed, wherein
the large uncertainty caused by complex ground conditions is well tackled by the inherent under actu-
ated control scheme. Moreover, in the recent years, many artificial intelligence technologies are applied
to the control field. In ref. [28], reinforcement learning is introduced for high-accuracy tracking con-
trol of 6-degree-of-freedom (6-DOF) hydraulic robotic manipulators, demonstrating its effectiveness in
providing system-level performance guarantees through experimental validation on a 6-DOF platform.

Based on the above discussions, for the purpose of achieving excellent balancing control of the UB, a
BF-based adaptive integral terminal sliding mode (BFITSM) control scheme combined with an extreme
learning machine (ELM) observer is proposed in this paper. The main contributions of this article are
summarized as follows:

1) An adaptive integral terminal sliding mode controller combining ITSM and BF techniques is
designed such that the reaching phase can be efficiently eliminated to improve the convergence
performance. Since the BF-based adaptive gain is updated according to the lumped uncertainty,
overestimation can be effectively suppressed. Moreover, the size of the region that the roll angle
tracking error converges to can be exactly predefined. However, the parameter selection of BF is
one of the difficulties in the controller design.

2) To counteract the effects of uncertain disturbances and reduce the chattering phenomenon, an
ELM observer is developed to estimate the lumped uncertainty. The output weights of the pro-
posed ELM are adaptively adjusted to ensure the Lyapunov stability of the closed-loop control.
As such, the estimation of the ELM observer is used as compensating control input to further
improve the closed-loop control performance. To achieve better training effect, the value of the
Oi should be appropriately chosen. In this work, the output weight Oi is chosen according to the
Lyapunov function to keep the control system stable and achieve the excellent estimate.
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Figure 1. Bicycle structure. (a) Top view, and (b) Rear view.

3) Combined with the BF adaptive gain and ELM techniques, a finite-time control strategy that
without any disturbance upper bound information and has excellent convergence performance
is realized and applied to the UB experimental to verify the effectiveness. Experimental results
demonstrate the excellent control performance of the proposed controller.

The reminder of this paper is organized as follows. In Section 2, the uncertain dynamic model of
the RW-based UB is presented. An adaptive ITSM controller based on ELM observer is designed in
Section 3, and the closed-loop stability analysis is rigorously given in detail. In Section 4, experiment
studies on an actual UB are carried out by comparison with conventional control schemes. Section 5
finally concludes the paper.

2. Modeling of reaction wheel unmanned bicycle
Fig. 1(a) and 1(b) shows the top and rear views for the RW-based UB system, respectively. The dynamics
of the UB can be described by the following second-order differential equation [7]:

Jθ̈ = mfhv

c
δ̇ + mhv2

c
δ + mgh sin (θ ) + d − u (1)

For a better illustration, the signification of the notations appeared in Fig. 1 and Eq. (1) are given in
Table I.

Since the roll angle of the bicycle is kept within a relatively small range in the process of motion,
sin (θ ) in (1) can be approximated as θ [29]. For simplification, mf

c
and mh

c
are denoted as N and P,

respectively, and mgh is denoted as M. Then, at a small roll angle θ , (1) can be rewritten as

Jθ̈ = Nvδ̇ + Pv2δ + Mθ + d − u (2)

Since it is impossible to obtain accurate parameter values in a practical UB system, parametric uncer-
tainties have to be considered in the physical model. The system parameters can be normally divided
into a nominal part and an uncertain part as follows [18]:

J = J0 + �J (3)

N = N0 + �N (4)
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Table I. Notations description.

Notations Signification
J Inertia of the UB
m Total mass of the UB
f Distance from the rear wheel to the mass centrer of the UB
δ Steering angle of the front wheel relative to the positive direction of UB
c Distance from rear wheel to front wheel
g Gravitational constant
h Height of centre of gravity (CG) from the ground
θ Roll angle of the UB
v Forward speed of the UB
d Unknown disturbance
u Control input

P = P0 + �P (5)

M = M0 + �M (6)

where J0, N0, P0 and M0 are the nominal values determined from preliminary experiments, and �J, �N,
�P and �M are the corresponding model parameter errors, respectively. Then, the dynamical Eq. (2)
can be rewritten as

J0θ̈ = N0vδ̇ + P0v2δ + M0θ + l − u (7)

where l is the lumped uncertainty, which is given by

l = d + �Nvδ̇ + �Pv2δ + �Mθ − �Jθ̈ (8)

According to Appendix A, the closed-loop control signal is chosen to be upper bounded by the
following polynomial function in this paper:

|u| < ζ0 + ζ1|θ | + ζ2|θ̇ | (9)

Then the lumped uncertainty is bounded by [30], the detailed derivation process is given in
Appendix B:

|l| < l (10)

where l is the upper bound of l, given by

l = μ0 + μ1|θ | + μ2|θ̇ | (11)

where ζ0, ζ1, ζ2, μ0, μ1 and μ2 are unknown positive constants.
The control objective is to keep the roll angle of the UB within a small range under the impact of

system uncertainty. To balance the UB, an appropriate reaction force u can be produced such that the
roll angle θ can be retained to be zero with high precision, fast response and strong robustness.

