
JFP 30, e22, 40 pages, 2020. © The Author(s), 2020. Published by Cambridge University Press 1
doi:10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction

R U B E N P . P I E T E R S AND T O M S C H R I J V E R S
KU Leuven, Leuven, Belgium

(e-mails: ruben.pieters@cs.kuleuven.be, tom.schrijvers@cs.kuleuven.be)

Abstract

The three-continuation approach to coroutine pipelines efficiently represents a large number of con-
nected components. Previous work in this area introduces this alternative encoding but does not
shed much light on the underlying principles for deriving this encoding from its specification. This
paper gives this missing insight by deriving the three-continuation encoding based on eliminating
the mutual recursion in the definition of the connect operation. Using the same derivation steps,
we are able to derive a similar encoding for a more general setting, namely bidirectional pipes.
Additionally, we evaluate the encoding in an advertisement analytics benchmark where it is as per-
formant as pipes, conduit, and streamly, which are other common Haskell stream processing
libraries.

1 Introduction

Coroutine pipelines provide a compositional approach to processing streams of data that
is both efficient in time and space, thanks to a targeted form of lazy evaluation interacting
well with side-effects like I/O. Two prominent Haskell libraries for coroutine pipelines
are pipes (Gonzalez, 2012) and conduit (Snoyman, 2011). Common to both libraries
is their representation of pipelines by an algebraic data type (ADT). The streamly
library (Kumar, 2017) is a more recent alternative for stream processing in Haskell, which
focuses on modifying the stream directly as opposed to constructing stream transformers.

Spivey (2017) has recently presented a novel Haskell representation that is entirely
function based. His representation is an adaptation of Shivers and Might’s earlier three-
continuation representation (Shivers & Might, 2006) and exhibits a very efficient connect
operation for connecting pipes.

Spivey proves that his representation is equivalent to a simple ADT-based specification.
Yet, neither his proof nor Shivers and Might’s explanation sheds much light on the under-
lying principles used to come up with the efficient representation. This makes it difficult
to adapt the representation to other settings.

This paper remedies the situation by systematically deriving the efficient function-based
representation from the simple, but inefficient ADT-based representation. Our derivation
consists of known transformations and constructions that are centered around folds with
appropriate algebras. Our derivation clarifies the limitations of the efficient representation
and enables us to derive a similarly efficient representation for the two-way pipes featured
in the pipes library.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192
https://orcid.org/0000-0003-0537-9403
mailto:ruben.pieters@cs.kuleuven.be
mailto:tom.schrijvers@cs.kuleuven.be
https://doi.org/10.1017/S0956796820000192

2 R. P. Pieters and T. Schrijvers

The specific contributions of this paper are

• We present a systematic derivation of Spivey’s efficient representation starting from
a simple executable specification. Our derivation only consists of known transfor-
mations, most of which concern structural recursion with folds and algebras. It also
explains why the efficient representation only supports connecting “never-returning”
pipes.

• We apply our derivation to a more general definition of pipes used by the pipes
library, where the communication between adjacent pipes is bidirectional rather than
unidirectional.

• Our benchmarks demonstrate that the connect operator for the bidirectional three-
continuation approach improves upon the performance of the pipes, conduit, and
streamly libraries. However the performance of other common operations, such as
map, filter, and fold, is slower compared to other streaming libraries. Nevertheless,
it is as performant as the conventional libraries in the advertisement analytics
benchmark.

• We discuss how we ported several performance optimization techniques, inspired
by the traditional stream processing libraries.

The rest of this paper is organized as follows. Section 2 briefly introduces both the ADT
pipes encoding and the three-continuation approach. Section 3 derives the fast connecting
operation for a simplified setting. Section 4 derives the fast connecting operation for the
original pipe setting. Section 5 extends Spivey’s approach with the bidirectional pipes
operations. Section 6 presents the results of several benchmarks, comparing the encoding
presented in this paper to several common Haskell stream processing libraries. Section 7
discusses related work and Section 8 concludes this paper.

This paper is based on an earlier publication: “Faster Coroutine Pipelines: A
Reconstruction” (Pieters & Schrijvers, 2019). The main changes are the addition of exam-
ples and extended explanations in Sections 3 and 4, an overhaul of Section 5 with more
extensive explanation and examples, and in Section 6 where an additional stream pro-
cessing library streamly is added to the benchmarks, more information regarding the
benchmarks is added, we investigate some additional use case-driven benchmarks and we
discuss several performance optimization techniques applied on the continuation-based
encoding.

2 Motivation

This section introduces the ADT pipes encoding and then contrasts it with the three-
continuation encoding. This serves as both a background introduction and a motivation
for a better understanding of the relation between both encodings.

2.1 Pipes

We start with a unidirectional version of the pipes library. A unidirectional pipe can
receive i values, output o values, and return a values. Unidirectional pipes stand in contrast

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 3

to bidirectional pipes, which we cover in Section 5. We represent a unidirectional pipe as
an abstract syntax tree where each node is an input, output, or return operation. This is
expressed in Haskell with the following ADT:

data Pipe i o a = Input (i→ Pipe i o a)
| Output o (Pipe i o a)
| Return a

This data type exhibits a monadic structure where the bind operation (>>=) :: (Pipe i o a)→
(a→ Pipe i o b)→ Pipe i o b replaces Return nodes containing a value a with the structure
obtained by applying it to the function a→ Pipe i o b.

instance Monad (Pipe i o) where
return = Return
(Input h) >>= f = Input (λi→ (h i) >>= f)
(Output o r) >>= f = Output o (r >>= f)
(Return a) >>= f = f a

We define the basic components: input: a pipe returning its received input, output: a pipe
outputting a given o and returning (), and return: a pipe returning a given a.

input :: Pipe i o i
input = Input (λi→ Return i)

output :: o→ Pipe i o ()
output o = Output o (Return ())

return :: a→ Pipe i o a
return a = Return a

The bind operation assembles these components into larger pipes. For example, doubler, a
pipe which repeatedly takes its input, multiplies it by two and continually outputs this new
value.

doubler :: Pipe Int Int a
doubler = do

i← input
output (i ∗ 2)
doubler

Another essential way of combining pipes is connecting them. This connects the outputs of
the upstream to the inputs of the downstream. In the implementation, connectL performs
a case analysis on the downstream q: if it is trying to output, we keep this intact, and
we search for an input node. Once we find an input, then we call connectR on the wrapped
continuation h and the upstream p. Then, in connectR we similarly scan the upstream for an
output operation, keeping any input operations. If an output operation is found, the output
value is passed to the continuation h and the connecting process starts again by calling
connectL . If at any point we see a return, then the connection finishes with this resulting
return value. The implementation is given below.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

4 R. P. Pieters and T. Schrijvers

connect :: Pipe i m a→ Pipe m o a→ Pipe i o a
connect p q = connectL q p where

connectL :: Pipe m o a→ Pipe i m a→ Pipe i o a
connectL (Input h) p = connectR p h
connectL (Output o r) p = Output o (connectL r p)
connectL (Return a) p = Return a

connectR :: Pipe i m a→ (m→ Pipe m o a)→ Pipe i o a
connectR (Input f) h = Input (λv→ connectR (f v) h)
connectR (Output o r) h = connectL (h o) r
connectR (Return a) h = Return a

The connect operator enables expressing the connection of doubler with itself. In this
example, the left doubler is the upstream and the right doubler is the downstream. The
result of this connect is a pipe which outputs the quadruple of its incoming values.

quadrupler :: Pipe Int Int a
quadrupler = doubler ‘connect‘ doubler

We can run a pipe by interpreting it to IO.

toIO :: (Read i, Show o)⇒ Pipe i o a→ IO a
toIO (Input f) = do

i← readLn
toIO (f i)

toIO (Output o r) = do
putStrLn ("out: " ++ show o)
toIO r

toIO (Return a) = return a

An example where we input 10, receive 40 after passing the value through quadrupler, and
then exit, is shown below.

λ > toIO quadrupler
10 〈〈Return〉〉
out : 40
〈〈Ctrl+C〉〉

2.2 Three-continuation approach

The function connect is suboptimal because it has to recursively scan a pipe for an opera-
tion of interest while copying the other operation. When several connects are piled up, this
leads to repeated scanning and copying of the same operations.

This section covers the ContPipe representation by Spivey, a different pipe represen-
tation which enables a faster connect implementation (Spivey, 2017). The code defining
the representation and its connect function have been reproduced below. It features three

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 5

continuations, one for each constructor. The first continuation (a→ Result i o) represents
the return constructor, this is called when the pipe terminates and returns the value a.

newtype ContPipe i o a = MakePipe {runPipe :: (a→ Result i o)→ Result i o}
type Result i o = InCont i→OutCont o→ IO ()

The continuation InCont i is the input continuation, it is resumed when the pipe wants to
receive a value.

newtype InCont i = MakeInCont {resumeI :: OutCont i→ IO ()}
The continuation OutCont o is the output continuation, it is resumed when the pipe wants
to output a value.

newtype OutCont o = MakeOutCont {resumeO :: o→ InCont o→ IO ()}
The monad instance is very similar to that of the continuation monad, in fact in Section 4.3
we deconstruct this type into a transformer stack with an outer layer of ContT .

instance Monad (ContPipe i o) where
return a = MakePipe (λk→ k a)
p >>= f = MakePipe (λk→ runPipe p (λx→ runPipe (f x) k))

In the following definitions for the basic pipe components, the continuation k is the return
constructor—we give it a value and the input and output constructors and receive a pipe.
The continuations ki and ko are the input and output constructors, we resume them with the
newtype unwrapper and the continuations are refreshed once they have been used.

return :: a→ContPipe i o a
return a = MakePipe (λk ki ko→ k a ki ko)

input :: ContPipe i o i
input = MakePipe (λk ki ko→ resumeI ki (MakeOutCont (λi k′i→ k i k′i ko)))

output :: o→ContPipe i o ()
output o = MakePipe (λk ki ko→ resumeO ko o (MakeInCont (λk′o→ k () ki k′o)))

Note that the names return, input, and output were already defined previously. We will
reuse names for functions which are conceptually the same, but defined on different
representations. We will add a subscript if it is needed for disambiguation.

