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1. Introduction. In this paper, infinite fields K will be discussed which 
satisfy the following condition : 

CONDITION C: for any polynomial p(t, x) in x, coefficients in K(t), t trans­
cendental with respect to K, which has no zeros in K (t), there is a t* in K for 
which p(t*, x) has no zeros in K. 

This condition is a priori weaker than Franz's necessary and sufficient 
criterion1 in the field K. As an illustration of the scope of the metamathematical 
method of proof in algebra, a metamathematical theorem (2.1) will be estab­
lished for fields satisfying condition C. By means of the theorem it will be 
shown that for fields satisfying condition C not only does Hilbert's theorem 
hold, but also two other theorems, one related to results proven by Dôrge (1) 
and the other new. The metamathematical theorem to be established is an 
extension of a theorem proven by Robinson (6, pp. 35-52). 

Throughout this paper K will denote an infinite field, t an element trans­
cendental over K, and x will be an indeterminate. We will use the usual nota­
tion of square and round brackets when adjoining elements to a field to denote 
the ring of the polynomials in the adjoined elements and the field of rational 
functions of the adjoined elements respectively. We will further use for logical 
notation, variables x, y, z, u, v, x' and y't " ^ , " " A , " " V , " and " 3 " for 
negation, conjunction, disjunction and implication respectively, and "(x)" 
and "(3#)" for universal and existential quantification respectively. 

2. A metamathematical theorem. The language of the first order predicate 
calculus is assumed given with any number of individual parameters and 
atomic predicates. For any given field K and any element / transcendental with 
respect to K, the language g is the language of the first order predicate calculus 
applied in the following way: to each member of K and to t is assigned an 
individual parameter, and these are the individual parameters of g; to each 
subset of K, to each subset of the set K X K of pairs from K, to each subset 
of the set K X K X K of triples from K, etc., is assigned an atomic predicate, 
and these are the atomic predicates of %. Finally the language 2 is defined to 
be identical with g except that it is lacking an individual parameter for t. 

Received May 10, 1954; in revised form May 12, 1955. Dr. Gilmore's part of this work was 
done under a postdoctorate National Research Council Fellowship. 

xSee Franz (2, §3). In his paper, Franz considers fields K of the form K = F(a), where F is 
an infinite field and a is transcendental over F. For finite F, see Inaba (4). 
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This assignment of parameters and predicates for the languages $ and 8 
will remain fixed for this paper, so that when we speak of a statement of 2 or g 
holding for K or K(t), it is assumed to hold under the given assignment. Then 
S is defined to be the set of all statements of 8 holding for $ ; i.e., $ is the largest 
set of statements of 8 for which K is a model. 

THEOREM 2.1. For any field K fulfilling condition C, there is an extension S' 
of S = K(i) which is a model of $ and for which every member of S'—S is trans­
cendental with respect to S. 

Proof. Let the atomic predicates E(x, y), S(x, y, z) and P(x, y, z) be those 
of % which have been assigned to the following sets respectively : the set of all 
pairs of members of K with the first member of the pair equal to the second 
member of the pair, the set of all triples from K with the sum of the first two 
members equal to the third member, and the set of all triples from K with 
the product of the first two members equal to the third member. Within g 
can then be expressed any polynomial equation p(t) = 0 by using the atomic 
predicates E, S and P , and by using the individual parameters in F correspond­
ing to the coefficients of the polynomials p{t). Thus using the letter r as the 
individual parameter of % which has been assigned to the element t trans­
cendental with respect to K, the notation 

m 

£ Pi ***** 

can be used as an abbreviation for the full statement in g for the polynomial 
equation of the same form. The following sets of statements from g are then 
defined : 
©i: the set of all statements of the form 

m 

z=0 

for all my and for all sets of individual parameters for which the polynomial 
p(f) Ç K [t] with coefficients corresponding to the parameters pu is not null. 
©2: the set of all statements of the form 

/ m n \ 

(*)( E H qtJ r'x^O) 

for all m and n, and for all sets of individual parameters for which the poly­
nomial q{t, x) G K[t, x] with coefficients corresponding to the parameters qtj is 
irreducible in x over K{t), and of degree greater than one in x. 

