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QUASI-SPLITTING EXACT SEQUENCE 

HSIANG-DAH HOU 

1. Definitions. Let Rbe a ring with 1 ^ 0 and a, /5, y .R-endomorphisms 
of i^-modules A, J3, and C respectively. We shall denote by M (R) the category 
of i?-modules, and by End(i£) the category of i^-endomorphisms. For objects 
a and /3 of End(i^) a morphism X: a —*/3 is an J?-homomorphism such that 
\a = ]8X. We shall denote by Idm(jR) the full subcategory of End(i?) whose 
objects are idempotents. Idm(i£) is an abelian category, ker, coker and im 
are constructed in the naive way and hence 

0->A-^B^C-*0 

is exact in M (R) if and only if 

0 -> a -$> 13 -2> 7 -> 0 

is exact in Idm(R), where the domains of a, /3, and 7 are A, B, and C respec
tively. One sees that End (J?) as well as Idm(i^) is abelian. We observe that 
in Idm(i^), the functors a 1—» ker a, a 1—> coker a are naturally equivalent and 
are, as a consequence of the snake diagram, exact. 

Definition 1. Call a long exact sequence 

S: 0 -» 4 -^ 5n_i - > . . . -> £0 -^ C -> 0 

quasi-splitting for a and 7 in End (R) if there exist jR-homomorphisms 6 and r 
such that 6K = a and or = 7. Clearly, this depends only on the extension 
class of S. 

Definition 2. Define 

Qsp°(T,û:) = {X G Hom(C,,4)|aX = X7 = 0}. 

For n > 0, Qspn (7, a) is the subset of those elements of Extn (C, A ) represented 
by long exact sequences that quasi-split wrt a and 7. 

One has Qspn(0c, 0A) = Extn(C,A) where 0A is the zero-endomorphism 
of A. For n = 1, let £1 be a short exact sequence quasi-splitting for a and 7, 
and let £ 2 be congruent to E\\ then clearly E2 is quasi-splitting for a and 7. 

Given rj-.a —•»«', where the domain of a! is A', the associated pushout 
diagram implies that TJEI is quasi-splitting for a and 7. 
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2. Results. 

PROPOSITION 1. For n ^ 0, 

Qspw(0c, a) = ker[Extn(C, A) ^ Extn(C, 4 ) ] , a«d 

Qspw(T, 0 A ) = ker[Extn(C, 4 ) ^ Extw(C, 4 ) ] . 

P T W / . Recall that Extn(C, A) « HW(C, 4 ) where Ç = (C, a) is a pro
jective resolution of C. Let S: 0 —» 4̂ —> Pw_i —» . . . —* P 0 —» C —> 0 corre
spond to [u] through this isomorphism; we have a push-out square 

dCn > Cn-\ 

•i w 

A ->Bn 

where v restricts u, whence if a*[u] = 0, there is a map r: Cw_i —» 4̂ such that 
rd = cm and we construct / : P„_i —> 4̂ with v'v = a, P'W = r. This proves 
the first equality. The second is proved similarly. 

COROLLARY 1. For n ^ 0, 

Q s p"(7 , a ) = ker[Ext"(C, ^ ) ^->Extre(C, ^ ) ] H ker[Extn(C, 4 ) ^ E x t " ( C , A)] 

COROLLARY 2. Por n ^ 0, Qspw(-, -) is a^ additive bifunctor on End(P) to 
the category of abelian groups. It is contravariant in the first variable and covariant 
in the second variable. 

