B. BellacciniNagoya Math. J.Vol. 89 (1983), 109-118

PROPER MORPHISMS AND EXCELLENT SCHEMES

BARBARA BELLACCINI

Introduction

Let $f: X \to Y$ be a finite type morphism of locally noetherian schemes. It is well known ([3, IV, 7.8.6]) that the excellent property ascends from Y to X. On the other side there are counter-examples where X is excellent and Y is not. First of all it is easy to show that the condition on chains of prime ideals does not descend (see [3, IV, 7.8.4]), even by finite morphisms. Secondly in [2] it is produced an example where X is excellent while Y is not a G-scheme (i.e. it has not the good properties of formal fibers). However in [2] it is also proved that the property concerning the openness of regular loci (the so called "J-2") descends by finite type surjective morphisms. Therefore we are led to the following question: When does the G-scheme property descend? I.e. what conditions do we need on f? A reasonable condition is conjectured (in [2]) as the following: f is proper surjective. The aim of the present paper is precisely to give an answer to such a question. What we really prove is the following. If X is a G-scheme and J-2 (quasi-excellent), then the same is true for Y, provided that f is proper surjective and moreover all the residue fields of Y have characteristic 0. We remark that the result is strongly based on Hironaka's desingularization for quasi-excellent schemes defined over a field of characteristic 0.

I wish to thank Prof. Paolo Valabrega for several useful conversations on the subject of this paper.

§0. Recalls and definitions

All rings are assumed to be commutative noetherian rings with unit and all schemes are assumed to be locally noetherian.

1. We recall that a graded ring is a ring S with a direct decompo-

Received June 15, 1981.

sition of the underlying additive group, $S = \bigoplus_{n=0}^{\infty} S_n$, such that $S_n S_m \subseteq S_{n+m}$ for every $n, m \ge 0$.

An element of S_n is called a homogeneous element of degree n.

 S_0 is a subring of S and $S_+ = \oplus_{n>0} S_n$ is an ideal of S.

An ideal \Im of S is homogeneous if it has a basis consisting of homogeneous elements.

A homogeneous ideal \Im of S is irrelevant if $\sqrt{\Im} \supseteq S_{+}$ and otherwise it is relevant.

Since S is noetherian, S is finitely generated as an S_0 -algebra.

Convention: Once for all we assume that the graded S_0 -algebra $S = \bigoplus_{n=0}^{\infty} S_n$ is generated over S_0 by $x_0, \dots, x_n \in S_1$, say $S = S_0[x_0, \dots, x_n]$.

2. Let $\operatorname{Proj}(S) = \{\mathfrak{P} \in \operatorname{Spec}(S)/\mathfrak{P} \text{ is a homogeneous relevant ideal}\}.$ We can give $\operatorname{Proj}(S)$ a structure of scheme. For this construction and for the properties of $\operatorname{Proj}(S)$ we refer to [4]. (See also [3, II] where homogeneous prime ideals are defined in a slightly different but equivalent way).

3. The dimension of a scheme X, denoted by dim (X), is its dimension as a topological space. If X = Spec(A) for a ring A, then the dimension of X is the same as the Krull dimension of A and we shall write as dim (A). If X = Proj(S) then dim (X) = d means that there exists a chain $\mathfrak{p}_0 \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_r$ of relevant homogeneous prime ideals in S, while no such chain of length r + 1 exists (see [3, II, 2.3.17]).

4. Let X be an integral scheme. We denote by $\phi(X)$ the function field of X. For a ring A we shall write $\phi(A)$ instead of $\phi(\text{Spec}(A))$.

5. A ring A is quasi-excellent (QE for short) iff:

(i) A is a G-ring, i.e. the formal fibers of A are geometrically regular.

(ii) A is J-2; i.e. the regular locus of Spec (A') is Zariski open whenever A' is any A-algebra of finite type.

A ring A is excellent if it is QE and universally catenary (UC for short).