The set $ VJ ©x \J ©2 of statements from g is consistent, provided we can 
show that K is a model for any finite subset of the set. Now, given any finite 
subset of I U S I U ©2, let pt(t) for i = 1, . . . , ju be the polynomials in 
K[t] used to define the statements from ©i, and let q^t, x) for j = 1, . . . , 
v be the polynomials in K[t, x] used to define the statements from 52 . Then 
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to show that K is a model for this finite subset of statements, we need only 
find a suitable /* Ç K to which the parameter r can be assigned, since the given 
assignment of parameters and predicates is assumed to be fixed. But then t* 
need only be chosen so that p(t*,x) has no root x in K, where the poly­
nomial pit, x) is defined to be 

A MO Eta!* (*,*)• 
i=l j=l 

Since all the q3- are irreducible in x, pit, x) has no roots in K(t), and therefore 
by condition C there is a t* Ç K for which p(t*, x) has no root in K. 

Since the set $ U ©1 W @2 is consistent, it has a model2 M. Within $ will 
be a set of statements containing no quantifiers or variables but only individual 
parameters of 8, and expressing all possible algebraic relationships between 
members of K. All of these statements are valid in the model M so that M must 
contain a subset K' which is a field isomorphic to K. Further, since M is a 
model for the set @i, M must contain a member t' which is transcendental 
with respect to Kr and therefore must contain a subset K' (tf) isomorphic with 
K(t). Since M is also a model of ©2, every member of M—Kf{tr) is trans­
cendental with respect to K'(t'). Therefore an extension Sr of S can be con­
structed isomorphic to M and such that every member of S'—S is trans­
cendental with respect to S, establishing the theorem. 

3. Applications. Theorem 2.1 will now be applied to establish several 
results for fields fulfilling condition C. The principle of our method is to estab­
lish that a certain statement of 2 holds in Sf. It then follows from 2.1 that the 
statement holds also in K (see proof of Theorem 3.1), although it may be far 
more difficult to prove this fact directly. 

THEOREM 3.1. If K fulfils condition C, then for any irreducible polynomial 
pit, x) in x with coefficients in Kit) there are infinitely many t* from K such that 
Pit*, x) is irreducible in x over K. 

Proof. Let 5 and Sf be given for K as in Theorem 2.1. We will first show that 
if a polynomial p it, x) with coefficients in S is irreducible in 5 then it is also 
irreducible in S'. For if p = pi . p2, with pi, p2 € S'[x], is a non-trivial factoriza­
tion of p, then in the algebraic closure T' of S', p\ and p2 will split into linear 
factors. But in the algebraic closure T of S, p will split into linear factors and 
these factors can be identified with factors of pi and p2 in Tr. Hence pi and p2 

must split into linear factors in T and must therefore be contained in T[x]. 
But since all members of T are algebraic with respect to S, T P\ Sf = S, 
and hence pi, p2 Ç S[x], giving that p is reducible in S. 

For any polynomial p it, x) in x with coefficients from K it) there can be 
defined a predicate I(z) in the language 8 such that for any member k of K, 

2Compare Robinson (5) or Henkin (3). 
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I(k) expresses that p(k,x) is irreducible in x over K. We can assume that 
pit, x) is a polynomial 

Èfi(t)x\ 

where ft(t) G K[t] for 0 < i < n, since a factor q{t) Ç i£[£] does not affect the 
irreducibility of p(t, x). Then for any given k (z K, the fact that p(k, x) has no 
factor of degree m in x can be expressed by Im (k), which is defined to be : 

Oo) . . . (xn)(y0) . . . (yn-m)(x0yo 9* fo(k) V x0y1+x1y0 ?* fi(k) V . . . 
V xmyn—mjn\K)) 

where, for example, x0 yo 9e fo(k) is an abbreviation for 

(z)\P(x0,yo,z) Dz^ Èpikj 

assuming/o(0 to be the polynomial 
r 

and where the other members of the disjunction are abbreviations for corre­
sponding statements. Then if I(k) is defined to be Ii(k) Aliik) A . . . Aln-i(k), 
I(k) expresses that p(k, x) for k Ç K is irreducible in x over K. Hence to show 
that there is a t* in K for which p(t*, x) is irreducible over Ky we need only to 
show that (Jx)I(x) is valid in K. Further, in order to show that there are 
infinitely many t* in K for which p(t*, x) is irreducible over K, we need only 
prove that 

(I) (3*i) (3*2) • • . (3*0 (si ?* z2 A zi 9* zz A z2 J* zz A . . . A z„_i ^ zn 

A 7(2i) A J(22) A . . . A I{zn)) 

is valid in K for any n. 
To show that a statement is valid for K it is only necessary to show that it is 

valid for S', since if a statement is valid for S' but not valid for K, its negation 
would be valid for K and therefore a member of $ , contradicting that 5 r is a 
model for $ . But (3#)/(#) is valid for S' since t is a member of £', and therefore 
since £(/, x) is irreducible over 5 it must also be irreducible over S'. Also the 
statement (I) is valid for Sf since not only p(t, x) is irreducible over 5 but also 
p(t+k, x) for any member k of K. Thus the theorem is established. 