Remark 1. In practice, it is quite difficult to obtain the accurate bound information of the lumped
uncertainty in (11). To deal with the effect of the lumped uncertainty, a conservatively large constant
is usually selected in conventional SMC systems. However, the overly large bound may lead to severe
control chattering and large control efforts. Although boundary layer technique can be normally used to
alleviate this phenomenon, the control precision will be accordingly degraded. In this paper, in order to
achieve better control performance, an ELM observer and BF-based adaptive ITSM controller will be
designed such that not only the need for the prior uncertainty information can be eliminated wherein the
control gain will be adaptively adjusted but also the control precision can be exactly ensured by tuning
parameters.
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3. Design of controller
In this section, we develop an ELM-based BFITSM (ELM-BFITSM) controller for the RW-based UB
system. First, a feedback control component using ITSM is designed without considering the sys-
tem uncertainty. Then, the compensating control component based on ELM and the reaching control
component using BF-based adaptive law are designed to deal with the lumped uncertainty.

3.1. Design of ELM-BFITSM
In this work, the tracking error e is defined as

e = θ − θd (12)

where θd = 0 is the target roll angle which equals to zero under absolutely balanced state. Then,
according to Eq. (7), the second derivative of error e can be obtained as follows when θd = 0:

ë = θ̈ = 1

J0

(
N0vδ̇ + P0v

2δ + M0θ + l − u
)

(13)

To derive the controller, a novel integral terminal sliding mode variable s is designed as [31–32]:

s = ė + α1e + α2eI (14)

eI =

⎧⎪⎪⎨
⎪⎪⎩

eI(0), t = 0

∫ t

0
e

q1

q2 dτ t > 0

(15)

where α1 > 0 and α2 > 0 are constants, q1 and q2 are odd integers satisfying q2 > q1 > 0 to keep eq1/q2 a
real number and ensure finite time convergence of e [33]. The initial value eI(0) is set as

eI(0) = ė(0) + α1e(0)

α2

(16)

where e(0) and ė(0) are the initial values of the actual error status available for eliminating the reaching
time. Ignoring the lumped uncertainty and combining ṡ = 0 with (13), the equivalent control input of
the proposed sliding mode controller can be designed as

u0 = N0vδ̇ + P0v2δ + M0θ + J0(α1ė + α2ėI) (17)

Next, based on the ELM technique, the compensating control input u1 of the closed-loop control
system is designed as

u1 = l̂ (18)

where l̂ is the estimate value of the lumped uncertainty via ELM that will be given later.
Furthermore, in order to achieve that the system converges from arbitrary initial state to the preset

sliding mode surface quickly, a reaching control input is introduced as follows:

u2 = J0k̂sign(s) (19)

where k̂ represents an adaptive control gain.
The schematic diagram of the proposed ELM-BFITSM is shown in Fig. 2. In this paper, we define a

small positive number ε by which to define the region of (−ε, ε) that the sliding variable will converge to
[34–35]. If the initial value of the sliding mode variable s is outside the region [− ε

2
, ε

2
], namely |s(0)| > ε

2
,

it will converge to the region under a monotonically increasing gain. It defines t as the time instant when
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Figure 2. Schematic diagram of the proposed ELM-BFITSM controller for UB.

the initial state firstly converges into the above region. After the initial value of s is in this region, namely
|s(0)| ≤ ε

2
, a BF-based gain will be activated. Explicitly, the proposed adaptive law is designed as

k̂ =
⎧⎨
⎩

μ
∫ t

0
exp(σ |s|) |s| dτ , for 0 ≤ t ≤ t

fb(s), for t > t
(20)

where the parameters σ ≥ 0, μ > 0, and the initial value of k̂(0) > 0. t is the time instant that the sliding
variable converges to the region of [− ε

2
, ε

2
], i.e.,

∣∣s(t)
∣∣= ε

2
. fb(s) is the BF which is defined as

fb(s) = |s|
ε − |s| (21)

Remark 2. When t ≤ t, under k̂ = μ
∫ t

0
exp(σ |s|)|s|dτ , the sliding variable s will quickly converge to

the region [− ε

2
, ε

2
]. When t > t, k̂ is updated by the BF function fb(s), whose output changes with the

variation of s. The reason why BF can reduce the chattering effect compared to constant gain is that: if
|s| gradually increases in [0, ε), fb(s) will also accordingly increase to a large number to pull |s| back to
the predefined region; if |s| reaches the sliding surface, k̂ will reduce to a small number. Meanwhile, in
this way, it can guarantee that the control gain of the ELM-BFITSM is not overestimated.

Remark 3. In conventional SMC, an overlarge constant k is usually selected as the gain of reaching law
to keep the system stable, which requires the upper bound of l at advance and leads to a serious chattering
problem. The reason is that when s crosses 0 frequently, the control law changes discontinuously in two
values of ±k. In this paper, because of the introduction of BF, the final u2 becomes continuous. Since
the sliding variable s is changing continuously, the fb(s) will be continuous either. It can be seen from
Fig. 3 that when s crosses 0, the final u2 is continuously changed despite the involved signum function.
Therefore, the signal chattering in control input can be effectively reduced. Moreover, l is compensated
by ELM (u1) such that the control gain needs to be greater than the estimation error and does not need
to be greater than the upper bound, which will effectively reduce the chattering problem. Moreover, the
BF function will further reduce chattering as we discussed above.

3.2. Design of ELM observer
The architecture of the ELM observer is shown in Fig. 4. The weight and bias of the input layer of
ELM proposed by Huang [36] are randomly generated without reverse adjustment, and the output layer
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Figure 3. The scheme of barrier function.
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Figure 4. ELM observer architecture.

weights are calculated directly through a least squares solution. Conversely, the radial basis function
(RBF) necessitates the employment of iterative methodologies to ascertain the optimal values for the
centres, widths, and weights of the network and require an iterative optimization process to adjust their
parameters, which can be more time consuming. Therefore, compared with the conventional neural
network algorithm, ELM has a lower algorithm complexity and a faster learning speed. The training
process of ELM is mainly divided into two steps.