A scheme X is excellent (resp. QE) if there exists a covering of X by open affine subsets $U_i = \text{Spec}(A_i)$ such that A_i is excellent (resp. QE), for each *i*.

For excellent rings and schemes we refer to $[3, IV_2]$ and [6, chap. 13].

6. Let $f: X \to Y$ be a scheme morphism. f is proper if it is separated, of finite type and universally closed. f is projective if it factors into a

closed immersion $i: X \to P_Y^n$ for some *n*, followed by the projection $P_Y^n \to Y(P_Y^n$ denotes the projective *n*-space over *Y*).

EXAMPLE. Let A be a ring, let S be a graded ring with $S_0 = A$, which is finitely generated by the elements of S_1 as an S_0 -algebra. Then the natural map $\operatorname{Proj}(S) \to \operatorname{Spec}(A)$ is a projective morphism.

7. Remark. Let A be a ring. A scheme Y over Spec (A) is projective if and only if it is isomorphic to $\operatorname{Proj}(S)$ for some graded ring S, where $S_0 = A$, and S is finitely generated by the elements of S_1 as an S_0 -algebra ([4, II, 5.18]).

8. Let X, Y be two reduced schemes. A morphism $f: X \to Y$ is birational if for every maximal point $y \in Y$, $f^{-1}\{y\} = \{x\}$ with x maximal point of X and if the homomorphism between the residue fields $k(y) \to k(x)$ deduced by f is a bijection. ([3, IV, 6.15.4]).

If both X and Y are integral schemes, then the generic points of X and Y correspond through f and the fraction fields of X and Y are isomorphic.

9. Let X be a reduced scheme. A scheme Y is a resolution of singularities of X if there is a proper and birational morphism $f: Y \to X$ and Y is regular. If such Y exists, then we say that X is desingularizable.

10. We recall the following results on resolution of singularities due to Hironaka ((a)) and Grothendieck ((b), (c)):

(a) Let X be a reduced noetherian scheme with all the residue fields of characteristic 0. If X is QE then X is desingularizable.

(b) Let X be a locally noetherian scheme. If any integral finite X-scheme is desingularizable, then X is QE.

(c) Let X be a locally noetherian scheme such that all the residue fields of X have characteristic 0. If every closed integral subscheme of X is desingularizable, then X is QE.

For more details see [5], [3, IV, 7.9.5] and also [7, Proposition 3.1., Example 3 and Theorem 3.2 with Remark 1].

§1.

The present section is concerned with some preliminary results on the graded S_0 -algebra S and on Proj (S). Mainly we will see when Proj (S) and Spec (S_0) have the same dimension and when ϕ (Proj (S)) is a finite algebraic extension of $\phi(S_0)$. LEMMA 1.1. Let S_0 be a domain and $S = S_0[x_0, \dots, x_n]$ a graded S_0 algebra generated by $x_0, \dots, x_n \in S_1$. Let f: Proj $(S) \to \text{Spec}(S_0)$ be a scheme morphism. Consider the following conditions:

(a) For each $i \ (0 \le i \le n)$ and for each $\mathfrak{P} \in \operatorname{Proj}(S)$ with $x_i S \subseteq \mathfrak{P}$, it holds $\mathfrak{P} \cap S_0 \neq (0)$.

(b) For each i, S_+ is a minimal prime ideal of x_iS .

(c) There exists i such that S_+ is a minimal prime ideal of x_iS . Then we have: (a) \rightarrow (b) \rightarrow (c).

Proof. (a) \rightarrow (b). By (a) it follows that there is an irrelevant ideal $\Omega \in \operatorname{Ass}(x_iS)$ such that $\Omega \cap S_0 = (0)$. In fact assume the contrary and consider $\sqrt{x_iS} = \bigcap_{j=1}^k \Omega_j$ where $\Omega_j \in \operatorname{Ass}(x_iS)$ for $1 \leq j \leq k$. Then $\Omega_j \cap S_0 \neq (0)$ for each j and $\sqrt{x_iS} \cap S_0 \neq (0)$. But this means that there are $t \in S_0$, $t \neq 0$ and $r \in N$ such that $t^r \in x_iS$, and this is absurd because the degree of t^r is zero if $t \in S_0$ while the elements of x_iS have positive degree.