This theorem shows that for any field fulfilling condition C, Hilbert's 
irreducibility theorem can be proven. 

In (1), Dôrge has proven theorems related to Hilbert's irreducibility 
theorem as the following theorem is related to Theorem 3.1. 

THEOREM 3.2. If K is an ordered field fulfilling condition C, then for any a 
and b from K for which a < b and for any irreducible polynomial p(t, x) in x 
with coefficients in K (t), there exists a t* in K such that a < t* < b and such that 
pit*, x) is irreducible in x over K. 
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Proof. The order in K defines a set of pairs of K to which there will be as­
signed a predicate Q(x, y) of 8. Q will appear together with E, S and P in 
statements in $ expressing that K is an ordered field. For a given irreducible 
polynomial p(t, x), I(z) will be defined as in the proof of Theorem 3.1. Then 
for the present theorem it is sufficient to prove that for any parameters a and ft 
of 8 

(II) (3*)(0(«, 0) D Q(a, z) A Q(z, 0) A I(z)) 

is valid for S' (and hence that it is valid for K, by Theorem 2.1). 
Because S' is a model of $ , it must be an ordered field under some ordering 

< to which Q is assigned. To show then that (II) is valid for S', it is sufficient 
to show that for any a and b in K such that a < b, there is a w in Sf which 
satisfies I(z) and is such that a < w < b. But such a w can always be found, 
for if 1 -< t, put w = a + (b — a) / - 1 ; if 0 < t < 1, put w = a + (6 — a)/; 
if — 1 < t < 0, put w = a + (a — 6)£; and finally, if t < — 1, put z*; 
= a + (b — a)t. No other cases need be considered since t is transcendental 
with respect to K and hence neither E(0,t) nor E(1 , t) can be valid 
for S'. In each of these cases it is possible to show from the properties of an 
ordered field, which S' possesses by virtue of being a model for $ , that 
a < t < b. Further, since in each case w is transcendental over 5, p{w,x) 
is irreducible over S and therefore irreducible over S' (see proof of Theorem 
3.1), showing that w satisfies I{z). This proves the theorem. 

As final application, we will prove a theorem for fields K with a valuation \p 
in an ordered field W. The valuations considered will be non-trivial and hence 
the function \f/ will be such that (7, p. 325): 

3.21 for any &, \[/(k) is an element of W, 

3.22 for any k 9* 0, 0 < t(k)f and ^(0) = 0, 

3.23 for any k and k', ^{k.k') = yp(k)4(k')y 

3.24 for any k and k', ^(k+kf) < (̂ife) + ^(jfe'), 
3.25 there is a fe such that (̂jfe) ^ 1 and ^(ê) ^ 0. 

The following properties can then be proven: 

3.26 for any a, k and fe', if ^(a) ^ 0 and ^(fe) < ^(fe'), then (̂jfe-a) < ^(Jfe'-a) 
is true. This property follows from the fact that W is an ordered field, 
and from 3.23. 

3.27 for any k, if k 9* 0 then (̂jfe) 5* 0. 

3.28 for any a, ft and ft', if iKa) = iKl)and^(ft) < \p(k'), then^(^-a) < ^(ft'). 