Step 1: Random generation of input weights Wi and bias bi

The output of the hidden layer is the input multiplied by the corresponding weight plus its deviation,
and then it is summed by a non-linear function (activation function) of all the nodes. When the sample
X1 is input, the corresponding hidden layer output is as follows:

hi(X1) = G(WiX1 + bi) i = 1, 2, · · · , L (22)

where hi(X1) is the output of the i-th hidden layer node when the input sample X1 is input, and G(·) is
the activation function. We can obtain the output matrix H(X) of the hidden layer:

H =
⎛
⎜⎝

h1(X1) · · · hL(X1)

· · · . . . · · ·
h1(XU) · · · hL(XU)

⎞
⎟⎠

=
⎛
⎜⎝

G(X1W1 + b1) · · · G(X1WL + bL)
...

. . .
...

G(XUW1 + b1) · · · G(XUWL + bL)

⎞
⎟⎠ ∈ RU×L (23)
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The network output of the feedforward neural network ELM with a single hidden layer is as
follows:

HO = T (24)

where T = [
tT

1 , tT
2 , · · · , tT

U

]T ∈ RU×m, and O is the output weight, which will be obtained in Step 2.

Step 2: Obtain the output weight Oi by minimizing the loss function
The goal of single hidden layer neural network learning is to minimize the output error, which is

the difference between the network output T and the objective function Y . In order to achieve better
training effect, it needs to choose the value of the Oi. That is, the weight Oi that connects the hidden
layer. The output layer is solved by minimizing the approximate square variance. The objective function
is as follows:

‖T∗ − Y‖ = min ‖T − Y‖ (25)

The above equation can also be written in the following form:

‖H(X, W , b) O∗ − Y‖ = min
O

‖H(X, W , b) O − Y‖ (26)

where O* is the optimal solution that requires, and it can be solved by the following equation:

O∗ = H†Y (27)

where H† is the generalized inverse of H.
Therefore, the estimated lumped uncertainty l̂ in (18) can be obtained via the ELM mechanism

modelled as

l̂ = H(x, w, b) Ô (28)

where Xin(0) = [θ , θ̇ ]T is input vector and Ô is an design function. The output matrix of the ELM is also
designed as a piecewise function as shown below:

˙̂OT =

⎧⎪⎪⎨
⎪⎪⎩

ρsH, for 0 ≤ t ≤ t

J0ρ

(
s

J0

+ k̂

J0

ε

(ε − |s|)2 sign(s)

)
H, for t > t

(29)

where ρ is a positive constant and k̂ is the adaptive gain given in (20). It should be noted that the initial
condition of ˙̂OT depends on the initial condition Xin(0) = [θ (0), θ̇(0)]T. In real applications, to keep a
balanced state, we often select the initial condition as θ (0) = θ̇ (0) = 0.

The estimate value of lumped uncertainty is approximated by

l = HO∗ + ζ (30)

where l is the ideal output of single hidden-layer feedforward network, O∗ is the optimal constant output
weight vector, and ζ is the approximation error which is assumed to be bounded by

max
{
|J0

−1 l̃|, |J0
−1ζ |

}
< k (31)

where l̃ = l − l̂, and k denotes the bound of the disturbance that is not compensated.

Remark 4. In this article, the inputs of ELM are chosen as Xin = [θ , θ̇ ]T. The concealed layer input
weights and biases are generated randomly according to the Gaussian distribution, and the output
weights is obtained from the generalized inverse matrix. Different from the conventional ELM algo-
rithm proposed for classification problems [37–38], the proposed ELM algorithm estimates the lumped
uncertainty and takes the estimate value as the compensating control input as shown in (18).
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3.3. Stability analysis

Theorem 1: For system (2), if the sliding function is chosen as (14) and the controller is designed as

u = u0 + u1 + u2 (32)

where u0 is the equivalent control input (17), u1 is the compensating control input (18) obtained by the
ELM observer (28), and u2 is the reaching control input (19). The proposed controller effectively avoids
the singularity problem. Then, under the proposed controller (32), the sliding variable converges to

(−ε, ε) and the tracking error converges to
(

− ε

α1

,
ε

α1

)
, both in finite time.

Proof : According to (20), the proof will be accomplished by two steps, i.e., 0 ≤ t ≤ t and t > t.

Step 1. 0 ≤ t ≤ t for the control law (20)
Select a Lyapunov function V1 as

V1 = L1 + Õ
T
Õ

2J0ρ
(33)

where L1 = s2

2
+ τ

2
k̃2 with τ > 1, Õ is the estimation output error of the ELM output layer given by:

Õ = O∗ − Ô (34)

and k̃ is the adaptive error k̃ = k̂ − k.
Taking the derivative of V1 with respect to time, we obtain:

V̇1 = sṡ + τ k̃ ˙̂k + 1

J0ρ

˙̃OTÕ

= s(ë + α1ė + α2ėI) + τ k̃ ˙̂k + 1

J0ρ

˙̃OTÕ

= s

(
1

J0

(
N0vδ̇ + P0v2δ + M0θ + l − u0 − u1 − u2

)+ α1ė + α2ėI

)
+ τ k̃ ˙̂k + 1

J0ρ

˙̃OTÕ

Next, substituting (17), (18) and (19) into the above equation and combining (28) with (30) yield:

V̇1 = s

J0

(
l − l̂ − J0k̂sign(s)

)
+ τ k̃ ˙̂k + 1

J0ρ

˙̃OTÕ

= s

J0

(
H(O∗ − Ô) + ζ − J0k̂sign(s)