So there exists an irrelevant minimal prime ideal Ω of $x_i S$ with $\Omega \cap S_0 = (0)$. But $\Omega \supseteq S_+$ because it is irrelevant and $\Omega \subseteq S_+$ because $\Omega \cap S_0 = (0)$. Therefore $\Omega = S_+$.

(b) \rightarrow (c). Obvious.

LEMMA 1.2. Let S be a graded ring, with S_0 domain, and assume that f: Proj $(S) \rightarrow \text{Spec}(S_0)$ is a surjective morphism. Then there exists a homogeneous relevant prime ideal \mathfrak{P}_0 of S_0 such that the induced morphism f': Proj $(S/P_0) \rightarrow \text{Spec}(S_0)$ is again surjective.

Proof. Since $(0) \in \text{Spec}(S_0)$ and f is surjective, there exists $\mathfrak{P}_0 \in \text{Proj}(S)$ such that $\mathfrak{P}_0 \cap S_0 = (0)$. Now consider the following diagram

where g is the closed immersion determined by the surjective homomorphism of graded rings $S \to S/\mathfrak{P}_0$ and $f' = f \circ g$. Then f' is surjective because it is proper, hence closed and $(0) \in \text{Im}(f')$.

PROPOSITION 1.3. Let S_0 be a domain and let $S = S_0 [x_0, \dots, x_n]$ be a graded domain generated by $x_0, \dots, x_n \in S_1$ over S_0 . Let $f: \operatorname{Proj}(S) \to \operatorname{Spec}(S_0)$ be a surjective morphism. Consider the following conditions: (d) $\dim(S) = \dim(\operatorname{Proj}(S))$

(d) $\dim(S_0) = \dim(\operatorname{Proj}(S)).$

(e) $\phi(\operatorname{Proj}(S))$ is a finite algebraic extension of $\phi(S_0)$. Then condition (c) of 1.1 implies (d) and (d) implies (e).

Proof. (c) \rightarrow (d). The morphism $f: \operatorname{Proj}(S) \rightarrow \operatorname{Spec}(S_0)$ is closed and surjective so dim (Proj (S)) \geq dim (S_0) ([3, IV, 5.4.1 (ii)]). Now we distinguish two cases:

(i) dim $(S_0) = +\infty$. Then, by the foregoing inequality, dim (Proj (S)) $= +\infty$, that is (d) holds.

(ii) dim $(S_0) \leq +\infty$. Then it is enough to verify the inequality dim (Proj (S)) \leq dim (S_0) . It is clear that (ii) implies dim $(S) \leq +\infty$.

Let $\mathfrak{Q} = (x_0, \dots, x_n)$, then ht $(\mathfrak{Q}) \leq 1$ by (c). But $\mathfrak{Q} \neq (0)$ implies ht $(\mathfrak{Q}) = 1$ by the hypothesis that S is a domain.

Now we prove that $\dim(S) = \dim(S_0) + 1$. We have $\dim(S) - \dim(S/\mathfrak{Q}) \ge \operatorname{ht}(\mathfrak{Q})$ ([6, Sec. 12. A]), that is, $\dim(S) - \dim(S_0) \ge \operatorname{ht}(\mathfrak{Q}) = 1$. On the other hand, we compute the dimension of the fiber of the natural morphism φ : Spec $(S) \to$ Spec (S_0) over the generic point $(0) \in$ Spec (S_0) , i.e. $\dim(\phi(S_0)[x_0, \dots, x_n]) = \dim(\phi(S_0)[x_0, \dots, x_n]/(x_0, \dots, x_n)) + \operatorname{ht}(x_0, \dots, x_n) = 1$ ([6, Sec. 14. H]). Since we have $\dim(S) - \dim(S_0) \le \dim(\phi(S_0)[x_0, \dots, x_n])$ ([4, II, Example 3.22]) we get $\dim(S) \le \dim(S_0) + 1$, hence $\dim(S) = \dim(S_0) + 1$.