We can use the Monad instance for ContPipe to compose pipes with do-notation, similar
to Pipe.

doubler :: ContPipe Int Int a
doubler = do

i← input
output (i ∗ 2)
doubler

We can also interpret ContPipe to IO.

toIO :: (Read i, Show o)⇒ContPipe i o ()→ IO ()
toIO p = runPipe p (λ() → return ()) ki ko where

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

6 R. P. Pieters and T. Schrijvers

ki = MakeInCont $ λko→ do
x← readLn
resumeO ko x ki

ko = MakeOutCont $ λo ki→ do
putStrLn ("out: " ++ show o)
resumeI ki ko

The connect function for ContPipe is defined as:

connect :: ContPipe i m a→ContPipe m o a→ContPipe i o a
connect p q = MakePipe (λk ki ko→

runPipe q err (MakeInCont (λk′o→ runPipe p err ki k′o)) ko)
where err = error "terminated"

With the connect definition, we are able to create the quadrupler pipe as before. Running
toIO quadrupler results in an identical scenario to the Pipe scenario from the previous
section.

quadrupler :: ContPipe Int Int a
quadrupler = doubler ‘connect‘ doubler

While Spivey has demonstrated the remarkable performance advantage of this connect
operator, he sheds little light on the origin or underlying principles of the related encoding.
The remainder of this paper provides this missing insight by deriving Spivey’s efficient
ContPipe representation from the ADT-style Pipe by means of well-known principles.
The aim is to improve understanding of the applicability and limitations of the techniques
used.

2.3 Overview

In the following sections, we derive this three-continuation encoding in a series of steps:

• First, we consider one-sided pipes which can either only produce or consume data.
We derive the InCont and OutCont types from the definition of the connect function
by eliminating its term-level mutual recursion.

• We rewrite the connect function in terms of fold. Each of the folds transforms the
Producer and Consumer to the InCont and OutCont representation. Then, by using
fold/build fusion, we eliminate the transformation step.

• Next, we apply the same principle to two-sided pipes as seen in this section, which
results in the generalized representation of Result.

• As a final step to derive ContPipe, we wrap it with the continuation monad.
Following the derivation in this way gives the three-continuation encoding over a
generic monad m. By specializing m to IO, we obtain the type presented by Spivey.

3 Fast connecting for one-sided pipes

This section considers a simplified setting where pipes are one-sided, either only produc-
ing or only consuming data. For example, the doubler component cannot be defined in

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 7

this setting. Although this setting is not realistic in a practical sense, it is an instructional
settings which only contains the core elements for our derivation. This simplified setting
gives a more straightforward path to the fast connecting approach, which we generalize
back to regular “mixed” pipes in Section 4.

3.1 One-sided pipes

In the simplified setting, pipes are either pure Producers or pure Consumers. A Producer
only outputs values, while a Consumer only receives them.

data Producer o = Output o (Producer o)
data Consumer i = Input (i→Consumer i)

Now, connect only needs to consider the cases for Input on the left and Output on the right.
The definition is

connect :: Producer b→Consumer b→ a
connect p q = connectL q p where

connectL :: Consumer b→ Producer b→ a
connectL (Input h) p = connectR p h

connectR :: Producer b→ (b→Consumer b)→ a
connectR (Output o r) h = connectL (h o) r

Example 3.1. The Producer data type is essentially an infinite stream of o values. A simple
example is a stream of numbers increased by 1 each step.

prodFrom :: Int→ Producer Int
prodFrom n = Output n (prodFrom (n + 1))

The Consumer data type processes elements of type i. Consumers at the end of a pipeline
usually do something effectful with these elements. But, since our simplified consumer
does not allow effectful operations yet, we utilize the impure trace function from the
Debug.Trace module to inspect what the consumer is doing.

consumeDebug :: Show a⇒Consumer a
consumeDebug = Input (λa→ trace ("CONSUMED: " ++ show a) consumeDebug)

We can connect prodFrom and consumeDebug using connect, this results in the prodFrom
producer feeding each of its values to the consumeDebug consumer. When we try to eval-
uate the value of the connection, we see a debug line for each of the values created by the
producer. The result of the connected result is never seen since it continues indefinitely;
thus, we have to forcefully stop the execution of this connect.

λ > prodFrom 1 ‘connect‘ consumeDebug
CONSUMED : 1
CONSUMED : 2
CONSUMED : 3
CONSUMED : 4
〈〈Ctrl+C〉〉

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

8 R. P. Pieters and T. Schrijvers

Note that these definitions are not very useful from a user perspective: without impure IO
it is impossible to obtain any result from connecting a producer and consumer. However,
we chose these definitions as they capture the essence of the topic in the next section.

3.2 Mutual recursion elimination

This section contains the key insight of the approach: the three-continuation representation
can be derived from eliminating the mutual recursion in the connect function.

The two auxiliary functions connectL and connectR turn, respectively, a producer and a
consumer into the result of type a by means of an additional parameter, which is respec-
tively of type (Producer b) and (b→Consumer b). To highlight these parameters, we
introduce type synonyms for them.

type ProdPar′ b = Producer b
type ConsPar′ b = b→Consumer b

Now we refactor connectL and connectR with respect to their additional parameter in a
way that removes the term-level mutual recursion between them. Consider connectL which
does not use its parameter p directly, but only its interpretation by function connectR . We
refactor this code to a form where connectR has already been applied to p before it is passed
to connectL . This adapted connectL would then have type Consumer b→ (ConsPar′ b→
a)→ a. At the same time, we apply a similar transformation to connectR , moving the
application of connectL to h out of it. This yields infinite types for the two new parameters,
which Haskell only accepts if we wrap them in newtypes.

newtype ProdPar b a = ProdPar (ConsPar b a→ a)
newtype ConsPar b a = ConsPar (b→ ProdPar b a→ a)

The connect function is then defined by appropriately placing newtype (un-)wrappers.

connect :: Producer b→Consumer b→ a
connect p q = ml q (ProdPar (mr p)) where

ml :: Consumer b→ ProdPar b a→ a
ml (Input h) (ProdPar p) = p (ConsPar (λi→ (ml (h i))))

mr :: Producer b→ConsPar b a→ a
mr (Output o r) (ConsPar h) = h o (ProdPar (mr r))

Note that we can recover Spivey’s InCont i and OutCont o by instantiating the type
parameter a to IO () in ProdPar i a and ConsPar o a, respectively.

3.3 Structural recursion with fold

Due to the removal of the term-level mutual recursion in ml and mr, they are easily adapted
to their structurally recursive form. By isolating the work done in each recursive step, we
obtain algL and algR .

type CarrierL i a = ProdPar i a→ a

algL :: (i→CarrierL i a)→CarrierL i a

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 9

algL f = λ(ProdPar prod)→ prod (ConsPar f)

type CarrierR o a = ConsPar o a→ a

algR :: o→CarrierR o a→CarrierR o a
algR o prod = λ(ConsPar cons)→ cons o (ProdPar prod)

The functions algL and algR are now in a form known as algebras. Algebras are a combina-
tion of a carrier r, the type of the resulting value, and an action of type f r→ r. This action
denotes the computation performed at each node of the recursive data type, for which the
functor f determines the shape of its nodes. We omit the carrier type if it is clear from the
context and simply refer to an algebra by its action.

The structural recursion schemes, or folds, for Consumer and Producer take algebras of
the form (i→ r)→ r and o→ r→ r and interpret the data types to a result r using these
functions. Their definitions are

foldP :: (o→ r→ r)→ Producer o→ r
foldP alg (Output o r) = alg o (foldP alg r)

foldC :: ((i→ r)→ r)→Consumer i→ r
foldC alg (Input h) = alg (λi→ foldC alg (h i))

Example 3.2. An example use of folds is an interpretation to IO by supplying the inputs
for a consumer or printing the outputs of a producer.

type CarrierConsIO i = IO ()

consumeI O :: Read i⇒Consumer i→ IO ()
consumeI O = foldC alg where

alg :: Read i⇒ (i→CarrierConsIO i)→CarrierConsIO i
alg f = do

x← readLn
f x

type CarrierProdIO o = IO ()

produceI O :: Show o⇒ Producer o→ IO ()
produceI O = foldP alg where

alg :: Show o⇒ o→CarrierProdIO o→CarrierProdIO o
alg o p = do

print o
p

Another example is expressing connect with folds using algL and algR .

connect f old :: Producer x→Consumer x→ a
connect f old p q = foldC algL q (ProdPar (foldP algR p))

3.4 A shortcut to a connect-friendly representation

Instead of directly defining a Consumer or Producer value in terms of the data constructors
of the respective types, we can also do it in a more roundabout way by abstracting over the

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

10 R. P. Pieters and T. Schrijvers

constructor occurrences—this is known as build form (Gill et al., 1993). The build function
then instantiates the abstracted constructors with the actual constructors; for Consumer and
Producer they are

buildC :: (∀r.((i→ r)→ r)→ r)→Consumer i
buildC g = g Input

buildP :: (∀r.(o→ r→ r)→ r)→ Producer o
buildP g = g Output

For instance, prodFrom, which was defined in an earlier example:

prodFrom :: Int→ Producer Int
prodFrom n = Producer n (prodFrom (n + 1))

can be written using its build form as:

buildFrom :: Int→ Producer Int
buildFrom n = buildP (buildHelper n)

buildHelper :: Int→ (∀r.(Int→ r→ r)→ r)
buildHelper n p = go n where

go n = p n (go (n + 1))

The motivation for these build functions is to optimize using the fold/build fusion rule, a
special form of shortcut fusion (Ghani et al., 2004). This rule can be applied when a fold
directly follows a build, specifically for Consumer and Producer these fusion rules are

foldC alg (buildC cons) = cons alg

foldP alg (buildP prod) = prod alg

In other words, instead of first building an ADT representation and then folding it to its
result, we can directly create the result of the fold. This readily applies to the two folds
in connect f old . We can directly represent consumers and producers in terms of the carrier
types of those two folds,

type ConsumerAlt i = ∀a.CarrierL i a -- ∀a.ProdPar i a→ a
type ProducerAlt o = ∀a.CarrierR o a -- ∀a.ConsPar o a→ a

using their algebras as constructors:

input :: (i→ConsumerAlt i)→ConsumerAlt i
input = algL

output :: o→ ProducerAlt o→ ProducerAlt o
output = algR

For example, if we fold buildFrom using algR we get this:

buildFrom :: Int→ ProducerAlt Int
buildFrom n = foldP algR (buildP (buildHelper n))

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 11

This matches the condition for the fold/build fusion rule, so this is equivalent to the
following definition:

buildFrom :: Int→ ProducerAlt Int
buildFrom n = buildHelper n algR

After simplifying and using the output constructor instead of algR , we get the following
definition:

buildFrom :: Int→ ProducerAlt Int
buildFrom n = output n (buildFrom (n + 1))

This definition is very similar to the prodFrom definition from Example 3.1, but we use
the output constructor instead of the Producer constructor.