In general, Qsp is not half-exact. The following is an example due to Whaples. 
Let (a)j (b), (b') and (c) be cyclic groups generated a,b,bf and c of orders 

26, 24, 22 and 2 respectively. Let B = (a) 0 (&'), JT = (a) 0 (b) © (c), and 
let 4̂ and 12 be the subgroups of (a) 0 (6) and (b) 0 (c) generated by 
(2a, — &) and (26, —c) respectively. The following typical 9-diagram in 
which i, k send the announced generators to (0, 2b, — c), (2a, — &')> respectively 
and /x sends a »—> a, 6 t-> &', c i—> 2c' stipulates the extension £ ' and the map a. 
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By a suitable choice of j , the bottom row E" coincides with any given exten
sion satisfying <r*E" = E'. (This follows by the 9-lemma). As the reader may 
easily verify, the extension E' quasi-splits for the map d: D —> D obtained on 
multiplying by 2. On the other hand, E" does not. Indeed, j : A —» X is of the 
form k + / , where/ is a homomorphism A —> D followed by inclusion. Conse
quently, if /3' : D © A —> X is the map induced by inclusion on each summand, 
a quasi-splitting of E " would imply the existence of a homomorphism 
6: X —> D such that the image of 0/3' is contained in W. This is clearly impos
sible. Finally k*Ef splits. We therefore conclude that Qsp' is not half-exact. 

PROPOSITION 2. Let ô be an object and 

be a short exact sequence in Idm(i^). Then the following two sequences, starting 
with 0 and n = 0, are exact. 

(1) -> Qsp"(7, 5) £ Qspn(/3, 5) £ Qsp"(a, 8) ^ Qsp"+1(7, *) -> 

(2) -* Qsp" (8, a) ^ Qsp"(8, 0) ^ QspB(8, 7) ^* Qsp"+1(5, «) -

w/zere £* and E* are natural. 

Proof. This follows from the corresponding exact sequence for Ext and the 
exactness of ker. 

Define an object p Ç Idm(i^) to be /-projective if Qsp°(p, -) is exact. An 
element of Qsp°(p, a) is determined by a map coker —> ker a:. Because of the 
equivalence of ker and coker it follows that p is /-projective if and only if 
ker p is projective in M (R). One may verify that if p is /-projective, then p is 
projective in Idm(i^). The converse is not true: let p = 0 © 1 where the 
domain of p is Z © Z2, and consider the epimorphism Z4 —> Z2 and Z © Z2, 
where Z4, Z2 are subjected to the identical automorphisms. 

PROPOSITION 3. EndCR) and ldm(R) have enough projectives. 

Proof. Let g: S —>S be a map of sets and F(g): F(S) —» F(S) the induced 
map of the associated free i^-module. Each set map rj: g —> B determines a 
unique i^-linear extension 77: F(g) —*B. Thus, if 77 is given and k: a —>/3 is 
surjective in EndR, 77 lifts to %: g —> a with £ o k = 77 and consequently 
F(£)ok = F(rj). I t follows that F(g) is projective. For g in Endi?, the 
identical map induces the surjective F(g) —> g. Consequently Endi? has enough 
projectives. Finally, if g is in IdmR then so is F(g). Consequently, IdmR also 
has enough projectives. 

COROLLARY 3. Idm(R) has enough I-projectives. 

In End (i£), it follows that the satellites of Qsp0 are not Qsp's, by Whaples's 
counterexample. 
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THEOREM. Let there be given a family of contravariant functors Qsw(-), n ^ 0, 
from the category IdmCR) into the category of abelian groups. For each n and each 
exact sequence 

in ldm{R), let there be given a homomorphism En: Qsn(a) —>QSW+1(Y) which 
is natural. Suppose that for a fixed object 5, and a short exact sequence E given 
as above, in Idm(i?) 

Qs°(a) = Qsp° (a, Ô) for all a in Idm(R) 

Qsn(p) — Oforn > 0 and all I-projectives. 

and the following sequence is exact 

0 - Qs°(7) -> - QSM(T) £ QsB(/3) 4 Qs"(a) £ QsB+1(T) -

Then there is a natural equivalence \f/n: Qsw(-) —>Qspw(-, ô) /or a// n and E, 
and ^ E n = £*^w. 

Proof. The argument in [2, p. 99] generalizes immediately, since Qsp7*, n > 0, 
are zero for the class of 7-projectives. 

In particular, for a, (3, 7 and ô being zero-endomorphisms, these are just 
part of the well-known results for Ext. 
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