On the other hand, since $\operatorname{Proj}(S)$ is a topological subspace of $\operatorname{Spec}(S)$, it is true that $\dim(\operatorname{Proj}(S)) \leq \dim(S)$. If we show that $\dim(S) \geqq$ $\dim(\operatorname{Proj}(S))$, then by the foregoing inequality, we may deduce $\dim(\operatorname{Proj}(S))$ $= \dim(S_0)$.

Now, let $q_0 \subseteq \cdots \subseteq q_r$ be a maximal chain of homogeneous primes of Proj (S) such that dim (Proj (S)) = r. Consider the ideal q' of S generated by q_r and x_0, \dots, x_n . Then q' is proper and different from q_r , because otherwise $x_0 = \cdots = x_n = 0$, but in this case Proj (S) = \emptyset and so dim (Proj (S)) $\leq \dim (S_0)$. Let \mathfrak{P} be a minimal prime ideal of q'. Then $q_0 \subseteq \cdots \subseteq q_r \subseteq \mathfrak{P}$ is a chain of Spec (S), that is dim (S) $\geq r + 1 >$ dim (Proj (S)).

(d) \rightarrow (e). Since f: Proj $(S) \rightarrow$ Spec (S_0) is a surjective morphism of integral schemes of the same dimension by (d), the fiber over the generic point of Spec (S_0) has dimension 0 and hence it is finite. By [4, II, Example 3.7], it follows that $\phi(\text{Proj}(S))$ is a finite field extension of $\phi(S_0)$.

PROPOSITION 1.4. Let S_0 be a domain and let $S = S_0[x_0, \dots, x_n]$ be a graded domain generated by $x_0, \dots, x_n \in S_1$ over S_0 . Let $f: \operatorname{Proj}(S) \to$

Spec (S_0) be a surjective morphism. If the condition (e) of 1.3 holds then there exist a finite extension S'_0 of S_0 and a proper birational morphism g: $\operatorname{Proj}(S) \to \operatorname{Spec}(S'_0)$ such that the following diagram

is commutative.

Proof. Observe that, if we define a finite extension S'_0 of S_0 such that there exists a morphism $g: \operatorname{Proj}(S) \to \operatorname{Spec}(S'_0)$ which makes the diagram commutative, then we deduce that g is proper. In fact, since $f(=h \circ g)$ and h are proper (in addition h is finite), g is also such ([4, II, 4.8. (e)]).

Now we have to define S'_0 such that g is birational too. Consider the integral closure X'' of Spec (S_0) in Proj (S) ([3, II, 6.3]). Then X'' is an affine scheme Spec (S''_0) , because the morphism $h': X'' \to \text{Spec}(S_0)$ is integral. Moreover there is a natural morphism $g': \text{Proj}(S) \to X''$. S'_0 is a suitable subring of S''_0 . In fact, let $L = \phi(\text{Proj}(S))$ and $K = \phi(S_0)$, then by (e) it follows that $L = K[t_1, \dots, t_m]$, where t_i is algebraic over K for $i = 1, \dots, m$. Let $f_i(X)$ be the minimal polynomial of t_i over K $(1 \le i \le$ m), then it holds $f_i(t_i) = t_i^{s_i} + (a_{i_1}/b_{i_1})t_i^{s_i-1} + \dots + (a_{i_{s_i}}/b_{i_{s_i}}) = 0$ where a_{i_j} , $b_{i_j} \in S_0$ for $1 \le j \le s_i$. Multiplying this equation by $(b_{i_1} \cdots b_{i_{s_i}})^{s_i} = b_i^{s_i}$, it becomes an equation of integral dependence for $b_i t_i$ over S_0 . Put $S'_0 =$ $S_0[b_1t_1, \dots, b_mt_m]$. Then S'_0 is finite as an S_0 -module and clearly $\phi(S'_0) =$ $\phi(\text{Proj}(S))$. Moreover there is a morphism $g'': \text{Spec}(S''_0) \to \text{Spec}(S'_0)$. If we put $g = g'' \circ g'$, then g is a proper and birational morphism.

