
Proceedings of the Edinburgh Mathematical Society (2007) 50, 737–753 c©
DOI:10.1017/S0013091506000332 Printed in the United Kingdom

DUAL Lp JOHN ELLIPSOIDS

WUYANG YU∗, GANGSONG LENG AND DONGHUA WU

Department of Mathematics, Shanghai University,
Shanghai 200444, People’s Republic of China

(yu wuyang@163.com; gleng@staff.shu.edu.cn; dhwu@staff.shu.edu.cn)

(Received 8 March 2006)

Abstract In this paper, the dual Lp John ellipsoids, which include the classical Löwner ellipsoid and
the Legendre ellipsoid, are studied. The dual Lp versions of John’s inclusion and Ball’s volume-ratio
inequality are shown. This insight allows for a unified view of some basic results in convex geometry
and reveals further the amazing duality between Brunn–Minkowski theory and dual Brunn–Minkowski
theory.

Keywords: Löwner ellipsoid; Legendre ellipsoid; Lp John ellipsoid; dual Lp John ellipsoids

2000 Mathematics subject classification: Primary 52A39; 52A40

1. Introduction

The excellent paper by Lutwak et al . [28] shows that the classical John ellipsoid JK, the
Petty ellipsoid [10,30] and a recently discovered ‘dual’ of the Legendre ellipsoid [24] are
all special cases (p = ∞, 1, 2) of a family of Lp ellipsoids, EpK, which can be associated
with a fixed convex body K. This insight allows for a unified view of, alternate approaches
to and extensions of some basic results in convex geometry. Motivated by their research,
we have studied the dual Lp John ellipsoids and show that the classical Löwner ellipsoid
and the Legendre ellipsoid are special cases (p = ∞, 2) of this family of ellipsoids. Bastero
and Romance [3] had shown this in a different way. Based on our characterization of dual
Lp John ellipsoids, we present an Lp version of John’s inclusion and show that the dual
of Ball’s volume-ratio inequality holds not only for the John ellipsoid, but also for all the
dual Lp John ellipsoids.

An often used fact in both convex and Banach space geometry is that associated with
each convex body K is a unique ellipsoid of minimal volume ellipsoid containing K.
The ellipsoid is called the Löwner ellipsoid (or Löwner–John ellipsoid) of K. Here we
denote the Löwner ellipsoid of K by J̃K, since it can be regarded as the dual of the John
ellipsoid JK (the maximal volume ellipsoid contained in K). The Löwner–John ellipsoid
is extremely useful (see, for example, [1,6] for applications).
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Two important results concerning the Löwner ellipsoid are the dual form of John’s
inclusion and the dual form of Ball’s volume-ratio inequality [1]. The dual form of John’s
inclusion states that if K is an origin-symmetric convex body in R

n, then

1√
n

J̃K ⊆ K ⊆ J̃K. (1.1)

A consequence of Barthe’s reverse Brascamp–Lieb inequality [2] is the outer volume-
ratio inequality which can be regarded as the dual form of Ball’s volume-ratio inequality:
if K is an origin-symmetric convex body in R

n, then

V (K)
V (J̃K)

� 2n

n! ωn
, (1.2)

with equality if and only if K is a cross-polytope. Here ωn denotes the volume of the
unit ball, B, in R

n.
A positive-definite n × n real symmetric matrix A generates an ellipsoid, ε(A), in R

n,
defined by

ε(A) = {x ∈ R
n : x · Ax � 1},

where x · Ax denotes the standard inner product of x and Ax in R
n.

