QUASI-SPLITTING EXACT SEQUENCE

HSIANG-DAH HOU

1. Definitions. Let *R* be a ring with $1 \neq 0$ and α , β , γ *R*-endomorphisms of *R*-modules *A*, *B*, and *C* respectively. We shall denote by M(R) the category of *R*-modules, and by End(*R*) the category of *R*-endomorphisms. For objects α and β of End(*R*) a morphism $\lambda: \alpha \to \beta$ is an *R*-homomorphism such that $\lambda \alpha = \beta \lambda$. We shall denote by Idm(*R*) the full subcategory of End(*R*) whose objects are idempotents. Idm(*R*) is an abelian category. ker, coker and im are constructed in the naive way and hence

$$0 \to A \xrightarrow{\kappa} B \xrightarrow{\sigma} C \to 0$$

is exact in M(R) if and only if

$$0 \to \alpha \xrightarrow{\kappa} \beta \xrightarrow{\sigma} \gamma \to 0$$

is exact in $\operatorname{Idm}(R)$, where the domains of α , β , and γ are A, B, and C respectively. One sees that $\operatorname{End}(R)$ as well as $\operatorname{Idm}(R)$ is abelian. We observe that in $\operatorname{Idm}(R)$, the functors $\alpha \mapsto \ker \alpha$, $\alpha \mapsto \operatorname{coker} \alpha$ are naturally equivalent and are, as a consequence of the snake diagram, exact.

Definition 1. Call a long exact sequence

 $S: 0 \to A \xrightarrow{\kappa} B_{n-1} \to \ldots \to B_0 \xrightarrow{\sigma} C \to 0$

quasi-splitting for α and γ in End(R) if there exist R-homomorphisms θ and τ such that $\theta \kappa = \alpha$ and $\sigma \tau = \gamma$. Clearly, this depends only on the extension class of S.

Definition 2. Define

$$\operatorname{Qsp}^{0}(\gamma, \alpha) = \{\lambda \in \operatorname{Hom}(C, A) | \alpha \lambda = \lambda \gamma = 0\}.$$

For n > 0, $\operatorname{Qsp}^n(\gamma, \alpha)$ is the subset of those elements of $\operatorname{Ext}^n(C, A)$ represented by long exact sequences that quasi-split wrt α and γ .

One has $\operatorname{Qsp}^n(0_{\mathfrak{C}}, 0_A) = \operatorname{Ext}^n(\mathcal{C}, A)$ where 0_A is the zero-endomorphism of A. For n = 1, let E_1 be a short exact sequence quasi-splitting for α and γ , and let E_2 be congruent to E_1 ; then clearly E_2 is quasi-splitting for α and γ .

Given $\eta: \alpha \to \alpha'$, where the domain of α' is A', the associated pushout diagram implies that ηE_1 is quasi-splitting for α' and γ .

Received October 2, 1970, and in revised form, January 5, 1971. This research was supported in part by NSF Grant GP6483.

2. Results.

PROPOSITION 1. For $n \geq 0$,

 $\operatorname{Qsp}^{n}(0_{C}, \alpha) = \ker[\operatorname{Ext}^{n}(C, A) \xrightarrow{\alpha_{*}} \operatorname{Ext}^{n}(C, A)], and$ $\operatorname{Qsp}^{n}(\gamma, 0_{A}) = \ker[\operatorname{Ext}^{n}(C, A) \xrightarrow{\gamma^{*}} \operatorname{Ext}^{n}(C, A)].$

Proof. Recall that $\operatorname{Ext}^n(C, A) \approx \operatorname{H}^n(\underline{C}, A)$ where $\underline{C} = (C, \partial)$ is a projective resolution of C. Let $S: 0 \to A \to B_{n-1} \to \ldots \to B_0 \to C \to 0$ correspond to [u] through this isomorphism; we have a push-out square

$$\begin{array}{ccc} \partial C_n & \longrightarrow & C_{n-1} \\ v & & & \downarrow w \\ A & & & \downarrow w \\ A & \longrightarrow & B_{n-1} \end{array}$$

where v restricts u, whence if $\alpha_*[u] = 0$, there is a map $\tau: C_{n-1} \to A$ such that $\tau \partial = \alpha u$ and we construct $\nu': B_{n-1} \to A$ with $\nu' \nu = \alpha$, $\nu' w = \tau$. This proves the first equality. The second is proved similarly.