§ 2.

Here we prove our main theorem on descent of excellent property by proper surjective morphisms.

THEOREM 2.1. Let Y be a locally noetherian scheme defined over a field of characteristic 0. Suppose $f: X \to Y$ is a proper surjective scheme morphism, then X is QE if and only if Y is QE.

Proof. The "if" part is clear by definition (see [6 chap. 13]). Conversely, in our hypothesis we may apply 2.3 of [2] and we deduce that Y is J-2. So it is enough to show that Y is a G-scheme.

We verify that we may assume:

- 1) Y is affine, say $Y = \text{Spec}(S_0)$.
- 2) S_0 in 1) is a domain.
- 3) S_0 is local.

1) In fact, if $\{V_i\}$ is an open affine covering of Y and $U_i = f^{-1}(V_i)$, then $f_{|U_i|}: U_i \to V_i$ is proper ([4, II, 4.8]) and surjective (since f is surjective it follows $f(f^{-1}(U_i)) = V_i$). V_i satisfies the hypotheses and U_i is QE for any *i*. Hence it suffices to prove that V_i is QE, but this means that we may assume $Y = \text{Spec}(S_0)$.

2) It is known that $Y = \text{Spec}(S_0)$ is a G-scheme if and only if $\text{Spec}(S_0/\mathfrak{P})$ is a G-scheme for every $\mathfrak{P} \in \text{Spec}(S_0)$ with ht $(\mathfrak{P}) = 0$.

Let $\mathfrak{P} \in \operatorname{Spec}(S_0)$ with ht $(\mathfrak{P}) = 0$. For proper and surjective morphism $f: X \to \operatorname{Spec}(S_0)$, let f' be the morphism obtained from f by the base extension $h: \operatorname{Spec}(S_0/\mathfrak{P}) \to \operatorname{Spec}(S_0)$, where h is finite. Now consider the following diagram

$$\begin{array}{c} X \xrightarrow{f} \operatorname{Spec} (S_0) \\ h' \uparrow & \uparrow h \\ X' \xrightarrow{f'} \operatorname{Spec} (S_0/\mathfrak{P}) \end{array}$$

where $X' = X \bigotimes_{\text{Spec}(S_0)} \text{Spec}(S_0/\mathfrak{P})$. Then f' is proper and surjective (such properties are stable under base extension by [3, II, 5.4.2 and I, 3.5.2]) and X' is QE because h', obtained from h by the base extension f, is finite and X is QE by hypothesis. Hence it follows that we may assume S_0 is a domain.

3) Proceeding similarly to point 2)—that is using the fact that our properties are stable under base extension—we show that S_0 may be taken local.

It is known that S_0 is a G-ring if and only if $(S_0)_m$ is a G-ring for every $m \in Max(S_0)$. For $f: X \to Y = \text{Spec}(S_0)$, let f' be the morphism obtained from f by the base extension $h: \text{Spec}((S_0)_m) \to \text{Spec}(S_0)$, where h is a morphism essentially of finite type. We have

$$\begin{array}{c} X \xrightarrow{f} \operatorname{Spec} (S_0) \\ h' \uparrow & \uparrow h \\ X' \xrightarrow{f'} \operatorname{Spec} ((S_0)_m) \end{array}$$

where $X' = X \otimes_{\text{Spec}(S_0)} \text{Spec}((S_0)_m)$. Then f' is proper and surjective and X' is QE because h' is essentially of finite type. So we may assume that S_0 is local.

