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Abstract

The paper establishes an effective bound for the solutions of the equation
Normg;q(x10 + X063 + X303) = a, a€Z,

under some conditions.

Subject classification (Amer. Math. Soc. (MOS) 1970): 10 B 15.

1.

Let K be a field of algebraic numbers of degree p>3, wy, ..., «,—linearly inde-
pendent over Q integers from K, ae Z. It is known that if m = p, then the equation

F(xy5 ...y Xp) = Normy ) (5 0+ ... + X 0) = @

for some a (for example, a = 1) has infinitely many solutions in rational integers
Xy5 ...y X If m<p, then excepting the case when the modulus (e, ...,o,,) is
degenerate, this equation for any a€Z may have only finitely many solutions.
For m = 2 it was proved in 1909 by Thue (1909) and for m>3 in 1971 by Schmidt
(1971). The theorems proved by Thue and Schmidt are noneffective—we cannot
obtain from them an upper bound depending on F and a of the absolute values of
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130 N. I. Feldman [2)

the numbers x,, ..., X, satisfying the equation. In 1968 Baker (1968) made Thue’s
theorem effective. In this paper some effective results are obtained for m = 3.

2.

Let the degree of K be 2n>4, the fields K; =K, K,, .. ,Ke,, be conjugate and
complex K, and K,,, be complex conjugate (K,=K,,,), s=1,..,n Let
‘a=aM, B=pBM and y =y be linearly independent over Q integers from K,
afh, B¥, »W_—their conjugates in the field K. Let us investigate the solutions in
rational integers of the diophantine equations

2
1) F(x,y,z) = ﬁ (xa® 4B 2y =a, acl.
=1
Let
) 8y = PO FO 4 B 5 = oD G _ ) o0),
S3=aMBO_gdpH  j=1,..,n,
3 Ay = 83873—8438y5, Agja=04308— 84 Oy,

Ayg=8485—88;, i=j1,...n.

In what follows the letters c, ¢,, ... denote effective positive constants, depending
only on «, B, v and K but not on a.

THEOREM 1. If for all the pairs i,j, i, 1 <i,j<n, the numbers Ay, Ayjo, Ayss are
linearly independent over Q, then for any acZ all the integer numbers x, y, z satis-
fying the equation (1) also satisfy the inequality

@ |xLIyhlzl<elaf
PROOF. Let x, y, z be the solution of the equation (1). If a = O then ax+ By +yz =0

and the linear independence of «, 8 and y yields that x = y = z = 0, that is, that
(4) is true. In what follows we consider a# 0. Let

®) X0 = xa® BG4 z0y®), ﬁ A0 = g

=l

M1 -1, be the fundamental units of the field K, and the numbers 5, ...,n®
their conjugates in K. In the paper Baker (1968) it is proved that there ex1st
such by, ..., b,.€Z for which

6) cgt|altng|u®|<cglalitn, pO = AOpPh B = XD (O,

t=1,2,...,2n,
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3] Solutions of Diophantine equations 131
and if H = max|b,| then there exist such indices k£ and / that
0] | A®)|<|a2m e, | XD|3> c5|af2m,

It is evident that the linear forms A*’ and A®-complex conjugate to A* and A®
satisfy just the same inequalities. The system of equations

al®) 4 Bl 4 (B yy 4 XY § = (),
&* y 4 B0 4 5 4 X ¢ = 0,
aPu+pOv+yPw+ a0 =0,
O y+ P+ 5O w4+A0 ¢ =0

has a nontrivial solution (x, y, z, — 1) then the determinant is equal to zero, that is,

®) Dy A% 4 Dy X0 4 D, A + D, A = 0,
where

ao  fu e al) B e
©9) Di=|a® BO L0 | Dp,=|ak g 5

FUN: (U a0
and D,, D, are their complex conjugates. From (7) and (8) we obtain
(10) | Dy A0+ Dy XO| < cg | aft/2m e—es,
If the equality