)
+ τ k̃ ˙̂k + 1

J0ρ

˙̃OTÕ

= s

J0

HÕ + 1

J0ρ

˙̃OTÕ + s

J0

(ζ − J0k̂sign(s)) + τ k̃ ˙̂k

=
(

s

J0

H + 1

J0ρ

˙̃OT

)
Õ + s

J0

(
ζ − J0k̂sign(s)

)
+ τ k̃ ˙̂k (35)

If ˙̂OT in (28) is chosen as

˙̂OT = ρsH (36)

The disturbance in UB system is slow time varying, so there exists a slow-changing optimal parameter
O*, whose derivative is a very small number such that ˙̃OT = − ˙̂OT = −ρsH. Then, considering (20), (35)
can be rewritten as
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V̇1 = 1

J0

(
ζ s − J0sk̂sign(s)

)
+ τ k̃ ˙̂k

= 1

J0

(
ζ s − J0k̂|s|)+ τ (k̂ − k)μ exp(σ |s|) |s| + (k − k) |s|

≤ 1

J0

(
|ζ | |s| − J0k̂|s|

)
+ τ (k̂ − k)μ exp(σ |s|) |s| + (k − k) |s|

≤ 1

J0

(|ζ | |s| − J0k|s|) + τ (k̂ − k)μ exp(σ |s|) |s| − (k̂ − k) |s|

= − 1

J0

(J0k|s| − |ζ | |s|) + (k̂ − k) |s| (τμ exp(σ |s|) − 1)

Till to now, it has been proved that for 0 ≤ t ≤ t the adaptive gain k̂ = η
∫ t

0
exp(α|s|)|s|dτ is bounded

[39]. Then, defining k as the upper bound of k̂ that satisfies (31), we get k̂ − k = −|k − k̂|, and as a result,

V̇1 ≤ − 1

J0

(J0k|s| − |ζ | |s|) − ∣∣k − k̂
∣∣ |s| (τμ exp(σ |s|) − 1)

= − (
k − ∣∣J0

−1ζ
∣∣) |s| − (τμ exp(σ |s|) − 1) |s|

∣∣∣k̃∣∣∣ (37)

Recalling (31) and considering that for any μ and σ there exists a positive number τ such that
τμ exp(σ |s|) > 1, we have

V̇1 < 0

for any |s(t)| > ε

2
, i.e., Õ → 0 which implies the convergence of the estimation. Particularly, for the

Lyapunov function L1, by following a similar procedure, we can obtain:

L̇1 ≤ −
(

k −
∣∣∣J0

−1 l̃
∣∣∣) |s| − (τμ exp(σ |s|) − 1) |s|

∣∣∣k̃∣∣∣
By defining the following symbols:

�1 = k −
∣∣∣J0

−1 l̃
∣∣∣

�2 = (τμ exp(σ |s|) − 1) |s|
where �1, �2 > 0, we further obtain:

L̇1 ≤ −�1|s| − �2

∣∣∣k̃∣∣∣
= −�1

√
2

|s|√
2

− �2

√
2

∣∣∣k̃∣∣∣
√

2

≤ −ϑ1

⎛
⎝ |s|√

2
+
∣∣∣k̃∣∣∣
√

2

⎞
⎠

≤ −ϑ1L1
1
2 (38)

where ϑ1 = min{√2�1,
√

2�2}. Since ϑ1 > 0, there must exist a positive constant T1 such that:

T1 ≤ ϑ1, ∀ |s(t)| > ε

2
(39)

From (38), we have

L̇1 ≤ −T1L1
1
2 (40)
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Therefore, the inequality (40) satisfies the finite time stability criterion in Appendix C, which shows
that there exists a finite time t for the sliding variable to converge to [− ε

2
, ε

2
] which is bounded by

t ≤ L1
1
2 (0) − L1

1
2 (t)

0.5T1

(41)

Step 2: t > t for the control law (20).
To prove the stability, the following intermediate variable is introduced:

∅= ε
|ζ |

|ζ | + J0

< ε (42)

In order to prove that the sliding variable s will be retained in the region of (−ε, ε) thereafter, we will
first prove that |s(t)| ≤∅< ε will be ensured in finite time ts from

∣∣s(t)
∣∣= ε

2
>∅. Considering the case

of
∣∣s(t)

∣∣= ε

2
>∅, a Lyapunov function V2 is defined as

V2 = L2 + Õ
T
Õ

2J0ρ
(43)

where L2 = s2

2
+ 1

2
k̂2. Taking the derivative of V2 with respect to time yields.

V̇2 = sṡ + k̂ ˙̂k + 1

J0ρ

˙̃OTÕ

According to Eqs. (17)-(20) and following a similar procedure in Step 1), we obtain:

V̇2 = s

J0

(
l − J0k̂sign(s) − l̂

)
+ k̂ ˙̂k + 1

J0ρ

˙̃OTÕ

= s

J0

(
l − J0k̂sign(s) − l̂

)
+ k̂

ε

(ε − |s|)2 sign(s)ṡ + 1

J0ρ

˙̃OTÕ

=
(

s

J0

+ k̂

J0

ε

(ε − |s|)2 sign(s)

) (
l − J0k̂sign(s) − l̂

)
+ 1

J0ρ

˙̃OTÕ

where the fact of ṡ = 1
J0

(
l − J0k̂sign(s) − l̂

)
as indicated by (35) has been used. Furthermore, combining

(28) with (30), we have

V̇2 =
(

s

J0

+ k̂

J0

ε

(ε − |s|)2 sign(s)

) (
HÕ + ζ − J0k̂sign(s)

)
+ 1

J0μ

˙̃OTÕ

=
((

s

J0

+ k̂

J0

ε

(ε − |s|)2 sign(s)