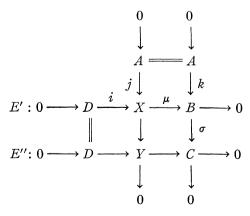
COROLLARY 1. For $n \geq 0$,

 $\operatorname{Qsp}^{n}(\gamma, \alpha) = \operatorname{ker}[\operatorname{Ext}^{n}(C, A) \xrightarrow{\gamma^{*}} \operatorname{Ext}^{n}(C, A)] \cap \operatorname{ker}[\operatorname{Ext}^{n}(C, A) \xrightarrow{\alpha_{*}} \operatorname{Ext}^{n}(C, A)]$

COROLLARY 2. For $n \ge 0$, $Qsp^n(-, -)$ is an additive bifunctor on End(R) to the category of abelian groups. It is contravariant in the first variable and covariant in the second variable.

In general, Qsp is not half-exact. The following is an example due to Whaples.

Let (a), (b), (b') and (c) be cyclic groups generated a, b, b' and c of orders 2⁶, 2⁴, 2² and 2 respectively. Let $B = (a) \oplus (b')$, $X = (a) \oplus (b) \oplus (c)$, and let A and D be the subgroups of $(a) \oplus (b)$ and $(b) \oplus (c)$ generated by (2a, -b) and (2b, -c) respectively. The following typical 9-diagram in which i, k send the announced generators to (0, 2b, -c), (2a, -b'), respectively and μ sends $a \mapsto a, b \mapsto b', c \mapsto 2c'$ stipulates the extension E' and the map σ .



504

EXACT SEQUENCE

By a suitable choice of j, the bottom row E'' coincides with any given extension satisfying $\sigma^* E'' = E'$. (This follows by the 9-lemma). As the reader may easily verify, the extension E' quasi-splits for the map $\delta: D \to D$ obtained on multiplying by 2. On the other hand, E'' does not. Indeed, $j: A \to X$ is of the form k + f, where f is a homomorphism $A \to D$ followed by inclusion. Consequently, if $\beta': D \oplus A \to X$ is the map induced by inclusion on each summand, a quasi-splitting of E'' would imply the existence of a homomorphism $\theta: X \to D$ such that the image of $\theta\beta'$ is contained in δD . This is clearly impossible. Finally k^*E' splits. We therefore conclude that Qsp' is not half-exact.

PROPOSITION 2. Let δ be an object and

$$E: 0 \to \alpha \xrightarrow{\kappa} \beta \xrightarrow{\sigma} \gamma \to 0$$

be a short exact sequence in Idm(R). Then the following two sequences, starting with 0 and n = 0, are exact.

(1)
$$\ldots \longrightarrow \operatorname{Qsp}^{n}(\gamma, \delta) \xrightarrow{\sigma^{*}} \operatorname{Qsp}^{n}(\beta, \delta) \xrightarrow{\kappa^{*}} \operatorname{Qsp}^{n}(\alpha, \delta) \xrightarrow{E^{*}} \operatorname{Qsp}^{n+1}(\gamma, \delta) \longrightarrow \ldots$$

(2) $\ldots \longrightarrow \operatorname{Qsp}^{n}(\delta, \alpha) \xrightarrow{\kappa_{*}} \operatorname{Qsp}^{n}(\delta, \beta) \xrightarrow{\sigma_{*}} \operatorname{Qsp}^{n}(\delta, \gamma) \xrightarrow{E_{*}} \operatorname{Qsp}^{n+1}(\delta, \alpha) \longrightarrow \ldots$

where E^* and E_* are natural.