D2 A(” + Dz X(l) = 0
takes place then, taking into account (9), we would have

0 = (xa® + B + zy®) D, + (x&® + yB + z4W) D,

alk) B otk alr BU 4tk a® Bl k)
=x| @B i gk |yl gt gl Gl |4 gl B gk

= X(Oyz Op3— 813 812) + V(8 yg 81y — 81 By) +2(81 13— Sy2 Op)
(1) =xAuy~yAye+ 204,

But by the conditions of the theorem this equality can take place only for
x =y =z=0 but this triplet is not the solution of (1) as a#0. Thus from (6),
(10) and (11) we obtain

12) 0<|Dyp® {97 4 Dy g™ Z(l)—ll <cglaf/am et
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This implies that D,#0 and therefore, on multiplying the inequality (12) by

| {%/ Dy u®|, from (6), (7), (12) and taking into account that D, belongs to a fixed
finite set of numbers we obtain the inequality

®  D,p®
(13) 0< | i(l) <cg e—CH l a|1/2nl Dz—l z(l)l I A gD l—l ¢y e~H
or
7 (U]
(14) 0< ( m) . (g?l)) —w|<c,e 4l
where
D, ®
(15) w=—D2F

"D, 40
In the papers ®enpaman (1971) and Pensaman (1972) the theorem is proved:

THEOREMY. Let wy, ..., w,,, w be algebraic from the field Ky and different from zero,
b €Z, H=max|b;|, §>0, |w|, |o]<ec. If

O<|owl.. wlr—w|<e?H,
then

(16) H< (1 +log H()), ¢y = colay, -.., wg, K, 8, ).

Let us apply this theorem to the inequality (14) where m = r, w; = 7 /1{" and
wis deﬁned by (15). We can obtain all the conjugates of «w by replacing the numbers
Dy, Dy, u®, 5 with some of their conjugates and according to (6) the numbers
|w| and Jw™| are bounded. Thus (16) holds. The heights of the numbers D, and
D, are bounded and the heights of the integers i and i are not greater than
cs|a] because of (6), therefore we obtain from (15) that H(w)<¢y|alw, and

a7 H<cy(1+1og|al).
We have noted above that D,#0. But D, is the determinant of the system
x84 pBUO 4z = AU = 00/ ),
XG0y 4 zh) = XtkD = o) T,

xa® +yB(l) +Z‘y“) = AP = ”(l)/z(l)

t This is Theorem 2 from ®ensuman (1971). The condition connected with the equation (46)
of this work is taken away in ®emsaman (1972).
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and from (6) and (17) we obtain

[x],]7s| 2] < €10 max |p'9|ewH < cyy| afl/2m eentiHloglad < ¢ | afea,
1<ji<2n

THEOREM 2. Suppose that there are distinct indices i,j such that the numbers (3)
are linearly independent over Q. Then all the solutions of (1) satisfy (4).

ProoF. Let a# 0. If for any pair i,j the numbers (3) are linearly independent over
Q then the assertion of the theorem follows from Theorem 1. Let k,/, k#1, be the
indices for which the numbers (3) are linearly independent. Consider the non-
trivial solutions in integers of the equation
Let x;,%1,2, and Xy, s, 2, be two such solutions. Without loss of generality we
suppose that Ay, and A, are linearly independent over Q and z; z,# 0. We have

(r1za—X2) Mg — (01 2a— 2 2) Ba = 0,
and it implies
X1 Zy= X2y = 12— 22, =0, X3 =(2)/z) %y, »1 = (@/2)yes 21 = (2/29) 25,

Thus all the nontrivial integer solutions of the equation (18) are proportional to each
other. Let x,, yo, 2, be the integer solution of the equation (18) with the minimal
positive sum x2+)?+2z2; then all the other nontrivial integer solutions of the
equation (18) are of the form

X=1Xg0 Y=1Vy 2=1zy, LELL.
If the triplet x, y, z satisfies the equation (1) then we have the equality

tan(xo,yo’ Zo) =a,
therefore 12*|a and

[xl<Ixol [a]2", |yI<|yol |a[2, |z|<|Z| |a]/®".