)
H + 1

J0ρ

˙̃OT

)
Õ +

(
s

J0

+ k̂

J0

ε

(ε − |s|)2 sign(s)

) (
ζ − J0k̂sign(s)

)
(44)

If ˙̂OT in (28) is chosen as

˙̂OT = J0ρ

(
s

J0

+ k̂

J0

ε

(ε − |s|)2 sign(s)

)
H (45)

such that:

˙̃OT = − ˙̂OT = −J0ρ

(
s

J0

+ k̂

J0

ε

(ε − |s|)2 sign(s)

)
H
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Then, (43) can be expressed as

V̇2 =
(

s

J0

+ k̂

J0

ε

(ε − |s|)2 sign(s)

) (
ζ − J0k̂sign(s)

)

= 1

J0

(
ζ s − J0k̂|s|)+ k̂

J0

ε

(ε − |s|)2

(
ζ sign(s) − J0k̂

)

≤ − 1

J0

(
J0k̂|s| − |ζ | |s|

)
− k̂

J0

ε

(ε − |s|)2

(
J0k̂ − |ζ |

)

= −
(

k̂ − ∣∣J0
−1ζ
∣∣) |s| − ε

(ε − |s|)2

(
k̂ − ∣∣J0

−1ζ
∣∣) k̂ (46)

According to (42), one can obtain that k̂(s) > k̂(∅) = |J0
−1ζ |. Then, we obtain:

V̇2 < 0

for any ∅< |s(t)| ≤ ε

2
which demonstrates that the estimation is converging. Moreover, by defining

another intermediate variable ∅
′ = ε

|l̃|
|l̃|+J0

and following a similar procedure, it can be obtained that:

L̇2 ≤ −
(

k̂ −
∣∣∣J0

−1 l̃
∣∣∣) |s| − ε

(ε − |s|)2

(
k̂ −

∣∣∣J0
−1 l̃
∣∣∣) k̂

Define the following symbols:

�1 = k̂ −
∣∣∣J0

−1 l̃
∣∣∣ (47)

�2 = ε

(ε − |s|)2

(
k̂ −

∣∣∣J0
−1 l̃
∣∣∣) (48)

which are both positive since k̂(s) > k̂(∅′) = |J0
−1 l̃|. Then, we have

L̇2 ≤ −�1 |s| − �2k̂

= −�1

√
2

|s|√
2

− �2

√
2

1√
2

k̂

≤ −ϑ2

( |s|√
2

+ 1√
2

k̂

)

≤ −ϑ2L2
1
2 (49)

where ϑ2 = min{√2�1,
√

2�2}. Since ϑ2 > 0, there must exist a positive constant T2 such that:

T2 ≤ ϑ2, ∀∅< |s(t)| ≤ ε

2
(50)

From (49), we have

L̇2 ≤ −T2L2
1
2 (51)

Therefore, the inequality (51) satisfies the finite time stability criterion in Appendix C, which shows
that there exists a finite time t for the sliding variable to converge to [-∅, ∅] which is bounded by

ts ≤ L2
1
2 (t) − L2

1
2
(
t + ts

)
0.5T2

(52)

According to [34–35], the sliding variable converges to |s(t)| ≤∅< ε in the finite time of t = t + ts

and will remain in that region (−ε, ε). Furthermore, according to Appendix D, because of the ITSM
(14)-(15), the tracking error e will also be bounded in |e| < ε

α1
.
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Table II. Parameters of controllers.

Control method Parameters of sliding mode Parameters of
reaching law

ITSM α1 = 2.4, α2 = 1,
q1 = 3, q2 = 5.

k1 = 500

AITSM α1 = 2.4, α2 = 1,
q1 = 3, q2 = 5.

k2 = 300, σ = 0.3,

BFITSM α1 = 2.4, α2 = 1,
q1 = 3, q2 = 5.

ε = 0.05, μ = 1000,
σ = 2.5

ELM-BFITSM α1 = 2.4, α2 = 1,
q1 = 3, q2 = 5, L = 5, ρ = 0.1.

ε = 0.05, μ = 1000,
σ = 2.5

Here completes the proof.

Remark 5. The convergence of the sliding variable s is divided into two steps: t represents the con-
vergence time from the initial state to

∣∣s(t)
∣∣= ε

2
>∅ and ts represents the consumed time to further

converge to |s(t)| ≤∅< ε. After the sliding variable converges, namely |s| ≤∅, the gain is finally
bounded by k̂(s) ≤ fb(∅) = |J0

−1ζ | as implied by (21). It can be seen from (42) that ∅ accordingly
increases (decreases) as the disturbance increases (decreases), and as a result, the tracking error can
be limited as small as possible.

Remark 6. From (31), it can be concluded that when s changes from 0 to s = s2 > 0, Ô in (30) needs to
increase, so that ζ approaches 0. At the same time, k̂ in (46) will also increase because of (20), therefore
Ô will increase. As a result, the disturbance compensation for the ELM observer can be more accurate.

3.4. Control parameter selection
The unmodelled dynamics, external disturbance and measurement noise in a practical system require that
appropriate control parameters should be synthetically selected to balance the control speed, precision
and signal smoothness. The parameters of ELM-BFITSM are shown in Table II.

1) Selections of α1, α2, q1, q2 : α1 affect the convergence rate of tracking error: the larger the value
of α1 is, the faster the error will converge. However, an excessive α1 will increase the control
amplitude as shown in (17). The integral term of the sliding variable is used to suppress the
steady-state error, and the integral coefficient α2 is usually a small constant. q1/q2 will also affect
the convergence rate of the error. Usually, q1 and q2 are odd integers, and q1/q2 is less than 1. In
our experiment, we chose α1 = 2.4, α2 = 1, q1 = 3, and q2 = 5.