Associated with a convex body K ⊂ R
n is its Legendre ellipsoid, Γ2K, which is the

inertial ellipsoid of classical mechanics and can be generated by the matrix [mij(K)]−1,
where

mij(K) =
n + 2
V (K)

∫
K

(ei · x)(ej · x) dx,

with e1, . . . , en denoting the standard basis for R
n and V (K) denoting the n-dimensional

volume of K.
The Legendre ellipsoid is an important ellipsoid that is closely related to the isotropic

position and the well-known slicing problem (for more information and its important
applications, see [16,17,29]). Recently, Lutwak et al . [24] defined a new ellipsoid Γ−2K

which is a natural dual of the Legendre ellipsoid Γ2K. They proved that Γ−2K ⊂ Γ2K

and noted that this is a geometrical analogue of the Cramer–Rao inequality [26]. The
recent work of Ludwig [18] clearly demonstrates the importance of these two ellipsoids.

2. Dual Lp mixed volume

Lutwak introduced dual mixed volumes in [21] (see [22] for a summary of their proper-
ties), which is the beginning of dual Brunn–Minkowski theory. For general reference, the
reader may wish to consult [5,35]. More recent work in dual Brunn–Minkowski theory
can be found in [7,8,14,15,20,38].

In recent years, Lp-Brunn–Minkowski theory has received considerable attention and
a lot of work has been done to develop this theory [4,13,19,24–26,28,33,36]. For quick
reference we recall some basic results from the theory here.

A convex body in Euclidean n-dimensional space, R
n, is a compact convex subset

of R
n with non-empty interior. For a convex body Q let hQ : R

n → R denote its support
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function; i.e. for x ∈ R
n, we have hQ(x) = max{x · y : y ∈ Q}, where x · y denotes the

standard inner product of x and y in R
n. If Q contains the origin in its interior, then we

will use Q∗ to denote the polar of Q; i.e.

Q∗ = {x ∈ R
n : x · y � 1 for all y ∈ Q}.

Obviously, for φ ∈ GL(n),
(φQ)∗ = φ−TQ∗, (2.1)

where φ−T denotes the inverse of the transpose of φ.
The radial function ρ(Q, ·) = ρQ(·) : R

n → R associated with a set Q ⊂ R
n that is

compact and star-shaped (with respect to the origin) is defined for x �= 0 by ρQ(x) =
max{λ � 0 : λx ∈ Q}. If ρQ is positive and continuous, Q is called a star body. Obviously,
for x �= 0 and φ ∈ GL(n),

ρφQ(x) = ρQ(φ−1x). (2.2)

Two star bodies K and L are said to be dilates if ρK(u)/ρL(u) is independent of u ∈ Sn−1.
It is easy to verify that if A is a positive-definite n × n real symmetric matrix, then

the support function of the ellipsoid ε(A) = {x ∈ R
n : x · Ax � 1} is given by

h2
ε(A)(u) = u · A−1u,

for u ∈ Sn−1. Thus, for a star body K,

hΓ2K(u)2 =
n + 2
V (K)

∫
K

|u · x|2 dx =
1

V (K)

∫
Sn−1

|u · v|2ρK(v)n+2 dS(v), (2.3)

for u ∈ Sn−1.
The normalized Lp polar projection body of K, Γ−pK, for p > 0 is defined as the body

whose radial function, for u ∈ Sn−1, is given by

ρ−p
Γ−pK(u) =

1
V (K)

∫
Sn−1

|u · v|p dSp(K, v).

For more details on the Γ−pK see [28].
Given p > 0, for star bodies K, L, and ε > 0, the Lp-harmonic radial combination

K+̃−pε · L is the star body defined by

ρ(K+̃−pε · L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p.

The dual Lp mixed volume Ṽ−p(K, L) [25] of the star bodies K, L, can be defined by

n

−p
Ṽ−p(K, L) = lim

ε→0+

V (K+̃−pε · L) − V (K)
ε

. (2.4)

The definition (2.4) and the polar coordinate formula for volume give the following
integral representation of the dual Lp mixed volume Ṽ−p(K, L) of the star bodies K, L

[25]:

Ṽ−p(K, L) =
1
n

∫
Sn−1

ρK(u)n+pρL(u)−p dS(u). (2.5)
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From the integral representation (2.5), it follows immediately that, for each star body
K,

Ṽ−p(K, K) = V (K). (2.6)

From (2.2) and the definition of Lp-harmonic radial combination it follows immediately
that, for an Lp-harmonic radial combination of star bodies K and L,

φ(K+̃−pε · L) = φK+̃−pε · φL.