Proof. This follows from the corresponding exact sequence for Ext and the exactness of ker.

Define an object $\rho \in \text{Idm}(R)$ to be *I*-projective if $\text{Qsp}^0(\rho, -)$ is exact. An element of $\text{Qsp}^0(\rho, \alpha)$ is determined by a map coker $\rightarrow \text{ker } \alpha$. Because of the equivalence of ker and coker it follows that ρ is *I*-projective if and only if ker ρ is projective in M(R). One may verify that if ρ is *I*-projective, then ρ is projective in Idm(R). The converse is not true: let $\rho = 0 \oplus 1$ where the domain of ρ is $\mathbb{Z} \oplus \mathbb{Z}_2$, and consider the epimorphism $\mathbb{Z}_4 \to \mathbb{Z}_2$ and $\mathbb{Z} \oplus \mathbb{Z}_2$, where $\mathbb{Z}_4, \mathbb{Z}_2$ are subjected to the identical automorphisms.

PROPOSITION 3. End(R) and Idm(R) have enough projectives.

Proof. Let $g: S \to S$ be a map of sets and $F(g): F(S) \to F(S)$ the induced map of the associated free *R*-module. Each set map $\eta: g \to B$ determines a unique *R*-linear extension $\bar{\eta}: F(g) \to B$. Thus, if $\bar{\eta}$ is given and $k: \alpha \to \beta$ is surjective in End*R*, η lifts to $\xi: g \to \alpha$ with $\xi \circ k = \eta$ and consequently $F(\xi) \circ k = F(\eta)$. It follows that F(g) is projective. For g in End*R*, the identical map induces the surjective $F(g) \to g$. Consequently End*R* has enough projectives. Finally, if g is in Idm*R* then so is F(g). Consequently, Idm*R* also has enough projectives.

COROLLARY 3. Idm(R) has enough I-projectives.

In End(R), it follows that the satellites of Qsp⁰ are not Qsp's, by Whaples's counterexample.

THEOREM. Let there be given a family of contravariant functors $Qs^n(-)$, $n \ge 0$, from the category Idm(R) into the category of abelian groups. For each n and each exact sequence

$$E: 0 \to \alpha \xrightarrow{\kappa} \beta \xrightarrow{\sigma} \gamma \to 0$$

in Idm(R), let there be given a homomorphism $E^n: Qs^n(\alpha) \to Qs^{n+1}(\gamma)$ which is natural. Suppose that for a fixed object δ , and a short exact sequence E given as above, in Idm(R)

$$Qs^{0}(\alpha) = Qsp^{0}(\alpha, \delta)$$
 for all α in Idm (R)
 $Qs^{n}(\rho) = 0$ for $n > 0$ and all I-projectives.

and the following sequence is exact

$$0 \to \mathrm{Qs}^{0}(\gamma) \to \ldots \to \mathrm{Qs}^{n}(\gamma) \xrightarrow{\sigma^{*}} \mathrm{Qs}^{n}(\beta) \xrightarrow{\kappa^{*}} \mathrm{Qs}^{n}(\alpha) \xrightarrow{E^{n}} \mathrm{Qs}^{n+1}(\gamma) \to \ldots \ldots$$

Then there is a natural equivalence $\psi^n: Qs^n(-) \to Qsp^n(-, \delta)$ for all n and E, and $\psi^{n+1}E^n = E^*\psi^n$.

Proof. The argument in [2, p. 99] generalizes immediately, since Qsp^n , n > 0, are zero for the class of *I*-projectives.

In particular, for α , β , γ and δ being zero-endomorphisms, these are just part of the well-known results for Ext.

Acknowledgements. The author wishes to thank M. Adelman, T. C. Kuo, and G. Whaples for their suggestions and comments.

References

- S. Eilenberg and J. C. Moore, Foundations of relative homological algebra, Mem. Amer. Math. Soc. No. 55, 1965.
- 2. S. MacLane, Homology (Springer, Berlin, 1963).

472 Center Street, Slippery Rock, Pennsylvania