2) Selections of ε, σ , μ: The parameter ε defines the convergence region of the tracking error. A
smaller ε implies a better control precision but too small ε may cause control input saturation
and lead to chattering problem. In the adaptive law (20), appropriate μ and σ should be selected
in order to make s reach the region faster with an acceptable chattering. ε = 0.05, μ = 1000, and
σ = 2.5 are selected.

3) Selections of L, ρ: The number of neural nodes L in the hidden layer affects the estimation accu-
racy: the more the number of neural nodes in the hidden layer is, the more accurate the tracking
result will be. However, considering that the calculation capacity of the STM32 microcontroller
adopted in our bicycle is limited, the number of L cannot be selected to be too large. The learn-
ing rate ρ affects the estimation rate of uncertainty as shown in (36) and (45). A larger ρ value
can get a faster estimation result. However, too large ρ value may also cause severe chattering.
Finally, we chose L = 5 and ρ = 0.1.
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Figure 5. Experimental platform of UB. (a) Side view and (b) top view.

4. Experimental verification
In this section, to demonstrate the superiority of the proposed controller, experiments compared with
ITSM, AITSM and BFITSM controllers are carried out on a real UB system.

4.1. Experiment configurations
The UB system used in the experiment is shown in Fig. 5, in which Fig. 5(a) and 5(b) are its side
and top views, respectively. The UB system mainly consists of a body frame, two wheels, and a RW.
The RW is installed at the centre of the bicycle body, and its rotational direction is the same as the
bicycle’s longitudinal direction. A servo motor is adopted to drive the RW with an equipped STM32
microcontroller. The UB is powered by an 11.1-volt lithium battery mounted at the rear bicycle. In
addition, an encoder is used for measuring the speed of the RW, and an MPU-6050 motion sensor
module is used to obtain the yaw angle of the bicycle.

The ITSM and AITSM controllers and the BFITSM controller in ref. [35] are used for comparison,
presented as follows:

uITSM = N0vδ̇ + P0v2δ + M0θ + J0(α1ė + α2ėI) + k1sign(s) (53)

uAITSM = N0vδ̇ + P0v2δ + M0θ + J0(α1ė + α2ėI) + k2|s|σ sign(s) (54)

uBFITSM = N0vδ̇ + P0v
2δ + M0θ + J0(α1ė + α2ėI) + J0k̂sign(s) (55)

where the control parameters of above controller are chosen as the same as the proposed controller as
given in Section 3.

4.2. Performance of stationary state (Case 1)
Ideally, we hope that the roll angle of the UB maintains at 0◦ under control. However, in practice, due
to the inertial action of the UB and the dead-zone characteristics of the motor, the roll angle of the UB
cannot absolutely be maintained at 0◦. Therefore, the control goal is to reduce the roll angle as much as
possible. In this case, the UB system is keeping static. The experimental results are shown in Fig. 6.

Fig. 6(a) shows the roll angle of the UB under the action of four controllers. It can be seen that
although the UB is kept within an acceptable range, the roll angle under the ITSM controller is the
largest, which reaches 0.0084 rad. The proposed ELM-BFITSM controller can restrain the roll angle at
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(a)

(b)

(c)

Figure 6. Control performance (Case 1). (a) Roll angle, (b) control input and (c) ELM.

the smallest amplitude, and its maximum roll angle is only 0.0023 rad, which is smaller than AITSM
control (0.0062 rad) and BFITSM control (0.0049 rad). Fig. 6(b) shows the control inputs of the four
controllers. It can be seen that the chattering range of ELM-BFITSM control is 0.0033 Nm, which
is significantly smaller than ITSM control (0.0116 Nm), AITSM control (0.0061 Nm) and BFITSM
control (0.0055 Nm). The reason is that the ELM observer and BF-based adaptive algorithm can well
compensate for effect of the lumped uncertainty on the closed-loop system.

Fig. 6(c) shows the lumped uncertainty estimation of the UB system. It can be seen that the estimated
disturbance varies during the experiment. As shown in Fig. 6(a), the tracking error under ELM-BFITSM
is ensured in the predefined bound of ± 0.05

2.4
= ±0.021 rad, which implies the proposed ELM-BFITSM

can exactly predefine the region of the roll angle tracking error.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724000997
Downloaded from https://www.cambridge.org/core. IP address: 18.191.234.43, on 15 Mar 2025 at 05:43:28, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724000997
https://www.cambridge.org/core


2650 Long Chen et al.

(a)

(b)

(c)

Figure 7. Control performance (Case 2). (a) Roll angle, (b) control input and (c) ELM estimated value.

4.3. Performance of lateral force rejection (Case 2)
To verify the robustness of the ELM-BFITSM against external disturbances, one-tenth of the motor
power is used to generate a lateral force. The lateral force is suddenly applied to the UB when it is at
a stationary balanced state. The experimental results are shown in Fig. 7. It can be observed that the
ITSM control has the largest maximum roll angle reaching 0.057 rad. In addition, the BFITSM control
achieves a smaller maximum roll angle (0.042 rad) than AITSM control (0.047 rad). Compared with the
above three controllers, the performance of ELM-BFITSM controller is significantly improved, whose
maximum roll angle is 0.034 rad. The control signals are shown in Fig. 7(b), while the disturbance esti-
mation in the proposed control by ELM observer is depicted in Fig. 7(c). The proposed ELM observer
does not require any training process and can adaptively adjusted the output weights such that the esti-
mated results can be changed in real time with the disturbance. It can be seen that due to the effective
compensation of the disturbance by using ELM observer, not only the smallest value of the control
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(a)

(b)

(c)

Figure 8. Control performance (Case 3). (a) Roll angle, (b) control input and (c) ELM estimated value.

amplitude for the proposed control is achieved but also the best control performance of the proposed
control is obtained as clearly shown in Fig. 7(a).