This observation, together with the definition of the dual Lp mixed volume Ṽ−p, shows
that for φ ∈ SL(n) and star bodies K, L we have Ṽ−p(φK, φL) = Ṽ−p(K, L) or, equiva-
lently,

Ṽ−p(φK, L) = Ṽ−p(K, φ−1L). (2.7)

We will require a basic inequality regarding the dual Lp mixed volume Ṽ−p. The dual
Lp mixed volume inequality for Ṽ−p is that for star bodies K, L,

Ṽ−p(K, L) � V (K)(n+p)/nV (L)−p/n, (2.8)

with equality if and only if K and L are dilates. This inequality is an immediate conse-
quence of the Hölder inequality [12] and integral representation (2.5).

It will be helpful to introduce a volume-normalized version of dual Lp mixed volumes.
If K and L are star bodies that contain the origin in their interiors, then for each real
p > 0 define

V̄−p(K, L) =
(

Ṽ−p(K, L)
V (K)

)1/p

=
[

1
nV (K)

∫
Sn−1

(
ρK(u)
ρL(u)

)p

ρK(u)n dS(u)
]1/p

, (2.9)

and for p = ∞ define

V̄−∞(K, L) = max
{

ρK(u)
ρL(u)

: u ∈ Sn−1
}

. (2.10)

Note that
1
n

ρK(·)n dS(·)
V (K)

is a probability measure on Sn−1. Unless ρK/ρL is constant on Sn−1, it follows from
(2.9), (2.10) and Jensen’s inequality [12] that

V̄−p(K, L) < V̄−q(K, L), (2.11)

for 0 < p < q � ∞, and
lim

p→∞
V̄−p(K, L) = V̄−∞(K, L).

From (2.2), (2.5) and (2.9) it follows immediately that, for λ > 0 and p ∈ (0,∞],

V̄−p(λK, L) = λV̄−p(K, L) and V̄−p(K, λL) = λ−1V̄−p(K, L). (2.12)
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From (2.7), (2.9) and (2.12) we find that, for φ ∈ GL(n) and p ∈ (0,∞],

V̄−p(φK, φL) = V̄−p(K, L). (2.13)

Finally, we will require the fact that

V̄−∞(K, L) � 1 if and only if K ⊆ L. (2.14)

This is a direct consequence of definition (2.10).

3. Dual Lp John ellipsoids

Throughout, we assume that p ∈ (0,∞] and that K is a convex body that contains the
origin in its interior. E will always denote an origin-centred ellipsoid.

3.1. Optimization problems

Given a convex body K in R
n that contains the origin in its interior, find an ellipsoid,

amongst all origin-centred ellipsoids, which solves the following constrained maximization
problem:

max
(

ωn

V (E)

)1/n

subject to V̄−p(K, E) � 1. (S̃p)

A maximal ellipsoid will be called an S̃p solution for K. The dual problem is

min V̄−p(K, E) subject to
(

ωn

V (E)

)1/n

� 1. (S̄p)

A minimal ellipsoid will be called an S̄p solution for K.
The solutions to (S̃p) and (S̄p) differ by only a scale factor.

Lemma 3.1. Suppose that 0 < p � ∞ and K is a convex body in R
n that contains

the origin in its interior. If E is an ellipsoid centred at the origin that is an S̃p solution
for K, then

V̄−p(K, E)E (3.1 a)

is an S̄p solution for K. If E′ is an ellipsoid centred at the origin that is an S̄p solution
for K, then (

ωn

V (E′)

)1/n

E′ (3.1 b)

is an S̃p solution for K.