THEOREM 3.3. If K is afield with a valuation \f/ in an ordered field W and K 
fulfils condition C, then for any a and bfrom K with b 9e 0 and for any irreducible 
polynomial p(t, x) in x with coefficients in K(t), there exists a t* in K such that 
\p(a — t*) < \f/(b) and such that p(t*, x) is irreducible in x over K. 
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Proof. Let E*(x, y) and <2*(x, y) be the atomic predicates of 8 which have 
been assigned to the following sets respectively: the set of pairs (a, b) of ele­
ments from K such that \[/(a) = ^(6), and the set of pairs (a, b) such that 
\j/(a) < \[/(b). Then these predicates will appear in statements in $ . For ex­
ample, in addition to statements expressing that E*(x,y) is an equivalence 
relation, the following statements will appear in $ : 

(x)(y)(z)(Q*(x,y) A Q*(x,z) D Q*(x,z)), 

(x)(y)(Q*(x, y) V Q*(y, x) D E*(x, y))9 

(x)(y)(Q*(x,y) V Q*(y,x) V E*(x,y)), 

together with statements corresponding to properties of the valuation func­
tion \f/, such as 

3.31 (x)(~E(x, 0) D Q*(0, x)) A (x)(£(x, 0) D £*(x, 0)), 

3.32 (3x) ( ~ £ * (x, 0) A ~ £* (x, 1)), 

3.33 (x)(y)(z)(u)(v)(Q*(x,y) A P(x,z,u) A Pfo,*,») A ~ £ * ( s , 0 ) D Q* («,»)) 
3.34 ( x ) ( ~ E ( x , 0) D ~ E * ( x , 0)) 

3.35 (^)(y)(«)(«)(Q(y, 2) A E*(l , x) A P(x, y> u) D Q*{u, z)), 

where "0" and " 1 " are the individual parameters of £ corresponding to the 
zero and the unit of K. 

If S' is the extension of K given by Theorem 2.1, then S' is a model for $ . 
Hence in 5 ' there must be defined relations corresponding to the atomic pre­
dicates E*, Q*, S and P. This can be expressed in the following way. The equi­
valence relation E*(x, y) will determine equivalence classes in Sf for which 
\p(a) for any member a of 5 ' will denote the equivalence class determined by a. 
Thus for any a and b of 5 ' , \p{a) = \p(b) if and only if E*(a, b) holds in Sf. 
Further, these equivalence classes can be ordered by the relation corresponding 
to Q*(x, y), for we can say that for any a and b of S', $(a) < \j/(b) if and only 
if <2*(a, b) holds in S\ and this will be a proper ordering of the equivalence 
classes, by the statements listed above as appearing in K. Lastly, in S' will 
appear relations corresponding to 5 and P , and these relations will be the usual 
addition and multiplication relations of S' as in the proofs of Theorems 3.1 
and 3.2. Since K is a subfield of S' and since the language £ contains para­
meters for all members of K, we can say that for any members a and b of K, 
\j/(a) = \J/(b) if and only if \p(a) = \//(b)\ i.e., that the equivalence classes 
determined in K by \p are the same as those determined in K by \f/. 

In order to prove the theorem, it is sufficient to show that for any para­
meters a and /3 of £ the statement 

3.36 Q a ) ( ~ E(p, 0) D (x)(y)(S(z, x, 0) A S (a, x, y) D Q*(y, fi)) A /(*)) 

holds in K, and hence that it holds in S'. It will hold in S' if and only if for 
every a and b in K, with 6 ^ 0 , there is a w in 5 ' such that \p(a — w) < \p(b). 
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Now 

(i) if $(t) < #(1), let w = a - b.t; 

(ii) if #(1) < # ( / ) , let w = a - ft.r1; and 

(iii) if ip(t) = \p(l), choose k in K, k 9e 0, such that $(fe) < #(1), i.e., such 
that ^(fc) < ^(1), and let w = a - i.jfe.J. 

In the last case, such a & can be found since 3.32 holds in K, and hence for some 
k, k ^ 0, either y//(k) < \p(l) or ^(1) < \p{k) and hence either $(k) < ^(1) or 
yp{k~l) < \f/(l) by 3.26. Each of the w/s chosen can be shown to satisfy 
\p(a — w) < \p(b), for 

(i) since ~E(b,0) holds in 5 ' so does ~E*(b,Q) by 3.34, and therefore 
$(t.b) < $(a) by 3.33; 

(ii) By 3.26, 4/{t~l) < if (I) ; the remainder of the proof can be completed as 
in case (i) ; 

(iii) $(k.b) < \p(b) can be proven following the previous cases, and from this 
by 3.35 can be proven \p(k.b.f) < ${b). 

Finally, each of the w's will satisfy I{z) since in each case p(w, x) will be irre­
ducible over S and therefore irreducible over S'. Hence we have shown that 
3.36 holds in Sf for any parameters a and £ of 8 and have therefore established 
the theorem. 
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