As there exist only C2 combinations of the indices k,/ all the solutions of (1)
satisfying one of the equations (18) satisfy the inequality (4) with the corresponding
¢; and c,.

For the solutions of (1) which do not satisfy any of the C2 equations (18) the
inequality (12) takes place. Therefore they satisfy the inequality (4).

THEOREM 3. Suppose that for any pair of distinct indices i, j, one of the numbers
(3) is distinct from zero. If after substituting a solution from the equation

(19) xA,-,-l—yA,-j2+zAij3 =0
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(which has a nontrivial integer solution) in (1) the left-hand side of the obtained
equation is not proportional to a power of a linear form or a power of a quadratic form
with real coefficients then all the solutions of the equation (1) satisfy the inequality (4).

PRrROOF. Let x, y, z be the solution of the equation (1). If for these x, y, z for any
pair i, the equality (19) does not take place, then as we have already seen above
(see the proof of Theorem 1) the inequality (4) takes place. Let for some pairs of
different indices k,/ the equality

(20) XAm—yAk12+ZAk13 =0

take place. If for each of these pairs among the numbers Ay, s = 1,2, 3, there are
two linearly independent over Q then the numbers x, y, z satisfy the inequality (4)
(see the proof of Theorem 2). Thus we must only consider the case when for some
pairs k, / among the numbers A, s = 1,2, 3, any two of them are linearly dependent
over Q. By the hypothesis one of them is not zero. Let Ay # 0. The triplet x, y,z
satisfies equations (1) and (20), therefore

z=Ax+By, A,BeQ,
and from (1) we get

(21) i!i (+A)x+(BY—B)y) = a.
t=1

It is evident that o® + 4 and B¥+ BeK®. Let C, 4, = AC, By = BC€Z; then the
equation

2
IT (Cat® + 4) x+(CBY + B y) = aC* = q,
t=1

has rational integer coefficients. Let us expand the left-hand side to the irreducible
factors. If among them there is a form of the third degree f(x,y) then (4) holds
by the theorem of the work of ®embaman (1971), as any x, y satisfying equa-
tion (21) satisfy one of the finite set of equations

fxy)=a, a€Z, ala,.

If among the irreducible factors there are only the forms of first and second
degree then there are only four possible cases.
1. Among the irreducible factors there is a form

g(x,y) = pxt+qxy+ry®* = p(x+(p+io) y)(x+p—io)y), p,0€R, a#O0.

Then the rational integer
|8, )| = [P ((x+ py)2+ 2 < 4| =|a| C?,

and thus |y|<cy|al, and | x| and | y| satisfy the inequality (4).
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2. Among the irreducible factors there are two non-proportional linear forms
kyx+1 y and kyx+1, y. Then for any solution of equtaion (21) we have

kyx+hy=as kyx+hy=a, a,a,cZ, ag|la, aay,

and again | x| and | y| satisfy the inequality (4).

3. Among the irreducible factors there are two non-proportional quadratic
forms. Then

X+ G XY+ )P = a5, pyXP+qaxy+r)t =ag a5,a0€Z, aslay, agla;.

Eliminating x we obtain the equation

P @y ny—as 0
0 p @Yy ny*—as
P2 G2y Tr2y’—ag Y
0 pe ULY4 ry?—ag

The left-hand side of this equation is diffierent from zero, its coefficients are rational
integers, their moduli not greater than ¢;5)a|%2 and thus | x| and | y| satisfy (4).
4. Among the irreducible factors there are linear and quadratic forms. Then

=0.

DX+ Gy xy+r3? =a;, kyx+hy=as a,a€Z, ajlay, agla,

and the estimate (4) is true again.
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