The existence of a solution for (S̄p) is guaranteed by the Blaschke selection theorem
and the following proposition, which is given by Bastero and Romance [3].
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Proposition 3.2 (Bastero and Romance [3]). Let K, L ⊆ R
n be convex bodies

with the origin in their interior. Then

lim
φ∈SL(n), ‖φ‖→∞

Ṽ−p(φK, L) = +∞, 0 < p � ∞.

Lemma 3.1 now guarantees a solution to (S̃p) as well.

Theorem 3.3. Suppose that p > 0 and that K is a convex body in R
n which contains

the origin in its interior. Then (S̃p) and (S̄p) have unique solutions. Moreover, an ellipsoid
E solves (S̄p) if and only if it satisfies

Ṽ−p(K, E)ρE∗(x)−2 =
∫

Sn−1
|x · v|2ρK(v)n+pρE(v)2−p dS(v) for all x ∈ R

n, (3.2 a)

and an ellipsoid E solves (S̃p) if and only if it satisfies

V (K)ρE∗(x)−2 =
∫

Sn−1
|x · v|2ρK(v)n+pρE(v)2−p dS(v) for all x ∈ R

n. (3.2 b)

By Lemma 3.1, only the assertions about an S̄p solution require a proof. The existence
of a solution has already been established, and only the uniqueness and the character-
ization statements require proof.

In order to establish Theorem 3.3, we first prove a lemma that shows that, without
loss of generality, we may assume that the ellipsoid E is the unit ball, B, in R

n.

Lemma 3.4. Suppose that p > 0 and K is a convex body in R
n that contains the

origin in its interior. If φ ∈ GL(n), then

Ṽ−p(φ−1K, B)|x|2 =
∫

Sn−1
|x · v|2ρφ−1K(v)n+p dS(v) for all x ∈ R

n, (3.3 a)

if and only if

Ṽ−p(K, φB)ρ(φB)∗(x)−2 =
∫

Sn−1
|x · v|2ρK(v)n+pρφB(v)2−p dS(v) for all x ∈ R

n.

(3.3 b)

Proof. From (2.5), it is clear that, for λ > 0,

Ṽ−p(λK, L) = λn+pṼ−p(K, L) and Ṽ−p(K, λL) = λ−pṼ−p(K, L).

Therefore, it suffices to prove the lemma for φ ∈ SL(n). First note that

Ṽ−p(K, φB)ρ(φB)∗(x)−2 =
∫

Sn−1
|x · v|2ρK(v)n+pρφB(v)2−p dS(v) for all x ∈ R

n

is equivalent to

Ṽ−p(φ−1K, B)|φTx|2 =
∫

Sn−1
|x · v|2ρK(v)n+p|φ−1v|p−2 dS(v) for all x ∈ R

n.
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Let
φ−1v

|φ−1v| = v′.

Then

Ṽ−p(φ−1K, B)|φTx|2 =
∫

Sn−1
|x · φv′|2ρK(φv′)n+p dS(φv′) for all x ∈ R

n.

That is

Ṽ−p(φ−1K, B)|φTx|2 =
∫

Sn−1
|φTx · v′|2ρφ−1K(v′)n+p dS(v′) for all x ∈ R

n.

Since x is arbitrary, we get

Ṽ−p(φ−1K, B)|x|2 =
∫

Sn−1
|x · v|2ρφ−1K(v)n+p dS(v) for all x ∈ R

n.

�

Proof of Theorem 3.3. The proof of this theorem is similar to that of [28, Theo-
rem 2.2]. We first show that if E is an S̃p solution for K, then

Ṽ−p(K, E)ρE∗(x)−2 =
∫

Sn−1
|x · v|2ρK(v)n+pρE(v)2−p dS(v) for all x ∈ R

n.