4.4. Performance of S-curve driving (Case 3)
When the bicycle steers, the parametric uncertainty is activated due to the front wheel’s motion. In
order to further verify the strong robustness of the ELM-BFITSM controller, the UB system is required
to follow an S-curve path in this case. The tracking performance of the controllers is shown in Fig. 8.
It can be seen from Fig. 8(a) that ITSM has the worst control performance with a maximum roll angle
reaching 0.11 rad. Due to the introduction of BF, the maximum roll angle of BFITSM control reduces
to 0.064 rad, which is smaller than AITSM (0.079 rad). Moreover, the tracking error of ELM-BFITSM
is 0.053 rad, which indicates that the ELM-BFITSM achieves the best control performance under the
changing disturbance condition. As seen from Fig. 8(b), the control signal of ELM-BFITSM is smoother
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Table III. Control performance comparisons.

RMSE (rad) MAXE (rad)
Case 1 ITSM 0.00157 0.0084

AITSM 0.00101 0.0062
BFITSM 0.0009 0.0049

ELM-BFITSM 0.00043 0.0023
Case 2 ITSM 0.00844 0.057

AITSM 0.00725 0.047
BFITSM 0.00626 0.042

ELM-BFITSM 0.005793 0.034
Case 3 ITSM 0.01928 0.11

AITSM 0.01812 0.079
BFITSM 0.01312 0.064

ELM-BFITSM 0.00853 0.053

than other three controllers, which does not have severe chattering problem. The estimate value of the
uncertainty for the ELM-BFITSM control is shown in Fig. 8(c).

It can be seen from the above experimental results that, compared with ITSM, AITSM and BFITSM
controllers, the proposed ELM-BFITSM control exhibits the best tracking performance. The reasons
are given as follows: (i) Compared with the conventional ITSM control, better control performance is
achieved due to the introduction of BF algorithm. (ii) Compared with adaptive ITSM and BFITSM
control schemes, due to the fact that the ELM observer can compensate for the impacts of lumped
uncertainty to effectively improve the control precision, the proposed control obtains the most superior
control performance and robustness.

4.5. Performance comparisons
For performance analysis, root mean square error (RMSE) and maximum error (MAXE) values of the
sampled tracking error e(i) are taken into consideration for comparisons, which are defined as

MAXE(e) = max(|e(i)|) (56)

RMSE(e) =
√∑G

i=1

e2 (i)

G
(57)

where G is the number of the sampled tracking error. Table III and Figs. 9(a) and 9(b) show the perfor-
mance comparisons of four controllers in three cases. It can be seen that the proposed controller achieves
the smallest RMSE and MAXE values, while the ITSM controller behaves with the worst performance,
followed by the AITSM and BFITSM controllers. It can be concluded that compared with the ITSM
and adaptive ITSM controllers, the proposed ELM-BFITSM controller can achieve excellent control
performance of the UB system in practical applications.

5. Conclusion
In this paper, an ELM-BFITSM controller has been developed for the balancing control of an UB system.
It has been shown that the proposed control strategy comprises a BF-based adaptive ITSM for elimi-
nating the reaching phase and an ELM observer for further compensating the lumped uncertainty. As
a result, the disturbance can be estimated and be fed forward by the inherent ELM observer. Moreover,
due to the BF-based adaptive law, the control gain is automatically updated according the disturbance
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(a)

(b)

Figure 9. Control performance improvement of ELM-BFITSM.

variations, and the overestimation is effectively suppressed. In addition, the proposed controller ensures
that the roll angle of the UB converges to an exactly predefined region in finite time. The experimen-
tal results have verified the excellent control performance of the proposed controller compared to the
conventional ITSM, conventional adaptive ITSM and BF-based ITSM controllers. Compared to ITSM,
AITSM and BFITSM controllers, the RMSE of ELM-BFITSM control is improved by 72.6%, 57.4%,
52.2% in Case1; 31.4%, 20.1%, 7.5% in Case2 and 55.8%, 52.9%, 35% in Case3, respectively. In addi-
tion, the MAXE of the ELM-BFITSM control is improved by 72.6%, 62.9%, 53.1% in Case1; 40.4%,
27.7%, 19% in Case2 and 51.8%, 32.9%, 17.2% in Case3, respectively.

In practical applications, considering that some failures may occur such as actuator and sensor
failures, our future research work will focus on sliding mode-based fault tolerant control of UB system.
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Appendix A
In this paper, the control law is designed as

u = u0 + u1 + u2 (58)

Then, we have

|u| < |u0| + |u1| + |u2|
<
∣∣N0vδ̇ + P0v

2δ + M0θ + J0(α1ė + α2ėI)
∣∣+ ∣∣∣l̂∣∣∣+ ∣∣∣J0k̂sign(s)