We can follow a similar pattern for the connect f old function. By expressing p and q in
their build forms.

connect :: (∀r.(b→ r→ r)→ r)→ (∀r.((b→ r)→ r)→ r)→ a
connect p q = foldC algL (buildC q) (ProdPar (foldP algR (buildP p)))

Using the fold/build fusion rule, the fold and build functions disappear.

connect :: (∀r.(b→ r→ r)→ r)→ (∀r.((b→ r)→ r)→ r)→ a
connect p q = q algL (ProdPar (p algR))

If we assume that we write our producers and consumers using the constructors for
ProducerAlt and ConsumerAlt directly, then the connect function for this representation
is an almost trivial operation.

connect :: ProducerAlt b→ConsumerAlt b→ a
connect p q = q (ProdPar p)

Example 3.3. We redo Example 3.1, but now utilizing the alternative constructors and
connect function.

For our producer, which generates increasing numbers, we utilize buildFrom which we
created in the previous section. Then we create the debugging consumer by replacing the
Consumer constructor in consumeDebug from Example 3.1 with input.

consumeDebug :: Show a⇒ConsumerAlt a
consumeDebug = input (λa→ trace ("CONSUMED: " ++ show a) consumeDebug)

Evaluating the connection of this producer and consumer results in exactly the same
scenario as in the previous example.

λ > buildFrom 1 ‘connect‘ consumeDebug
CONSUMED : 1
CONSUMED : 2
CONSUMED : 3
CONSUMED : 4
〈〈Ctrl+C〉〉

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

12 R. P. Pieters and T. Schrijvers

3.5 A not so special representation

These connect-friendly representations of producers and consumers are not just specializa-
tions; they are in fact isomorphic to the originals. The inverses of ml and mr to complete
the isomorphism are given by ml−1 and mr−1. The proof can be found in Appendix A.

ml−1 :: ConsumerAlt i→Consumer i
ml−1 f = f (ProdPar h) where

h :: ConsPar i (Consumer i)→Consumer i
h (ConsPar f) = Input (λx→ f x (ProdPar h))

mr−1 :: ProducerAlt o→ Producer o
mr−1 f = f (ConsPar (λx p→Output x (h p))) where

h :: ProdPar o (Producer o)→ Producer o
h (ProdPar f) = f (ConsPar (λx p→Output x (h p)))

Hence, we can also fold with other algebras by transforming the connect-friendly
representation back to the ADT, and then folding over that.

foldPAlt
:: (o→ a→ a)→ ProducerAlt o→ a

foldPAlt
alg rep = foldP alg (mr−1 rep)

foldCAlt
:: ((i→ a)→ a)→ConsumerAlt i→ a

foldCAlt
alg rep = foldC alg (ml−1 rep)

Of course, these definitions are wasteful because they create intermediate data types.
However, by performing fold/build fusion, we obtain their fused versions:

foldPAlt
alg rep = rep (ConsPar (λx p→ alg x (h p))) where

h (ProdPar f) = f (ConsPar (λx p→ alg x (h p)))

foldCAlt
alg rep = rep (ProdPar h) where

h (ConsPar f) = alg (λx→ f x (ProdPar h))

4 Return to two-sided pipes

The previous section has derived an alternative approach for connecting simplified
Consumer and Producer pipes. This section extends that approach to proper Pipes in two
steps, first supporting both input and output operations, and then also a return.

4.1 Pipe of no return

Let us consider pipes with both input and output operations, but no return. Since these
pipes are infinite because they never return a value, we give them the subscript ∞.

data Pipe∞ i o = Input∞ (i→ Pipe∞ i o)
| Output∞ o (Pipe∞ i o)

We can fold over these pipes by providing algebras for both the input and output operation,
agreeing on the carrier type a.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 13

foldPipe∞ :: Pipe∞ i o→ ((i→ a)→ a)→ (o→ a→ a)→ a
foldPipe∞ p inAlg outAlg = go p where

go (Input∞ p) = inAlg (λi→ go (p i))
go (Output∞ o p) = outAlg o (go p)

To connect these pipes, we use algL and algR developed in the previous section. There is
only one snag: the two algebras do not agree on the carrier type. The carrier types were the
alternate representations ConsumerAlt and ProducerAlt.

type ConsumerAlt i = ∀a.ProdPar i a→ a
type ProducerAlt o = ∀a.ConsPar o a→ a

We reconcile these two carrier types by observing that both are functions with a common
result type, but different parameter types. A combination of both is a function taking both
parameter types as input.

type ResultR i o = ∀a.ConsPar o a→ ProdPar i a→ a

The algebra actions are easily adapted to the additional parameter. They simply pass it on
to the recursive positions without using it themselves.

input :: (i→ ResultR i o)→ ResultR i o
input f = λcons (ProdPar prod)→

prod (ConsPar (λi prod′ → f i cons prod′))
output :: o→ ResultR i o→ ResultR i o
output o result = λ(ConsPar cons) prod→

cons o (ProdPar (λcons′ → result cons′ prod))

Like before, we can avoid the ADT Pipe∞ and directly work with ResultR using the
algebras as constructor functions.

Finally, we can use the one-sided connect function from the previous section to connect
the output side of a ResultR i m pipe with the input side of a ResultR m o pipe. Because we
defer the interpretation of the i and o sides of the respective pipes, this one-sided connect
does not yield a result of type a, but rather one of type ConsPar o a→ ProdPar i a→ a.
In other words, the connection of the two pipes yields a ResultR i o pipe.

connect :: ResultR i m→ ResultR m o→ ResultR i o
connect p q = λconso prodi→

let q′ = q conso

p′ = flip p prodi

in q′ (ProdPar p′)

Example 4.1. We redefine the producer and consumer from Example 3.1 using the ResultR
type and its constructors.

prodFrom :: Int→ ResultR i Int
prodFrom n = output n (prodFrom (n + 1))

consumeDebug :: Show a⇒ ResultR a o
consumeDebug =

input (λa→ trace ("CONSUMED: " ++ show a) consumeDebug)

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

14 R. P. Pieters and T. Schrijvers

The result of connecting this producer and consumer gives us back a ResultR i o. This is
a function ∀a.ConsPar o a→ ProdPar i a→ a, where ConsPar o a is the interpretation of
the outer outputs and ProdPar i a is the interpretation of the outer inputs. If there are no
outer inputs or outputs, we can pass dummy implementations by instantiating the type
variables to (). This is defined in the function runEffect.

runEffect :: ResultR () ()→ a
runEffect p = p consPar prodPar where

consPar = ConsPar (λv (ProdPar f)→ f consPar)
prodPar = ProdPar (λ(ConsPar f)→ f () prodPar)

This results in the same scenario as in the previous examples:

λ > runEffect $ prodFrom 1 ‘connect‘ consumeDebug
CONSUMED : 1
CONSUMED : 2
CONSUMED : 3
CONSUMED : 4
〈〈Ctrl+C〉〉

Using the capabilities of ResultR to do both input and output, we can again define the
doubling component. This component continually multiplies each of its incoming values
by two and then outputs it again.

doubler :: ResultR Int Int
doubler =

input $ λi→
output (i ∗ 2) $
doubler

Which results in the following output once we place the doubler component in the middle
of our previous pipeline.

λ > runEffect $
prodFrom 1 ‘connect‘ doubler ‘connect‘ consumeDebug

CONSUMED : 2
CONSUMED : 4
CONSUMED : 6
CONSUMED : 8
〈〈Ctrl+C〉〉

4.2 Return to return

Finally, we reobtain return and the monadic structure of pipes in a slightly unusual way,
by means of the continuation monad.

newtype Cont r a = Cont {runCont :: (a→ r)→ r}
instance Monad (Cont r) where

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 15

return x = Cont (λk→ k x)
p >>= f = Cont (λk→ runCont p (λx→ runCont (f x) k))

If we specialize the result type r to ResultR i o, we get

newtype ContP i o a = ContP ((a→ ResultR i o)→ ResultR i o)

The connect function for ContP is implemented in terms of connect.

connect :: ContP i m Void→ContP m o Void→ContP i o a
connect (ContP p) (ContP q) = ContP (λk→ connect (p absurd) (q absurd))

However, there is an issue: before connect can connect the two pipes, their continuations
(the interpretations of the return constructor) must be supplied. Yet, the resulting pipe’s
continuation type k does not match that of either the upstream or downstream pipe. Thus,
it seems that we are stuck, unless we assume what we have been all along: that the two
pipes are infinite. Indeed, in that case it does not matter that we do not have a continuation
for them, as their continuation is never reached anyway. In short, connect only works for
never-returning pipes, which we signal with the return type Void, only inhabited by ⊥.

4.3 Specialization for IO

To get exactly Spivey’s representation, we instantiate the polymorphic type variable a in
ResultR i o to IO (), which yields:

type Result i o = InCont i→OutCont o→ IO ()
newtype ContPipe i o a = MakePipe {runPipe :: (a→ Result i o)→ Result i o}

The Monad instance for the ContPipe representation can be constructed by viewing it as
a type created from a monad transformer stack. The stack consists of a ContT layer, two
ReaderT layers, and an inner IO layer. Using the DerivingViaGlasgow Haskell Compiler
(GHC) extension (Blöndal et al., 2018), the Monad instance can be derived using this
alternate representation.

Each ReaderT layer contains respectively an input and output continuation, which
results in the following alternate formulation of Result.

newtype ReaderT r m a = ReaderT {runReaderT :: r→m a}
type Result′ i o = ReaderT (InCont i) (ReaderT (OutCont o) IO) ()

Then, to obtain ContPipe we add the ContT layer, since Cont (m r) is equal to ContT r m
for any monad m. This results in the following alternate formulation of ContPipe:

newtype ContT r m a = ContT {runContT :: (a→m r)→m r}
type ContPipe′ i o a = ContT () (ReaderT (InCont i) (ReaderT (OutCont o) IO)) a

The exit and effect operations presented by Spivey are specializations of the abort and lift
operations available to the ContT monad transformer.