Lemma 3.4 shows that we may assume that E = B.
Suppose that T ∈ SL(n) and choose ε0 > 0 sufficiently small that, for all ε ∈ (−ε0, ε0),

the matrix I + εT is invertible. For ε ∈ (−ε0, ε0), define Tε ∈ SL(n) by

Tε =
I + εT

det(I + εT )1/n
.

Since det(Tε) = 1, the ellipsoid Eε = TT
ε B has volume ωn. The fact that B is an S̃p

solution implies that Ṽ−p(K, B) � Ṽ−p(K, Eε) for all ε, and hence we have

d
dε

∣∣∣∣
ε=0

∫
Sn−1

ρK(v)n+pρEε(v)−p dS(v) = 0,

or equivalently,

0 =
d
dε

∣∣∣∣
ε=0

∫
Sn−1

ρK(v)n+p det(I + εT )p/n|(I + εT )−1v|p dS(v)

=
d
dε

∣∣∣∣
ε=0

∫
Sn−1

ρK(v)n+p det(I + εT )p/n|v − εTv + O(ε2)|p dS(v)

=
d
dε

∣∣∣∣
ε=0

∫
Sn−1

ρK(v)n+p det(I + εT )p/n|v · v − 2εv · Tv + O(ε2)|p/2 dS(v).

Since
d
dε

∣∣∣∣
ε=0

det(I + εT ) = tr(T )
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and the integrand depends smoothly on ε (for small ε), we have

Ṽ−p(K, B) tr(T ) =
∫

Sn−1
ρK(v)n+p(v · Tv) dS(v).

Choosing an appropriate T for each i, j ∈ {1, . . . , n} gives

Ṽ−p(K, B)δij =
∫

Sn−1
ρK(v)n+p(v · ei)(v · ej) dS(v),

which in turn gives

Ṽ−p(K, B)|x|2 =
∫

Sn−1
|x · v|2ρK(v)n+p dS(v) for all x ∈ R

n,

as desired.
Conversely, we suppose that

Ṽ−p(K, B)ρB∗(x)−2 =
∫

Sn−1
|x · v|2ρK(v)n+pρB(v)2−p dS(v) for all x ∈ R

n, (3.4)

and shall prove that if |E| = ωn, then

Ṽ−p(K, E) � Ṽ−p(K, B),

with equality if and only if E = B. Equivalently, we shall prove that if P is a positive-
definite symmetric matrix with det(P ) = 1, then

[
1

nṼ−p(K, B)

∫
Sn−1

ρK(v)n+pρPB(v)−p dS(v)
]1/p

� 1, (3.5)

i.e. [
1

nṼ−p(K, B)

∫
Sn−1

ρK(v)n+p|P−1v|p dS(v)
]1/p

� 1, (3.6)

with equality if and only if |P−1v| = 1 for all v ∈ Sn−1. In order to establish (3.6) we
shall prove that

[
1

nṼ−p(K, B)

∫
Sn−1

ρK(v)n+p|P−1v|p dS(v)
]1/p

� exp
[

1
nṼ−p(K, B)

∫
Sn−1

ρK(v)n+p log |P−1v| dS(v)
]

� 1. (3.7)

The first inequality is a direct consequence of Jensen’s inequality, with equality if and
only if there exists a c > 0 such that |P−1v| = c for all v ∈ Sn−1.
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Write P−1 as OTDO, where D = diag(λ1, . . . , λn) is a diagonal matrix with eigenvalues
λ1, . . . , λn and O is an orthogonal matrix. To establish our inequality we need to show
that ∫

Sn−1
ρK(v)n+p log |P−1v| dS(v) � 0. (3.8)

First note that

Ṽ−p(OK, B)|x|2 =
∫

Sn−1
|x · v|2ρOK(v)n+p dS(v) for all x ∈ R

n.