Summarizing, we have a proper and surjective morphism $f: X \to Y$ where X is QE and $Y = \text{Spec}(S_0)$ with S_0 a local domain. In this case we may apply 5.6.2 of [3, II] and we find a projective scheme X' over $\text{Spec}(S_0)$ and a morphism $g: X' \to X$ projective and surjective. The scheme X' is isomorphic to Proj(S) for some graded ring S (Remark 7). Then Proj(S) is QE because this property ascends by g, and $h = f \circ g: X' \to Y$ is surjective because it is the composition of two surjective morphisms.

By 1.2 we may replace S by S/\mathfrak{P}_0 for a suitable $\mathfrak{P}_0 \in \operatorname{Proj}(S)$ and assume that S is a domain. Now it is enough to show the theorem with $X = \operatorname{Proj}(S)$ and $Y = \operatorname{Spec}(S_0)$, where S_0 is a local domain and $S = S_0[x_0, \dots, x_n]$ is a domain.

We proceed by double induction with respect to (n, d) where n is the number of minimal generators of S over S_0 and $d = \dim(S_0)$. Note that assuming S_0 local it holds $\dim(S_0) \leq +\infty$ and so the proof by induction covers all the cases.

For (0, d) it holds $S = S_0[x_0]$. If we prove that x_0 is transcendental over S_0 , then we see that S is isomorphic to $S_0[X_0]$ with X_0 indeterminate and Spec (S_0) is isomorphic to Proj (S).

We show by absurdity that x_0 is transcendental over S_0 . So suppose that we have an equation $a_0 + a_1x_0 + a_2x_0^2 + \cdots + a_mx_0^m = 0$ of algebraic dependence for x_0 of minimal degree m with $a_i \in S_0$. Then $a_0 \in S_0 \cap (x_0) =$ (0), i.e. $a_0 = 0$. But this means that x_0 is a zero-divisor, and this is impossible because S is a domain.

For (n, 0), it follows immediately that S_0 is QE. In fact it is a field. Assuming that the theorem is true for (n - 1, d) and (n, d - 1), we prove it for (n, d). We distinguish two cases:

Case 1. There exist $i \ (0 \le i \le n)$ and $\mathfrak{P} \in \operatorname{Proj}(S)$ with $x_i S \subseteq \mathfrak{P}$ such that $\mathfrak{P} \cap S_0 = (0)$. Take such a $\mathfrak{P} \in \operatorname{Proj}(S)$ and consider the quotient S/\mathfrak{P} . The surjective homomorphism of graded rings $S \to S/\mathfrak{P}$ gives rise to a closed immersion $g: \operatorname{Proj}(S/\mathfrak{P}) \to \operatorname{Proj}(S)$ which, in particular, is of finite type, hence the QE property ascends to $\operatorname{Proj}(S/\mathfrak{P})$) from $\operatorname{Proj}(S)$. Consider the following commutative diagram

Obviously *h* is projective ([4, II, Example 4.8.1]). Moreover, in our case, the prime ideal (0) of S_0 belongs to Im (*h*) and, since *h* is closed, we have $(\overline{0}) \subseteq \text{Im}(h)$, that is *h* is surjective.

Applying now the inductive hypothesis we get that S_0 is QE. (In fact $x_i \in \mathfrak{P}$ hence the number of generators of S/\mathfrak{P} over S_0 is strictly less than n.)

Case 2. For each $i \ (0 \le i \le n)$ and for each $\mathfrak{P} \in \operatorname{Proj}(S)$ with $x_i S \subseteq \mathfrak{P}$, it holds that $\mathfrak{P} \cap S_0 \neq (0)$. In that case condition (a) of 1.1 holds. Then applying 1.1, 1.3, and 1.4, we have a ring S'_0 finite over S_0 and a proper birational morphism $g: \operatorname{Proj}(S) \to \operatorname{Spec}(S'_0)$. Moreover the morphism h: $\operatorname{Spec}(S'_0) \to \operatorname{Spec}(S_0)$ defined in 1.4 is finite and surjective. Hence by [2, 1.3], it suffices to verify that S'_0 is a *G*-ring. We recall that S_0 and S'_0 have the residue fields of characteristic 0. So, in order to see that S'_0 is a *G*-ring, it is sufficient to verify that every closed integral subscheme of $\operatorname{Spec}(S'_0)$ is desingularizable. (See 0.10 (c)).