-- ContT generic operations

abort :: m r→ContT r m a
abort r = ContT (λk→ r)

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

16 R. P. Pieters and T. Schrijvers

liftContT :: Monad m⇒m a→ContT r m a
liftContT p = ContT (λk→ p >>= k)

-- ContPipe specific operations

exit :: ContPipe′ i o a
exit = abort (liftReaderT (liftReaderT (return ())))

effect :: IO a→ContPipe′ i o a
effect e = liftContT (liftReaderT (liftReaderT e))

We obtain the constructor and the connect functions by adapting the functions of the three-
continuation encoding, shown in Section 2.2, to fit the additions of ContT and ReaderT .

input :: ContPipe′ i o i
input = ContT (λk→ ReaderT (λki→ ReaderT (λko→

resumeI ki (MakeOutCont (λi k′i→ runReaderT (runReaderT (k i) k′i) ko)))))

output :: o→ContPipe′ i o ()
output o = ContT (λk→ ReaderT (λki→ ReaderT (λko→

resumeO ko o (MakeInCont (λk′o→ runReaderT (runReaderT (k ()) ki) k′o)))))

connect :: ContPipe′ i m a→ContPipe′m o a→ContPipe′ i o a
connect p q = ContT (λk→ ReaderT (λki→ ReaderT (λko→

runReaderT (runReaderT (runContT q err)
(MakeInCont (λk′o→ runReaderT (runReaderT (runContT p err) ki) k′o)))
ko)))

where err = error "terminated"

5 Bidirectional pipes

So far we have covered unidirectional pipes where information flows in one direction
through the pipe, from the output operations in one pipe to the input operations in the next
pipe downstream. However, some use cases also require information to flow upstream and
pipes that support this are called bidirectional.

Bidirectional pipes have use cases in a variety of use cases: piggybacking extra informa-
tion into upstream inputs (e.g., when the number of requested bytes needs to be specified),
automatic tracking of leftover input to upstream requests in effectful streams, closing
the upstream end (by setting the request type to Void), or for implementing a structure
reminiscent of a reverse proxy.

First we give an introduction to the bidirectional pipes setting and an example of the
reverse proxy use case in Section 5.1. Then, we derive the three-continuation encoding for
the bidirectional setting by applying the methods from the previous sections. We obtain
the resulting encoding without any additional complications.

5.1 ADT encoding

The Proxy data type at the core of the pipes library (Gonzalez, 2012) implements bidi-
rectional pipes. The operations request and respond are respectively downstream and

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 17

upstream combinations of input and output. We can embed effects of the monad m with
the constructor M .

data Proxy a′ a b′ b m r = Request a′ (a→ Proxy a′ a b′ b m r)
| Respond b (b′ → Proxy a′ a b′ b m r)
| M (m (Proxy a′ a b′ b m r))
| Pure r

The Proxy data type is a monad, similarly to Pipe.

instance Functor m⇒Monad (Proxy a′ a b′ b m) where
return = Pure
p0 >>= f = go p0 where

go p = case p of
Request a′ fa→ Request a′ (λa→ go (fa a))
Respond b fb′ → Respond b (λb′ → go (fb′ b′))
M m→M (go <$> m)
Pure r → f r

In addition, it is a monad transformer due to the M constructor.

instance MonadTrans (Proxy a′ a b′ b) where
lift m = M (Pure <$> m)

We use the following two helper constructors for the request and respond operations.

request :: a′ → Proxy a′ r b′ b m r
request x = Request x Pure

respond :: b→ Proxy a′ a r b m r
respond x = Respond x Pure

The functions +>> and >>∼ correspond to the functions connectL and connectR

extended for the bidirectional pipes. The functions follow the same idea as the orig-
inal ADT connect function, but take into consideration the extra parameters for the
request/respond operations. Below is the implementation as seen in the pipes source code.

(+>>) :: Functor m
⇒ (b′ → Proxy a′ a b′ b m r)→ Proxy b′ b c′ c m r
→ Proxy a′ a c′ c m r

fb′ +>> p = case p of
Request b′ fb → fb′ b′ >>∼ fb
Respond c fc′ → Respond c (λc′ → fb′ +>> fc′ c′)
M m →M ((λp′ → fb′ +>> p′) <$> m)
Pure r → Pure r

(>>∼) :: Functor m
⇒ Proxy a′ a b′ b m r→ (b→ Proxy b′ b c′ c m r)
→ Proxy a′ a c′ c m r

p >>∼ fb = case p of
Request a′ fa → Request a′ (λa→ fa a >>∼ fb)

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

18 R. P. Pieters and T. Schrijvers

Respond b fb′ → fb′ +>> fb b
M m →M ((λp′ → p′ >>∼ fb) <$> m)
Pure r → Pure r

Example 5.1. First, let us take a look at a simple use case for bidirectional pipes: interac-
tions between a client and server. We implement a simplified version of Hoogle: a server
which holds a mapping from function names to function type signatures. The client can
request a function name and the server replies with the corresponding signature.

The client implementation requests input from the user, and then does a request for the
type signature. This request also awaits the reply of the server, which the client prints on
the screen once it is received. This process is then looped forever.

client :: Proxy String String x′ x IO Void
client = forever $ do

lift (putStrLn "Hoogle Search")
x← lift getLine
resp← request x
lift (print resp)

The server implementation responds to any incoming requests for type signatures. The
respond function awaits the request of the client, but also needs as input the response data
to the client. The server is constructed as a function taking the client request as input, and
once it is known a response is sent. This response immediately awaits a new request for
the server and the function calls itself with this new client request as input.

server :: (Functor m)⇒ String→ Proxy x′ x String String m Void
server clientRequest = do

next← respond (hoogleDB clientRequest)
server next
where

hoogleDB "map" = "(a -> b) -> [a] -> [b]"
hoogleDB "filter" = "(a -> Bool) -> [a] -> [a]"
hoogleDB "foldr" = "(a -> b -> b) -> b -> [a] -> b"
hoogleDB x = "error: " ++ x

Then, we can connect the bidirectional pipes client and server with +>>.

app :: Proxy a′ a b′ b IO Void
app = server +>> client

This gives a Proxy a′ a b′ b IO Void, which is a Proxy with no lingering incoming or out-
going connections. We can run this using the runEffect function which runs all the effects
in the Proxy.

runEffect :: Monad m⇒ Proxy Void () () Void m r→m r
runEffect = go where

go p = case p of
Request v → absurd v

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 19

Respond v → absurd v
M m →m >>= go
Pure r→ return r

Below is an example where we run app and pass it the inputs "map," "filter," and
"mop" and then quit the session.

λ > runEffect app
Hoogle Search
map
"(a -> b) -> [a] -> [b]"
Hoogle Search
filter
"(a -> Bool) -> [a] -> [a]"
Hoogle Search
mop
"unknown function: mop"
Hoogle Search
〈〈Ctrl+C〉〉

Now we extend this system by putting an intermediate component, the mediator, which
both requests and responds. This mediator tries to fix misspellings of function names by
the client and prettify the server output.

mediator :: (Functor m)⇒ String→ Proxy String String String String m Void
mediator originalClientRequest = do

let (fixClientRequest, fixed) = case correct originalClientRequest of
(Just fix)→ (fix, True)
Nothing→ (originalClientRequest, False)

serverResponse← request (fixClientRequest)
let serverErr = "error" ‘isPrefixOf ‘ serverResponse
next← respond $ case (serverErr, fixed) of

(True,)→ ("Function " ++ fixClientRequest ++ " is unknown.")
(False, False)→
"Type for " ++ fixClientRequest ++ " is: " ++ serverResponse

(False, True)→ "Type for " ++ fixClientRequest ++ " is: " ++
serverResponse ++ " (fixed from " ++ originalClientRequest ++ ")"

mediator next
where

correct "mop" = Just "map"
correct = Nothing

Now we can place the mediator component inbetween server and client. Below, the client
requests "map" and "mop" and both requests succeed since the misspelling "mop" has been
fixed by the mediator.

λ > runEffect (server +>> (mediator +>> client))
Hoogle Search
map

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

20 R. P. Pieters and T. Schrijvers

"Type for map is: (a -> b) -> [a] -> [b]"
Hoogle Search
mop
"Type for map is: (a -> b) -> [a] -> [b] (fixed from mop)"
Hoogle Search
〈〈Ctrl+C〉〉

5.2 Constructing the continuation-based encoding

In this section, we construct the continuation-based representation for bidirectional pipes
by following the derivation of Sections 3 and 4.

5.2.1 One-sided bidirectional pipes

First, we take a look at the one-sided setting for bidirectional pipes. This means that
we can only express clients and servers, but no mediators. Both a client and server can
be expressed with the ProdCons data type, which is both a producer of o values and a
consumer of i values.

data ProdCons i o = ProdCons o (i→ ProdCons i o)

The two one-sided bidirectional components are then: the client which only does requests,
and the server which only does responses.

type Client b′ b = ProdCons b′ b
type Server b′ b = ProdCons b b′

The connect function for this setting is a simplification of the +>>′ and >>∼′ functions, or
it can be seen as a generalization of connectL and connectR .