From the fact that O is orthogonal and D is diagonal, and from the concavity of the log
function, and the above inequality, we have∫

Sn−1
ρK(v)n+p log |P−1v| dS(v) =

∫
Sn−1

ρK(v)n+p log |OTDOv| dS(v)

=
∫

Sn−1
ρK(OTu)n+p log |OTDu| dS(OTu)

=
∫

Sn−1
ρOK(u)n+p log |Du| dS(u)

� 1
2

∫
Sn−1

ρOK(u)n+p(u2
1 log λ2

1 + · · · + u2
n log λ2

n) dS(u)

= Ṽ−p(OK, B)
n∑

i=1

log λi = 0.

Here ui = u · ei.
From the strict concavity of the log function it follows that the equality in the above

inequality is possible only if ui1 · · ·uiN �= 0 implies that λi1 · · ·λiN �= 0 for u ∈ Sn−1.
Thus, |Du| = λi when ui �= 0 for u ∈ Sn−1. Now the equality in (3.6) would also force
|P−1v| = c for all v ∈ Sn−1, or equivalently |Du| = c for all u ∈ Sn−1, so we have λi = c

for all i. This, together with the fact that λ1 · · ·λn = 1, shows that equality in (3.7)
would imply that D = I and hence P = I. �

Theorem 3.3 shows that problem (S̃p) has a unique solution when 0 < p < ∞. Now
consider the case p = ∞ of (S̃p). With the aid of (2.14), we can rephrase (S̃∞) as
follows. Among all origin-centred ellipsoids, find an ellipsoid which solves the following
constrained maximization problem:

max
(

ωn

V (E)

)1/n

subject to K ⊆ E. (S̃∞)

From the duality, it is easily shown that a minimizing ellipsoid in (S̃∞) is unique [9].
In fact, if K is origin-symmetric, then Ẽ∞K is the classical Löwner ellipsoid J̃K of K.

Definition 3.5. Suppose that 0 < p � ∞ and that K is a convex body in R
n which

contains the origin in its interior. Among all origin-centred ellipsoids, the unique ellipsoid
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that solves the constrained maximization problem

max
E

(
1

V (E)

)
subject to V̄−p(K, E) � 1

will be called the dual Lp John ellipsoid of K and will be denoted by ẼpK. Among all
origin-centred ellipsoids, the unique ellipsoid that solves the constrained minimization
problem

min
E

V̄−p(K, E) subject to V (E) = ωn

will be called the normalized dual Lp John ellipsoid of K and will be denoted by ¯̃EpK.

From (2.12) and (2.14) we immediately obtain the following lemma.

Lemma 3.6. If K is a convex body in R
n that contains the origin in its interior and

if 0 < p � ∞, then, for φ ∈ GL(n),

ẼpφK = φẼpK.

Obviously, ẼpB = B, and from Lemma 3.6 we see that if E is an ellipsoid that is centred
at the origin, then ẼpE = E.

From (2.3) and Theorem 3.3, we immediately obtain the following lemma.

Lemma 3.7. If K is a convex body in R
n that contains the origin in its interior, then

Ẽ2K = Γ2K.

4. Generalizations of John’s inclusion

The dual form of John’s inclusion (1.1) states that if K is an origin-symmetric convex
body in R

n, then
1√
n

J̃K ⊆ K ⊆ J̃K.

In this section, we shall prove a dual Lp version of this inclusion.
If K is a convex body in R

n that contains the origin in its interior and p � 1, the
Lp-centroid body ΓpK [24] is defined by

hΓpK(u) =
(

n + p

V (K)

∫
K

|u · x|p dx

)1/p

, (4.1)

for u ∈ Sn−1. Define Γ∞K = limp→∞ ΓpK. From the definition of ΓpK, it is easily shown
that, when K is origin-symmetric, Γ∞K = K.

The Lp-centroid body, which is closely connected with the Lp-projection body, is impor-
tant in Lp-Brunn–Minkowski theory. Lutwak et al . [23, 25] found many Lp-analogue
inequalities of classical inequalities which include Lp versions of the Busemann–Petty
centroid inequality and Petty projection inequality. Moreover, they proved sharp affine
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Lp Sobolev inequalities using the Lp-Petty projection inequality [27]. Recent work by
Yaskin and Yaskina [37] also shows the importance of the Lp-centroid body.