∣∣∣
<

∣∣∣N0vδ̇ + P0v
2δ + M0θ + J0

(
α1θ̇ + α2e

q1
q2

)∣∣∣+ ∣∣∣l̂∣∣∣+ ∣∣∣J0k̂
∣∣∣

<
∣∣N0vδ̇ + P0v

2δ
∣∣+ ∣∣∣l̂∣∣∣+ ∣∣∣J0k̂

∣∣∣+ ∣∣M0θ + J0α2θ
q1/q2

∣∣+ ∣∣J0α1θ̇
∣∣

<
∣∣N0vδ̇ + P0v

2δ
∣∣+ ∣∣∣l̂∣∣∣+ ∣∣∣J0k̂

∣∣∣+ max(M0, J0α2) |θ | + J0α1

∣∣θ̇ ∣∣ (59)

where v is the forward speed of the UB, δ is the steering angle of the front wheel relative to the
positive direction of UB, which are set as the small value and change continuously in the experi-
ment. l̂ is the estimated result of ELM observer, which is bounded. k̂ is the proposed adaptive law.
If k̂ = μ

∫ t

0
exp(σ |s|)|s|dτ , the k̂ is bounded because of the finite-time accessibility. If k̂ = fb(s), the k̂ is

bounded because the k̂ will increase quickly to pull |s| back when |s| gradually increases, so that the k̂
is a large but bounded value.

Therefore, when ζ0 > |N0vδ̇ + P0v2δ| + |l̂| + |J0k̂|, ζ1 = max(M0, J0α2) and ζ2 = J0α1, the following
inequality holds:

|u| < ζ0 + ζ1 |θ | + ζ2|θ̇ | (60)

Appendix B
Based on (7), the θ̈ is expressed as

θ̈ = N0vδ̇

J0

+ P0v2δ

J0

+ M0θ

J0

+ 1

J0

(l − u) (61)

The lumped uncertainty l is given by

l = d + �Nvδ̇ + �Pv2δ + �Mθ − �Jθ̈ (62)
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Then, we obtain:

l = d + �Nvδ̇ + �Pv2δ + �Mθ − �J

(
N0vδ̇

J0

+ P0v2δ

J0

+ M0θ

J0

+ 1

J0

(l − u)

)
(63)

Rearranging the terms, we get:

l = �J

J0

(
1 + �J

J0

)u + d + �Nvδ̇ + �Pv2δ(
1 + �J

J0

) + �Mθ(
1 + �J

J0

) − �JM0θ

J0

(
1 + �J

J0

) − �JN0vδ̇ + �JP0v2δ

J0

(
1 + �J

J0

)

= �J

J0 + �J
u + (J0 − �J) �Mθ

J0 + �J
+ J0(d + �Nvδ̇ + �Pv2δ)

J0 + �J
− �JN0vδ̇ + �JP0v2δ

J0 + �J

)
(64)

Therefore, we have

|l| ≤
∣∣∣∣ �J

J0 + �J

∣∣∣∣ |u| +
∣∣∣∣ (J0 − �J) �M

J0 + �J

∣∣∣∣ |θ | +
∣∣∣∣∣J0

(∣∣d + �Nvδ̇ + �Pv2δ
∣∣)

J0 + �J

∣∣∣∣∣+
∣∣∣∣�J(N0vδ̇ + P0v2δ)

J0 + �J

∣∣∣∣ (65)

In this work, the disturbance d and the uncertain items �N, �P, �M and �J are considered to be
bounded. In addition, the steering angle δ is continuously changed such that its derivative is bounded as
well [29]. Therefore, the following inequalities for the bounded property are given as

|d| < D,
∣∣�Nvδ̇

∣∣< ∂1,
∣∣�Pv2δ

∣∣< ∂2 (66)

D + ∂1 + ∂2 < ∂3 (67)
∣∣∣∣∣J0

(|d| + ∣∣�Nvδ̇
∣∣+ ∣∣�Pv2δ

∣∣)
J0 + �J

∣∣∣∣∣+
∣∣∣∣�J(N0vδ̇ + P0v2δ)

J0 + �J

∣∣∣∣<
∣∣∣∣ J0∂3

J0 + �J

∣∣∣∣+
∣∣∣∣�J(N0vδ̇ + P0v2δ)

J0 + �J

∣∣∣∣< β0

(68)∣∣∣∣ �J

J0 + �J

∣∣∣∣< β1 (69)

∣∣∣∣ (J0 − �J) �M

J0 + �J

∣∣∣∣< β2 (70)

Then, we yield:

|l| ≤ β0 + β1 |u| + β2 |θ |
As can be seen that the upper bound of the lumped uncertainty l is associated with the structure of

the designed controller. From (9), we have

|l| ≤ β0 + β1

(
ζ0 + ζ1 |θ | + ζ2|θ̇ |)+ β2 |θ | = β0 + β1ζ0 + β1ζ1 |θ | + β2 |θ | + β1ζ2|θ̇ | (71)

Thus, we obtain the expression:

|l| < l = μ0 + μ1 |θ | + μ2|θ̇ | (72)

where:

μ0 = β0 + β1ζ0 (73)

μ1 = β1ζ1 + β2 (74)

μ2 = β1ζ2 (75)

This completes the proof.
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Appendix C
Suppose a first-order non-linear differential inequality given by

V̇ + κVη ≤ 0 (76)

where κ > 0, 0 < η < 1. V(x) is a positive Lyapunov function with respect to the state x ∈ R. Then, the
function V(x) will converge from any given initial condition V(x(0)) = V(0) to the origin in the finite
time given by

tr ≤ V1−η(0)

κ(1 − η)
(77)

The details can refer to ref. [40] and references therein.

Appendix D
The sliding function (14)-(15) can be rewritten as

ė +
(
α1 − s

e

)
e + α2

∫ t

0

eq1/q2 = 0 (78)

Since |s| ≤ ε, if |e| > ε

α1
, we have α1 − ε

e
:= α′

1 > 0. It is clear that e is decreasing to zero in finite
time according to (78) [18]. In other words, e will be bounded by

|e| ≤ ε

α1

(79)

in finite time.
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