(+>>′) :: Server i o→ (i→Client i o)→ a
(+>>′) (ProdCons i fo) fi = (fi i) +>>′fo
(>>∼′) :: Client i o→ (o→ Server i o)→ a
(>>∼′) (ProdCons o fi) fo = (fo o) >>∼′fi

After carefully looking at these functions, we can conclude that they are actually the same.

connect :: ProdCons i o→ (o→ ProdCons o i)→ a
connect (ProdCons o fi) fo = connect (fo o) fi

Now we give a name to the parameter o→ ProdCons o i, namely PCPar′ i o. Then, we
replace this with PCPar i o a, the result after processing this parameter with connectPC
within the o→− functor. This gives us PCPar i o a = o→ (i→ ProdCons o i)→ a, and
we replace the i→ ProdCons o i with PCPar i o a since that is the assumption we started
from. As a result, we obtain the PCPar representation and the new connect function.

newtype PCPar i o a = PCPar {unPCPar :: o→ PCPar o i a→ a}
connect :: ProdCons i o→ PCPar i o a→ a
connect (ProdCons o fi) fo = unPCPar fo o (PCPar (connect ◦ fi))

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 21

5.2.2 Two-sided bidirectional pipes

Now we can construct the combined representation for Proxy by combining the alternate
form of the request and respond operation, the PCPar type. In addition, we add the m r→ r
parameter which is the church encoding of the lift operation.

type ProxyRep a′ a b′ b m = ∀r.
PCPar a a′ r→ -- request
PCPar b′ b r→ -- respond
(m r→ r)→ -- lift
r

Connecting these representations proceeds in a similar manner as for ResultR. We pass the
interpretations of the intermediate connections to their corresponding sides and defer the
interpretation of the outer connections.

connect :: (c′ → ProxyRep a′ a c′ c m)→ ProxyRep c′ c b′ b m→ ProxyRep a′ a b′ b m
connect fc′ q = λreq res m→

let p′ c′ res = fc′ c′ req res m
q′ req = q req res m

in q′ (PCPar p′)

And as a last step, we obtain the monadic structure by wrapping the representation with
the continuation monad. Again, the same issue concerning the return constructor arises.

newtype ContPr a′ a b′ b m r = ContPr {unContPr ::
(r→ ProxyRep a′ a b′ b m)→ ProxyRep a′ a b′ b m}

connect ::
(c′ →ContPr a′ a c′ c m Void)→ContPr c′ c b′ b m Void→ContPr a′ a b′ b m r

connect fc′ (ContPr q) = ContPr (λk→
connect (λc′ → unContPr (fc′ c′) absurd) (q absurd))

6 Benchmarks

This section discusses various benchmarks comparing this alternate representation with
three stream processing frameworks in the Haskell ecosystem: pipes, conduit, and
streamly. All benchmarks are executed using the criterion library (O’Sullivan, 2009)
on an Intel Core i7-6600U at 2.60 GHz with 8 GB memory running Ubuntu 16.04 and
GHC 8.8.3, with -O2 enabled. In the following sections, we highlight the relevant parts
of the benchmarking code, but we refer to the full implementation for the details (Pieters,
2018a).

The library versions used are pipes v4.3.13, conduit v1.3.2, and streamly v0.7.1. A
short discussion on conduit and streamly can be found in Section 7. These are compared
to our generalized form (proxyrep) of the continuation-based representation. We include
Spivey’s original code (contpipe) where possible to ensure that our generalizations have
retained the performance characteristics.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

22 R. P. Pieters and T. Schrijvers

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Fig. 1. Results of the primes benchmark.

6.1 Spivey’s benchmarks

We have replicated Spivey’s benchmarks primes, deep-par, and deep-seq. The results
of replicating these benchmarks are what we expect, given the findings of Spivey.

6.1.1 primes benchmark

Figure 1 shows the results of the primes benchmark, which calculates the first n primes by
accumulating filter operations using the connect operation. The x-axis shows the number
of primes which are generated and the y-axis shows the runtime (lower is better).

The essence of this benchmark is the following code:

sieve :: Pipe Int Int x
sieve = do

p← await
yield p
filter (λx→ x ‘mod‘ p �≡ 0) ‘connect‘ sieve

primes :: Int→ Pipe () Int ()
primes n = upfrom 2 ‘connect‘ sieve ‘connect‘ take n

The sieve pipe is defined recursively, which adds a new filter and connect operation in
each recursive call. So, as more primes are calculated, the number of filter/connect layers
grows.

The streamly library has a different interface. Instead of creating stream transformers,
we operate directly on a stream of data. We can adapt the previous algorithm as seen below.
Note that reverse function composition (&) takes the role of the connect operator.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 23

sieve :: (Monad m, IsStream t, MonadTrans t, Monad (t m))⇒ SerialT m Int→ t m Int
sieve s = do

mResult← lift (uncons s)
case mResult of

Nothing→ error "expected infinite stream"
Just (p, s′)→ p ‘cons‘ sieve (filter (λx→ x ‘mod‘ p �≡ 0) s′)

primes :: (Monad m, IsStream t, MonadTrans t, Monad (t m))⇒ Int→ t m Int
primes n = upfrom 2 & sieve & take n

We can see that both the pipes and conduit libraries, which use an ADT representation,
show the quadratic performance behavior for a use case with a large number of connect
steps. On the other hand, the continuation-based representation shows improved perfor-
mance behavior. The streamly library is in the middle of the previous approaches for this
benchmark. We suspect that the slight overhead of proxyrep compared to contpipe can
be explained by the specialization to IO () in the latter type.

6.1.2 deep-pipe / deep-seq benchmarks

The next two benchmarks are micro-benchmarks of the bind and connect operations.
The essence of these benchmarks is the following code:

iter :: Int→ (a→ a)→ a→ a
iter n f x = loop n x where

loop k y = if k ≡ 0 then y else loop (k − 1) (f y)

skip∞ :: Pipe i o ()
skip∞ = forever skip

deepPipe :: Int→ Pipe () Int x
deepPipe n = iter n (skip∞‘connect‘) (forever (yield 0))

deepSeq :: Int→ Pipe () Int x
deepSeq n = iter n (>>skip∞) (forever (yield 0))

In these benchmarks, we construct n layers of bind/connect operations with a pipe
forever outputting the number 0. Spivey describes this intuitively in the following fashion:

deepSeq n =
(...((forever (output 0)) >> skip∞) >> skip∞...) >> skip∞

deepPipe n =
skip∞ ‘connect‘ (skip∞ ‘connect‘ (... ‘connect‘ (skip∞ ‘connect‘ forever (output 0))))

Finally, we take n elements from the stream of zeroes with ‘connect‘ take n.
The interface of streamly is incompatible with the structure of this benchmark.

Because it is not as lazy as the other approaches creating a skip∞ stream results in an
endless loop. Additionally, connecting with a skip∞ pipe has no meaningful counterpart
in streamly. A close analogue is of course composing with the identity function, but this
corresponds to connecting with a pipe which yields all inputs it receives. Hence, we have
omitted streamly from these benchmarks.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

24 R. P. Pieters and T. Schrijvers

Ti
m

e
[l

og
]

(s
)

1,000 10,000 100,000

Fig. 2. Results of the deep-seq benchmark.

Ti
m

e
[l

og
]

(s
)

1,000 10,000 100,000

Fig. 3. Results of the deep-pipe benchmark.

The results of both benchmarks are shown in Figures 2 and 3. The x-axis shows the
n parameter to the deepSeq/deepPar functions and the take n step. The y-axis shows
the runtime (lower is better). Both axes are shown on a logarithmic scale to enhance
readability.

In the deep-seq benchmark, we see that the pipes library shows the expected bad
performance behavior for this use case. The conduit library uses a Codensity encoding

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 25

and thus does not suffer bad performance here. This is the behavior we expect from
Codensity as described by Voigtländer (2008). The continuation-based approach also has
similar performance to the Codensity-based approach.

In the deep-pipe benchmark, both the pipes and conduit libraries show bad per-
formance behavior while the continuation-based representation does not. This is not
surprising since it can be seen as a more extreme version of the primes benchmark.

6.2 Advertisement analytics benchmark

The previous benchmarks have been created to demonstrate the strengths of the
continuation-based encoding, the connect operation. In practice, various other operations
such as map, filter, or fold are used as well. In this benchmark, we look at a use case
inspired by Chintapalli et al.. (2016), which was done by Yahoo to benchmark Java
Virtual Machine-based distributed stream processing frameworks. This provides a possible
real-world scenario for which these streaming libraries might be compared.

The idea behind the benchmark is to simulate an advertisement analytics pipeline.
Various advertisement events (such as user clicks, views, and purchases) are stored in
a message queue (Kafka). The view events need to be linked to advertisement campaign
data stored in an in-memory store (Redis), and a counter is stored for each advertisement
campaign/time window (also in Redis). The original use case measured the throughput of
a continuously running stream processing application, also taking into account latecomers.
We simplify this use case and measure the time needed to process up to 500,000 events in
the Kafka queue.

A code sketch with explanatory comments for this use case is given below.

-- setup Kafka/Redis connection
-- countData represents a pipe producing the final data to write into redis,
-- before counting the values for each key

let countData = -- current type of produced values
-- read messages from Kafka
readKafka ‘connect‘ -- KafkaRecord (Maybe ByteString, Maybe ByteString)
-- read the value from the Kafka message
map crValue ‘connect‘ -- Maybe ByteString
-- parse the value to JSON
map parseJson ‘connect‘ -- Maybe EventRecord
-- remove Nothing values
concat ‘connect‘ -- EventRecord
-- only process ’view’ events
filter viewFilter ‘connect‘ -- EventRecord
-- fetch advertisement id and event time from record
map eventProjection ‘connect‘ -- (CampaignId, EventTime)
-- use the advertisement id to fetch the campaign id from Redis
mapM joinRedis ‘connect‘ -- (CampaignId, AdId, EventTime)
-- calculate the campaign time window
map campaignTime ‘connect‘ -- (CampaignId, WindowTime)

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

26 R. P. Pieters and T. Schrijvers

Ti
m

e
(s

)

Elements in stream (n)

Fig. 4. Results of the map micro-benchmark.

-- only process n events
take n -- (CampaignId, WindowTime)
-- count the number of events by key: a tuple of the campaign id and time window

countByKey countData ‘connect‘
-- write data to Redis
mapM writeRedis -- ()
-- close Kafka/Redis connection

This code consists of a few connect steps interleaved with simple processing steps like
map and filter. Near the end, it counts the values for each key, a fold over the stream, and
writes the resulting data. The number of connect operations is relatively low, and other
operations such as map and filter are important as well. For this reason, we first take a look
at micro-benchmarks of these operations.

6.2.1 Micro-benchmarks

The advertisement analytics use case involves the map, mapM , concat, filter, and fold
operations. We have taken benchmarks for these operations from the streamly bench-
mark suite (Kumar, 2018). All benchmarks follow the pattern of creating a simple stream
and applying the operation under test on that stream. Our benchmarks differ from the
streamly benchmark in that we force the evaluation of the full result list.

In the map benchmark, we do map (+ 1) on a stream of numbers. In the mapM benchmark,
we do mapM return on a stream of numbers. In the filter benchmark, we do filter even
on a stream of numbers. In the concat benchmark, we do concat after doing replicate 3 on
a stream of numbers. In the fold benchmark, we calculate the sum of a stream of numbers.

The results for each of the operations are shown in, respectively, Figures 4, 5, 6, 7,
and 8. All representations are benchmarked together with a loop version. This loop version

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 27

Ti
m

e
(s

)

Elements in stream (n)

Fig. 5. Results of the mapM micro-benchmark.