From the definition of ΓpK, it is easily shown that if λ > 0, then ΓpλK = λΓpK.
Moreover, for φ ∈ GL(n),

ΓpφK = φΓpK. (4.2)

Lemma 4.1. If K is a convex body in R
n that contains the origin in its interior, then

ẼpK

{
⊆ ΓpK 1 � p < 2;

⊇ ΓpK 2 < p � ∞.

Proof. Lemma 3.6 and (4.2) show that it suffices to prove the inclusions when ẼpK =
B. For 1 � p < 2,

hΓpK(u) =
(

n + p

V (K)

∫
K

|u · x|p dx

)1/p

=
(

1
V (K)

∫
Sn−1

|u · v|pρK(v)n+p dS(v)
)1/p

�
(

1
V (K)

∫
Sn−1

|u · v|2ρK(v)n+p dS(v)
)1/p

= 1.

This gives ẼpK = B ⊆ ΓpK when 1 � p < 2.
When 2 < p < ∞, the inequality is reversed. Thus, ẼpK = B ⊇ ΓpK for p > 2. The

case p = ∞ follows from the definition of Ẽ∞K and the fact that Γ∞K = K. �

Of course, the case of p = 2 of Lemma 4.1 is known as Ẽ2K = Γ2K.

Theorem 4.2. If K is a convex body in R
n that contains the origin in its interior,

then

ΓqK

{
⊆ n1/q−1/2ẼpK when 1 � q � p � 2,

⊇ n1/q−1/2ẼpK when 2 � p � q � ∞.

Proof. Lemma 3.6 and (4.2) show that it suffices to prove the inclusions when ẼpK =
B. So, definition (3.5) gives Ṽ−p(K, B) = V (K). Suppose that 1 � q � p � 2. Then

hΓqK(u) =
(

n + q

V (K)

∫
K

|u · x|q dx

)1/q

=
(

1
V (K)

∫
Sn−1

|u · v|qρK(v)n+q dS(v)
)1/q

= n1/q

(
1

nV (K)

∫
Sn−1

[|u · v|ρK(v)]qρK(v)n dS(v)
)1/q

� n1/q

(
1

nV (K)

∫
Sn−1

[|u · v|ρK(v)]pρK(v)n dS(v)
)1/p
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= n1/q

(
1

nṼ−p(K, B)

∫
Sn−1

|u · v|pρK(v)n+p dS(v)
)1/p

� n1/q

(
1

nṼ−p(K, B)

∫
Sn−1

|u · v|2ρK(v)n+p dS(v)
)1/2

= n1/q

(
1

nV (K)

∫
Sn−1

|u · v|2ρK(v)n+p dS(v)
)1/2

= n1/q−1/2.

Thus, ΓqK ⊆ n1/q−1/2ẼpK.
When 2 � p � q < ∞, the inequality above is reversed. Thus, ΓqK ⊇ n1/q−1/2ẼpK

when 2 � p � q < ∞. The case q = ∞ follows from the definition of (S̃∞) and the fact
that Γ∞K = K. �

Choosing q = ∞ gives the following corollary.

Corollary 4.3. If K is a convex body in R
n that contains the origin in its interior,

then, for 2 � p � ∞,
1√
n

ẼpK ⊆ K.

Lutwak et al . [28] presented the following Lp version of John’s inclusion.

Corollary 4.4 (Lutwak et al . [28]). If K is an origin-symmetric convex body in R
n,

then

EpK

{
⊇ Γ−pK ⊇ n1/2−1/pEpK when 0 � p � 2;

⊆ Γ−pK ⊆ n1/2−1/pEpK when 2 � p � ∞.