First prove that S'_0 is desingularizable. In fact $\operatorname{Proj}(S)$ satisfies the hypothesis of Hironaka's theorem (0.10 (a)) and it is desingularizable. Let Z be a resolution of $\operatorname{Proj}(S)$, then, through the morphism $g: \operatorname{Proj}(S) \to \operatorname{Spec}(S'_0)$, Z resolves also $\operatorname{Spec}(S'_0)$.

Now we see that every integral quotient S'_0/\mathfrak{P} is desingularizable. For $\mathfrak{P} \in \operatorname{Spec}(S'_0)$, put $\mathfrak{p} = \mathfrak{P} \cap S_0$. Then $\mathfrak{P} \neq (0)$ implies $\mathfrak{p} = \mathfrak{P} \cap S_0 \neq (0)$ because S'_0 is integral over S_0 . For the morphism $f: \operatorname{Proj}(S) \to \operatorname{Spec}(S_0)$ take the base extension $\varphi: \operatorname{Spec}(S_0/\mathfrak{p}) \to \operatorname{Spec}(S_0)$ and consider the following diagram

$$\begin{array}{c} f \\ Proj(S) & \xrightarrow{g} Spec(S'_{0}) & \xrightarrow{h} Spec(S_{0}) \\ \uparrow & \uparrow & \uparrow \\ Proj(S \otimes_{S_{0}} S_{0}/\mathfrak{p}) & \xrightarrow{g'} Spec(S'_{0}/\mathfrak{p}S'_{0}) & \xrightarrow{h'} Spec(S_{0}/\mathfrak{p}) \\ & f' \end{array}$$

where the morphism f' and h' are obtained by φ respectively from f and h. Then f' is a surjective and projective morphism by [3, II, 5.6.5. and I, 3.5.2.] and Proj $(S \otimes_{S_0} S_0/\mathfrak{p})$ is clearly QE. Since $\mathfrak{p} \neq (0)$, we have dim $(S_0/\mathfrak{p}) \leq \dim(S_0)$ and applying the inductive hypothesis, we deduce that S_0/\mathfrak{p} is QE. Moreover since h' is finite ([3, II, 6.1.5]) the QE property passes from S_0/\mathfrak{p} to $S'_0/\mathfrak{p}S'_0$ and from $S'_0/\mathfrak{p}S'_0$ to the quotient $S'_0/\mathfrak{P} (\mathfrak{P} \supseteq \mathfrak{p}S'_0)$. Therefore, by Hironaka's theorem, S'_0/\mathfrak{P} is desingularizable. This concludes our

BARBARA BELLACCINI

proof: We have seen that S'_0 is a G-ring, so also S_0 is a G-ring, hence QE.

Remark 2.2. We need in our proof of the fact that Proj(S) is desingularizable. Therefore we use both the G-scheme and the J-2 properties. We are not able to make the G-scheme property descend separately.

Remark 2.3. The UC property does not descend by proper surjective morphisms. See [3, IV, 7.8.4].

References

- Atiyah, M. and Mac Donald, I., Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969.
- [2] Greco, S., Two theorems on excellent rings, Nagoya Math. J., 60 (1976) 139-149.
- [3] Grothendieck, A. and Dieudonné, J., Eléménts de Géométrie Algébrique, Publ. I.H.E.S., chapp. I, II, IV, 1961, ···.
- [4] Hartshorne, R., Algebraic Geometry, Springer Verlag, 1977.
- [5] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic 0, Ann. of Math., 79 (1964), 109-326.
- [6] Matsumura, H., Commutative Algebra, Benjamin, New York, 1972.
- [7] Valabrega, P., P-morfismi e prolungamento di fasci, Rend. Sem. Mat. Univers. Politecn. Torino, 36 (1977-78), 1-18.

Istituto Matematico Università di Siena Italy