Ti
m

e
(s

)

Elements in stream (n)

Fig. 6. Results of the filter micro-benchmark.

utilizes the same algorithm to create the stream of numbers in a tight loop. We can use
this to see whether GHC was able to completely optimize the representation away with the
help of the library’s fusion rules. For example, the loop version of the map version is as
follows:

mapBench :: Monad m⇒ Int→m [Int]
mapBench n = go [] n

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

28 R. P. Pieters and T. Schrijvers

Ti
m

e
(s

)

Elements in stream (n)

Fig. 7. Results of the concat micro-benchmark.

Ti
m

e
(s

)

Elements in stream (n)

100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000

Fig. 8. Results of the fold micro-benchmark.

where
go :: Monad m⇒ [Int]→ Int→m [Int]
go acc x | x < 0 = return acc
go acc x = go ((x + 1) : acc) (x− 1)

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 29

Ti
m

e
(s

)

Number of stream elements (n)

Fig. 9. Results of the yahoo benchmark.

Discussion. As with all micro-benchmarks, we have to consider what is actually being
benchmarked here. First, a main aspect of the performance difference comes down to the
library’s fusion rules. As most of the benchmarks are small and fairly simple, we see that
both streamly and conduit fuse to the loop version everywhere except for the concat
benchmark. In those cases pipes performs a bit worse, since the creation and consumption
of the Proxy representation still happens during runtime. The proxyrep representation
performs worse than pipes due to the function representation which hinders certain GHC
optimizations such as inlining within the representation, which leaves this extra work to be
done at runtime. We utilize the same rewrite rules for proxyrep as Pipes, as we describe
in Section 6.2.3, so it does not fuse to the loop version either.

In the concat benchmark, the pipes and proxyrep version compiles to a single loop,
where the differences are again due to the function-based representation. The conduit
version performs worse as it does not fuse into a single loop.

6.2.2 Advertisement analytics benchmark

Now, we move on to the actual benchmark of the use case scenario. Figure 9 shows the
result of this benchmark. There is about 8 seconds of overhead for the Kafka connection,
especially noticeable when processing only 1 element. This is due to various processes
happening in Kafka, such as waiting for additional consumers to join in before sending
data. We have not tweaked the Kafka configuration to reduce this delay and just consider
it as a constant 8 second delay.

All of the libraries have similar performance behavior in this use case. The differences
in performance present in the various micro-benchmarks are overshadowed by the main
work done in the benchmark.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

30 R. P. Pieters and T. Schrijvers

6.2.3 Remarks on optimization

The existing Haskell libraries (pipes, conduit, and streamly) have put effort into opti-
mizing their performance. In this section, we discuss our efforts in porting some of their
optimization techniques to the continuation-based encoding.

Inlining. Adding INLINE annotations makes GHC much more likely to inline the anno-
tated function. Inlining functions typically has a positive impact on performance. We
started by mimicking the annotations in the pipes library. Then, we followed the approach
of the streamly benchmark suite (Kumar, 2018) and tried various compositions of adding
and removing inline annotations and ultimately chose the composition which seemed to
perform the best in the benchmark.

Rewrite Rules/Fusion. Rewrite rules (Peyton Jones et al., 2001) enable the implementa-
tion of fusion, which fuses multiple costly steps traversing a structure into one traversal.
In our case, it is interesting to combine multiple connect operations. For example,
p ‘connect‘ map (+ 1) ‘connect‘ map (+ 1) can be fused into p ‘connect‘ map (+ 2). To real-
ize this, we have adapted the rewrite rules present in the pipes library (Gonzalez, 2014).
Adapting these rules correctly required a few extra steps, which we discuss in the next two
paragraphs. During development, the inspection-testing library by Breitner (2018)
was a helpful tool to quickly test whether fusion was happening correctly.

The strategy of pipes’ rewrite rules is to transform as much of the pipeline as possible
to a form which uses the for function. It takes an input pipe p, of type Pipe i x a, and a
function f , of type x→ Pipe i o (). Each output x in p is replaced by f x, thus resulting in
a pipe with o outputs, or Pipe i o a. The implementation as seen in the pipes library is
repeated below.

for :: Pipe i x a→ (x→ Pipe i o ())→ Pipe i o a
for p0 f = go p0 where

go (Input h) = Input (λx→ go (h x))
go (Output o r) = f o >> go r
go (Return a) = Return a

We elaborate on three rewrite rules, which enables the fusion of the earlier example. The
first rule converts a connect followed by a map into a for which will replace each yield x
with yield (f x). The second rule removes a for call when it is applied to a yield x pipe and
replaces it with f x. The last rule reassociates the for operation.

"rule 1" ∀ · p f .p ‘connect‘ map f = for p (λy→ yield (f y))
"rule 2" ∀ · x f .for (yield x) f = f x
"rule 3" ∀ · p f g.for (for p f) g = for p (λx→ for (f x) g)

Using these three rules, GHC can fuse p ‘connect‘ map (+ 1) ‘connect‘ map (+ 1) into
p ‘connect‘ map (+ 2).

p ‘connect‘ map (+ 1) ‘connect‘ map (+ 1)
= (rule 1 fires on left connect)

for p (λy→ yield (y + 1)) ‘connect‘ map (+ 1)

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 31

= (rule 1 fires on remaining connect)
for (for p (λy→ yield (y + 1))) (λy→ yield (y + 1))

= (rule 3 fires)
for p (λx→ for (yield (x + 1)) (λy→ yield (y + 1)))

= (rule 2 fires on inner for)
for p (λx→ yield (x + 2))

Which is indeed equivalent to p ‘connect‘ map (+ 2) by following rule 1 backwards. While
porting these rules to the three-continuation encoding, we encountered two issues which
we detail in the following paragraphs.

Implementation of for. First, when we try to implement the for function for the
continuation-based encoding, we encounter a similar problem as with the connect func-
tion: we need access to a continuation which we do not know upfront. If we implement it
assuming infinite pipes, we get the following implementation:

for :: ContPipe i m a→ (m→ContPipe i o ())→ContPipe i o a
for p0 f = MakePipe (λk ki ko→ runPipe p0 err ki (go ki ko))

where
go ki ko = MakeOutCont $ λo (MakeInCont g)→

runPipe (f o) (λa k′i k′o→ g (go k′i k′o)) ki ko

err = error "terminated"

However, this implementation proved problematic in the advertisement analytics bench-
mark, so we were forced to rethink this implementation.

The challenge in implementing the function is as follows: in the location where err is
passed, the interpretation of the return constructor, we need to access the ko-continuation
which was introduced last by go.

Based on this intuition and using impure IO, it is straightforward to implement this idea.
At every step in go, we save the current ko-continuation in an IORef and we read out
the last continuation written in this way in the interpretation of the return continuation.
The reference is initialized with the ko-continuation, we are given from the MakePipe
constructor.

for :: ContPipe i m a→ (m→ContPipe i o ())→ContPipe i o a
for p0 f = MakePipe $ λk ki ko→ unsafePerformIO $ do

refo← newIORef ko

return $ runPipe p0
(λa k′i → unsafePerformIO $ do

ok← readIORef refo
return (k a k′i ko)) ki (go refo ki ko)

where
go refo ki ko = MakeOutCont $ λo (MakeInCont g)→

runPipe (f o) (λa k′i k′o→ unsafePerformIO $ do
modifyIORef ′ refo (λ → k′o)
return (g (go refo k′i k′o))

) ki ko

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

32 R. P. Pieters and T. Schrijvers

Admittedly, this implementation is not idiomatic Haskell and conceptually we see no rea-
son why a pure version of this idea is not possible, but we have not managed to implement
it yet. Interesting to note is that an implementation of connect which works on returning
pipes is possible based on this idea; its implementation can be found in Appendix B.

Eta-Expansion. Second, simply copying the rewrite rules from pipes does not make
everything fuse fully by itself. In between applying the inline rules, GHC inserts a
newtype-coercion of ContPipe and an eta-expansion, preventing the rules from firing after
that point. If we look at the output of the -ddump-rule-rewrites option when looking at
the p ‘connect‘ map (+ 1) ‘connect‘ map (+ 1) example, we see the following steps (GHC
output is simplified for clarity):

p ‘connect‘ map (+ 1) ‘connect‘ map (+ 1)
= (rule 1 fires on left connect)

for p (λy→ yield (y + 1)) ‘connect‘ map (+ 1)
= (in between these rules, GHC eta− expands the newtype)

for p (λy→ ((λk ki ko→ (yield (y + 1) ‘cast‘ ...) k ki ko) ‘cast‘ ...) ‘connect‘ map (+ 1)
= (rule 1 fires on remaining connect)

for (for p ((λk ki ko→ (yield (y + 1) ‘cast‘ ...) k ki ko) ‘cast‘ ...)) (λy→ yield (y + 1))
= (rule 3 fires)

for p (λx→ for ((λk ki ko→ (yield (y + 1) ‘cast‘ ...) k ki ko) ‘cast‘ ...))
(λy→ yield (y + 1)))

(rule 2 does not fire)

To fix this problem, we tested the GHC option -fno-do-lambda-eta-expansion, and
replacing newtype with a strict data field. Both resolved the problem, but the latter
achieved better performance in our benchmarks.

Fusion Framework. Both conduit and streamly have a more extensive fusion frame-
work, which was visible in the micro-benchmarks. This framework allows the rewriting of
a stream generation plus stream consumption into an optimized form using shortcut fusion.
We leave the creation of such a framework for proxyrep as future work. Note that pipes
would benefit from this effort as well since both libraries present the same API.

7 Related work

We have covered the main related works of Spivey (2017), Shivers and Shivers &
Might (2006), and the pipes library (Gonzalez, 2012) in the body of the paper. Below
we discuss additional related work.

Encodings. The Church (Church, 1941; Corrado & Alessandro, 1985) and
Scott (Mogensen, 1992) encodings encode ADTs using functions. The encoding
derived in this paper has a close connection to the Scott encoding. The Scott encoding for
Producer and Consumer are ScottP and ScottC. By moving the quantified variable a to
the definition, we obtain SP and SC.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 33

newtype ScottP o = ScottP (∀a.(o→ ScottP o→ a)→ a)
newtype ScottC i = ScottC (∀a.((i→ ScottC i)→ a)→ a)

newtype SP o a = SP ((o→ SP o a→ a)→ a)
newtype SC i a = SC (((i→ SC i a)→ a)→ a)

Then, ∀a.SP o a is representationally equivalent to ProducerAlt and similarly for ∀a.SC i a
and ConsumerAlt (see Appendix C).

If we look at the Scott encoding ScottPipe∞ for Pipe∞, we can obtain an equivalent
representation to ResultR by using SP and SC instead of ScottPipe∞ in the parameter
corresponding to their operations.

newtype ScottPipe∞ i o = ScottPipe∞
(∀a.(o→ ScottPipe∞ i o→ a)→ ((i→ ScottPipe∞ i o)→ a)→ a)

type SP∞ i o = ∀a.(o→ SP o a→ a)→ ((i→ SC i a)→ a)→ a

We dubbed this the orthogonal encoding due to the separation of the operations.

Conduit. The conduit library (Snoyman, 2011) is another popular choice for Haskell
stream processing. The two main differing points of conduit with pipes are a built-in
representation of leftovers and detection of upstream finalization. Leftovers are operations
representing unprocessed outputs. For example in a takeWhile pipe, which takes outputs
until a condition is matched, the first element not matching the condition will also be
consumed. This element can then be emitted as a leftover, which is consumed by the
downstream with priority. Detecting upstream finalization is handled by input returning
Maybe values, where Nothing represents the finalization of the upstream.

Streamly. The streamly library (Kumar, 2017) takes a different approach to stream pro-
cessing. As opposed to working with stream transformers, as seen in conduit or pipes,
streamly works on the stream directly. In essence, this makes it a much more gener-
alized version of working with (potentially infinite) lists. The library has been highly
optimized for performance and is becoming more popular as an alternative library for
stream processing.

Parsers. Spivey mentioned in his work (Spivey, 2017) that the ContPipe approach might
be adapted to fit the use case of parallel parsers (Claessen, 2004). However, after gaining
more insight into ContPipe, it does not seem that the connecting operation for parsers
immediately fits the pattern presented in this paper. One of the problematic elements is the
fail operation, which is not passed as-is to the newly connected structure, but given a non-
trivial interpretation. Namely, an interpretation dependent on the other structure during the
recursive connect process.

Shallow To Deep Handlers. The handlers framework by Kammar et al. (2013) supports
both shallow handlers, based on case analysis, and deep handlers, based on folds. They
cover an example of transforming a producer and consumer connecting function from

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

34 R. P. Pieters and T. Schrijvers

shallow handlers to deep handlers. This example is related to our simplified setting in
Section 3. To do this, they introduce Prod and Cons, which are equivalent to our ProdPar
and ConsPar. Compared to their example, we take a more step-by-step explanatory
approach and additionally move to more complicated settings in our further sections.

Multihandlers. The Frank language (Lindley et al., 2017) is based on shallow handlers
and supports a feature called multihandlers. These handlers operate on multiple inputs
which have uninterpreted operations, much like pattern matching on multiple free struc-
tures. The patterns we have handled in this paper are concerned with pattern matching on
multiple data structures and a mutual relation between these functions. This seems like an
interesting connection to investigate further.

Stream Optimizations. Hirzel et al. (2013) discuss stream processing optimizations
used across a variety of disciplines. They list some commonly occurring optimization
strategies: operator reordering, redundancy elimination, operator separation, fusion, etc.
The fusion strategy is very common practice in Haskell by using GHC’s rewrite rules
(Peyton Jones et al., 2001). We have similarly adopted fusion rules, by emulating the
approach found in the pipes library (Gonzalez, 2012).

Stream Fusion. Coutts (2011) proposed stream fusion by building on previous work on
both fold/build fusion (Gill et al., 1993) and destroy/unfoldr fusion (Svenningsson, 2002).
This is done by extending possibly terminating streams which either yield or terminate
with the possibility of skipping to produce a value. This enables formulating, for example,
filter in a non-recursive form, enabling fusion with such functions.

Stream Fusion with Staging. Kiselyov et al. (2017) transform stream processing
pipelines to optimized code by using multi-stage programming, or staging for short. They
implement their approach in OCaml and Scala using the respective staging facilities of
these languages. The result of their work is a declarative stream processing library which
transforms the specified pipelines into optimized imperative loop code.

Representation of Stream Functions. Ghani et al. (2009) represent continuous func-
tions on streams in terms of a stream processing data type. This data type is roughly the
following:

data SP i o = Get (i→ SP i o)
| Put o (SP i o)

This data type is Pipe from Section 1 where the Return constructor is left out. However, due
to Haskell’s mixing of inductive and co-inductive data types, a subtlety is lost. The recur-
sive SP i o in the Get constructor is inductive: only a finite amount of input may be read
until a Put occurs, while the recursive SP i o in the Put constructor is co-inductive: there
can be an infinite amount of Puts. This ensures that the stream processor is productive,
from every point a finite amount of steps are needed to reach the next Put constructor.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 35

8 Conclusion

This paper gives an in-depth explanation of the principles behind the fast connecting of
the continuation-based encoding introduced by Shivers & Might (2006). We first derive
the new representation from the ADT implementation in a simplified setting of one-sided
pipes, then we represent pipes using this alternative representation. We adapt this new
representation in the original setting of two-sided pipes and comment on the issues of
adding the return operation.

We derive this alternative encoding for bidirectional pipes, as in the pipes library. This
results in a more general version of this representation and retains the performance of its
efficient connect implementation. This derivation is also a simple example of how this
pattern of derivation can be applied in a different situation.

The results of applying Spivey’s benchmarks (Spivey, 2017) are similar to Spivey’s
original results, meaning that the generalized encoding has retained the performance char-
acteristics. We also include various popular stream processing libraries, namely pipes,
conduit, and streamly. In addition to Spivey’s benchmarks, we also take a look at
Yahoo’s benchmark (Chintapalli et al., 2016) of an advertisement analytics use case and
micro-benchmarks of the operations involved therein.

We describe how we ported several techniques for improving performance, inspired by
the conventional stream processing libraries. In addition, we discuss several difficulties we
encountered during the implementation of these improvements. The continuation-based
encoding is as performant as the other common streaming libraries in the advertisement
analytics use case. The encoding performs worse than the other libraries in the micro-
benchmarks, which could be alleviated by a more advanced fusion framework.

The continuation-based encoding described in this paper has been made available as a
library on github (Pieters, 2018b).

Acknowledgements

We would like to thank Nicolas Wu, Alexander Vandenbroucke, and the anonymous
reviewers for their feedback. This work was partly funded by the Flemish Fund for
Scientific Research (FWO).

Supplementary materials

To view supplementary material for this article, please visit https://doi.org/10.1017/
S0956796820000192

Conflicts of Interest

None.

References

Blöndal, B., Löh, A. & Scott, R. (2018) Deriving via: or, how to turn hand-written instances into
an anti-pattern. In Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell,
Haskell@ICFP 2018, St. Louis, MO, USA, September 27–17, 2018, pp. 55–67.

Breitner, J. (2018). A promise checked is a promise kept: Inspection testing. In Proceedings of the
11th ACM SIGPLAN International Symposium on Haskell. Haskell 2018. New York, NY, USA:
ACM, pp. 14–25.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192
https://doi.org/10.1017/S0956796820000192
https://doi.org/10.1017/S0956796820000192

36 R. P. Pieters and T. Schrijvers

Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves, T., Holderbaugh, M., Liu, Z., Nusbaum,
K., Patil, K., Peng, B. J. & Poulosky, P. (2016) Benchmarking streaming computation engines:
Storm, flink and spark streaming. In 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 1789–1792.

Church, A. (1941) The Calculi of Lambda-Conversion. Princeton, New York: Princeton University
Press.

Claessen, K. (2004) Parallel parsing processes. J. Funct. Program. 14(6), 741–757.
Corrado, B. & Alessandro, B. (1985) Automatic synthesis of typed lambda-programs on term

algebras. Theor. Comput. Sci. 39, 135–154.
Coutts, D. (2011) Stream Fusion: Practical Shortcut Fusion for Coinductive Sequence Types. PhD

Thesis, UK: University of Oxford.
Ghani, N., Hancock, P. & Pattinson, D. (2009) Representations of stream processors using nested

fixed points. Log. Methods Comput. Sci. 5(3).
Ghani, N., Uustalu, T. & Vene, V. (2004) Build, augment and destroy, universally. In Programming

Languages and Systems, Chin, W.-N. (ed). Berlin, Heidelberg: Springer, pp. 327–347.
Gill, A. J., Launchbury, J. & Peyton Jones, S. L. (1993) A short cut to deforestation. In Proceedings of

the Conference on Functional programming Languages and Computer Architecture, FPCA 1993,
Copenhagen, Denmark, June 9–11, 1993, pp. 223–232.

Gonzalez, G. (2012) Haskell Pipes Library. http://hackage.haskell.org/package/pipes.
Gonzalez, G. (2014) Stream Fusion for Pipes. http://haskellforall.com/2014/01/stream-fusion-for-

pipes.html.
Hirzel, M., Soulé, R., Schneider, S., Gedik, B. & Grimm, R. (2013) A catalog of stream processing

optimizations. ACM Comput. Surv. 46(4), 46:1–46:34.
Kammar, O., Lindley, S. & Oury, N. (2013) Handlers in action. In Proceedings of the 18th ACM

SIGPLAN International Conference on Functional Programming. ICFP’13. New York, NY, USA:
ACM, pp. 145–158.

Kiselyov, O., Biboudis, A., Palladinos, N. & Smaragdakis, Y. (2017) Stream fusion, to complete-
ness. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18–20, 2017, pp. 285–299.

Kumar, H. (2017) Haskell Streamly Library. http://hackage.haskell.org/package/streamly.
Kumar, H. (2018) Streamly Benchmarks. https://github.com/composewell/streaming-benchmarks.
Lindley, S., McBride, C. & McLaughlin, C. (2017) Do be do be do. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages. POPL 2017. New York, NY,
USA: ACM, pp. 500–514.

Mogensen, T. (1992) Efficient self-interpretation in lambda calculus. J. Funct. Program. 2(3), 345–
364.

O’Sullivan, B. (2009) Haskell Criterion Library. http://hackage.haskell.org/package/criterion.
Peyton Jones, S. L., Tolmach, A. & Hoare, T. (2001) Playing by the rules: Rewriting as a practical

optimisation technique in ghc. In 2001 Haskell Workshop.
Pieters, R. P. (2018a) Faster Coroutine Pipelines: A Reconstruction, Benchmarking Code.

https://github.com/rubenpieters/orth-pipes-bench.
Pieters, R. P. (2018b) Faster Coroutine Pipelines: A Reconstruction, Library.

https://github.com/rubenpieters/Orthogonal-Pipes.
Pieters, R. P. & Schrijvers, T. (2019) Faster coroutine pipelines: A reconstruction. In Practical

Aspects of Declarative Languages, Alferes, J. J. & Johansson, M. (eds), Cham: Springer
International Publishing, pp. 133–149.

Plotkin, G. D. & Abadi, M. (1993) A logic for parametric polymorphism. In Proceedings of the
International Conference on Typed Lambda Calculi and Applications. TLCA’93. London, UK,
UK: Springer-Verlag, pp. 361–375.

Shivers, O. & Might, M. (2006) Continuations and transducer composition. In Proceedings of
the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation.
PLDI’06. New York, NY, USA: ACM, pp. 295–307.

Snoyman, M. (2011) Haskell Conduit Library. http://hackage.haskell.org/package/conduit.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

http://hackage.haskell.org/package/pipes
http://haskellforall.com/2014/01/stream-fusion-for-pipes.html
http://haskellforall.com/2014/01/stream-fusion-for-pipes.html
http://hackage.haskell.org/package/streamly
https://github.com/composewell/streaming-benchmarks
http://hackage.haskell.org/package/criterion
https://github.com/rubenpieters/orth-pipes-bench
https://github.com/rubenpieters/Orthogonal-Pipes
http://hackage.haskell.org/package/conduit
https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 37

Spivey, M. (2017) Faster coroutine pipelines. Proc. ACM Program. Lang. 1(ICFP), 5:1–5:23.
Svenningsson, J. (2002) Shortcut fusion for accumulating parameters & zip-like functions.

In Proceedings of the Seventh ACM SIGPLAN International Conference on Functional
Programming (ICFP’02), Pittsburgh, Pennsylvania, USA, October 4–6, 2002, pp. 124–132.

Voigtländer, J. (2008) Asymptotic improvement of computations over free monads. In Proceedings
of the 9th International Conference on Mathematics of Program Construction. MPC’08. Berlin,
Heidelberg: Springer-Verlag, pp. 388–403.

A Appendix

Both producer representations are isomorphic

We show the Producer case, an analogous strategy works for Consumer.

Theorem A.1. The types ProducerAlt o and Producer o are isomorphic.

Proof We show this by using μx . G [x] = ∀x.(G [x]→ x)→ x (Plotkin & Abadi, 1993).

ProducerAlt o
= (see Appendix C)
∀r. SP o r

= (def. SP)
∀r.μx . (o→ x→ r)→ r

= (property μ)
∀r.∀x . (((o→ x→ r)→ r)→ x)→ x

= (swap ∀)
∀x .∀r. (((o→ x→ r)→ r)→ x)→ x

= (property μ)
μx .∀r. (o→ x→ r)→ r

= (uncurry)
μx .∀r. ((o, x)→ r)→ r

= (property μ)
μx .μr. (o, x)

= (drop unused μ)
μx . (o, x)

= (def. Producer)
Producer o �

An isomorphism consists of two inverses, here mr and mr−1, for which mr−1 ◦mr = id
and mr ◦mr−1 = id holds. Where mr is defined as:

mr :: Producer x→ ProducerAlt x
mr (Producer o r) (ConsPar h) = h o (ProdPar (mr r))

And mr−1 is defined as:

mr−1 :: ProducerAlt x→ Producer x
mr−1 f = f (ConsPar (λx p→ Producer x (helpermr−1 p)))

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

38 R. P. Pieters and T. Schrijvers

helpermr−1 :: ProdPar x (Producer x)→ Producer x
helpermr−1 (ProdPar f) = f (ConsPar (λx prod→ Producer x (helpermr−1 prod)))

We prove the first equation mr−1 ◦mr = id.

Theorem A.2. mr−1 ◦mr = id.

Proof We show this by equational reasoning.

mr−1 ◦mr

= (eta-expansion)
λx→mr−1 (mr x)

= (def. mr)
λx→mr−1 (case x of (Producer o r)→ λ(ConsPar h)→ h o (ProdPar (mr r)))

= (case analysis on x)
λ(Producer o r)→mr−1 (λ(ConsPar h)→ h o (ProdPar (mr r)))

= (def. mr−1)
λ(Producer o r)→ (λ(ConsPar h)→

h o (ProdPar (mr r))) (ConsPar (λx p→ Producer x (helpermr−1 p)))

= (beta-reduction)
λ(Producer o r)→ Producer o (helpermr−1 (ProdPar (mr r)))

= (def. helpermr−1)
λ(Producer o r)→ Producer o (mr r (ConsPar (λx prod→ Producer x (helpermr−1 prod))))

= (def. mr−1)
λ(Producer o r)→ Producer o (mr−1 (mr r))

= (coinduction hypothesis)
λ(Producer o r)→ Producer o r

= (def. id)
id �

The second equation mr ◦mr−1 = id is more complicated since we cannot do case analy-
sis on ProducerAlt, which is the function type ∀a.ConsPar o a→ a. We assume that values
of this type can always be written using the constructor function output. Where output is
defined as:

output :: o→ ProducerAlt o→ ProducerAlt o
output o prod = λ(ConsPar cons)→ cons o (ProdPar prod)

Conjecture A.1. Values of ProducerAlt can always be written in the form output o r.

This allows us to do a similar step to case analysis and complete the proof.

Theorem A.3. mr ◦mr−1 = id.

Proof We show this by equational reasoning.

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

Faster coroutine pipelines: A reconstruction 39

mr ◦mr−1

= (eta-expansion)
λx→mr (mr−1 x)

= (def. mr−1)
λx→mr (x (ConsPar (λx p→ Producer x (helpermr−1 p))))

= (Conjecture A.1)
λ(output o r)→mr ((output o r) (ConsPar (λx p→ Producer x (helpermr−1 p))))

= (def. output)
λ(output o r)→mr ((λ(ConsPar cons)→

cons o (ProdPar r)) (ConsPar (λx p→ Producer x (helpermr−1 p))))

= (beta-reduction)
λ(output o r)→mr ((λx p→ Producer x (helpermr−1 p)) o (ProdPar r))

= (beta-reduction)
λ(output o r)→mr (Producer o (helpermr−1 (ProdPar r)))

= (def. helpermr−1)
λ(output o r)→mr (Producer o (r (ConsPar (λx prod→ Producer x (helpermr−1 prod)))))

= (def. mr−1)
λ(output o r)→mr (Producer o (mr−1 r))

= (def. mr)
λ(output o r)→ λ(ConsPar h)→ h o (ProdPar (mr (mr−1 r)))

= (coinduction hypothesis)
λ(output o r)→ λ(ConsPar h)→ h o (ProdPar r)

= (def. output)
λ(output o r)→ output o r

= (def. id)
id �

B Appendix

Connect implementation

Connect implementation which also handles the return case by keeping track of the left
InCont continuation and the right OutCont continuation impurely in IORef s. Then, the
appropriate continuation is read in the interpretation of the return continuation.

connect′ :: ContPipe i x m a→ContPipe x o m a→ContPipe i o m a

connect′ p q = MakePipe $ λk ki ko→ unsafePerformIO $ do

refo← newIORef ko

refi← newIORef ki

let p′ = runPipe p (λa ik′ → unsafePerformIO $ do ok′ ← readIORef refo; return (k a ik′ ok′))
q′ = runPipe q (λa ok′ → unsafePerformIO $ do ik′ ← readIORef refi; return (k a ik′ ok′))
modp ik ok = p′ (keepRefI refi ik) ok

modq ik ok = q′ ik (keepRefO refo ok)

return $ modq (MakeInCont (λk′o→modp ki k′o)) ko

where

keepRefI :: IORef (InCont i a)→ InCont i a→ InCont i a

keepRefI refi (MakeInCont f) = MakeInCont $ λ(MakeOutCont g)→ f $ MakeOutCont $ λi ik→
unsafePerformIO $ do

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

40 R. P. Pieters and T. Schrijvers

modifyIORef ′ refi (λ → ik)

return (g i (keepRefI refi ik))

keepRefO :: IORef (OutCont o a)→OutCont o a→OutCont o a

keepRefO refo (MakeOutCont f) = MakeOutCont $ λo (MakeInCont g)→ f o $ MakeInCont $ λok→
unsafePerformIO $ do

modifyIORef ′ refo (λ → ok)

return (g (keepRefO refo ok))

C Appendix

Relation to scott encoding

We show the Producer case, an analogous strategy works for Consumer.

Theorem C.1. The representation ProducerAlt is ∼R (representationally equivalent) to
∀a.SP o a.

The relevant definitions for the proof are

newtype ConsPar x a = ConsPar (x→ ProdPar x a→ a)
newtype ProdPar x a = ProdPar (ConsPar x a→ a)
newtype SP o a = SP ((o→ SP o a→ a)→ a)
type ProducerAlt o = ∀a.ConsPar o a→ a

Proof First, we show that ConsPar o a→ a ∼R SP o a.

ConsPar o a→ a
∼R (def. ConsPar)

(o→ ProdPar o a→ a)→ a
∼R (def. ProdPar)

(o→ (ConsPar o a→ a)→ a)→ a
∼R (coinduction hypothesis)

(o→ SP o a→ a)→ a
∼R (def. SP)

SP o a

Then,

ProducerAlt o
∼R (def. ProducerAlt)
∀a.ConsPar o a→ a
∼R (proven above)
∀a.SP o a �

https://doi.org/10.1017/S0956796820000192 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000192

	Faster coroutine pipelines: A reconstruction
	Introduction
	Motivation
	Pipes
	Three-continuation approach
	Overview

	Fast connecting for one-sided pipes
	One-sided pipes
	Mutual recursion elimination
	Structural recursion with fold
	A shortcut to a connect-friendly representation
	A not so special representation

	Return to two-sided pipes
	Pipe of no return
	Return to identifierreturn
	Specialization for identifierIO

	Bidirectional pipes
	ADT encoding
	Constructing the continuation-based encoding
	One-sided bidirectional pipes
	Two-sided bidirectional pipes

	Benchmarks
	Spivey's benchmarks
	primes benchmark
	deep-pipe / deep-seq benchmarks

	Advertisement analytics benchmark
	Micro-benchmarks
	Advertisement analytics benchmark
	Remarks on optimization

	Related work
	Conclusion
	Appendix
	Appendix
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