By taking p = q in Theorem 4.2 and combining the inclusions with those of Lemma 4.1,
we obtain the dual Lp version of John’s inclusion, as follows.

Corollary 4.5. If K is an origin-symmetric convex body in R
n, then

ẼpK

{
⊆ ΓpK ⊆ n1/p−1/2ẼpK when 1 � p � 2,

⊇ ΓpK ⊇ n1/p−1/2ẼpK when 2 � p � ∞.

5. Volume-ratio inequalities

In the following sections, we will give some important properties about dual Lp John
ellipsoids, which are dual forms of corresponding properties about Lp John ellipsoids
given by Lutwak et al . [28].

Theorem 5.1 (Lutwak et al . [28]). If K is a convex body in R
n that contains the

origin in its interior and 0 < p � q � ∞, then

V (EqK) � V (EpK).

We present a dual form of the above theorem.
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Theorem 5.2. If K is a convex body in R
n that contains the origin in its interior and

0 < p � q � ∞, then
V (ẼpK) � V (ẼqK).

Proof. From definition (2.5), (2.10) together with Jensen’s inequality, it follows that,
for 0 < p � q � ∞,

(
Ṽ−p(K, L)

V (K)

)1/p

=
[

1
nV (K)

∫
Sn−1

(
ρK(u)
ρL(u)

)p

ρK(u)n dS(u)
]1/p

�
[

1
nV (K)

∫
Sn−1

(
ρK(u)
ρL(u)

)q

ρK(u)n dS(u)
]1/q

=
(

Ṽ−q(K, L)
V (K)

)1/q

.

The above inequality, together with Definition 3.5, immediately gives the desired results.
�

In general, the Lp John ellipsoid EpK is not contained in K (except when p = ∞).
However, when p � 1, the volume of EpK is always dominated by the volume of K.

Theorem 5.3 (Lutwak et al . [28]). If K is a convex body in R
n that contains the

origin in its interior and 1 < p � ∞, then

V (EpK) � V (K),

with equality for p > 1 if and only if K is an ellipsoid centred at the origin, and equality
for p = 1 if and only if K is an ellipsoid.

Similarly, the dual Lp John ellipsoid ẼpK is not contain K (except when p = ∞).
However, the volume of K is always dominated by the volume of ẼpK.

Theorem 5.4. If K is a convex body in R
n that contains the origin in its interior and

0 < p � ∞, then
V (ẼpK) � V (K),

with equality if and only if K is an ellipsoid.

Proof. It is sufficient to prove the case of p < ∞. From Definition 3.5 and the dual
Lp-Minkowski inequality (2.8), we obtain

V (K) = Ṽ−p(K, ẼpK) � V (K)(n+p)/nV (ẼpK)−p/n,

with equality if and only if K and ẼpK are translates. �

Lutwak et al . have shown that Ball’s volume-ratio inequality holds not only for the
John ellipsoid, but also for the Lp John ellipsoids.
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Theorem 5.5 (Lutwak et al . [28]). If K is an origin-symmetric convex body in R
n,

then, for 0 < p � ∞,

V (K) � 2n

ωn
V (EpK),

with equality if and only if K is a parallelotope.

Theorem 5.2 and the dual form of the Ball volume inequality (1.2) immediately give
the dual Lp version of the Ball volume-ratio inequality as follows.

Theorem 5.6. If K is an origin-symmetric convex body in R
n, then, for 0 < p � ∞,

V (K) � 2n

n! ωn
V (ẼpK).

6. Intersections of convex bodies

If p ∈ (0,∞] and if K is an origin-symmetric convex body in R
n, then K is said to be

dual Lp isotropic if there exists a c > 0 such that

c|x|2 =
∫

Sn−1
|x · v|2ρK(v)n+p dS(v) for all x ∈ R

n.

Theorem 3.3 shows that K is dual Lp isotropic if and only if there exists a λ > 0 such
that

ẼpK = λB.

The case for L2 turns out to be the classical notation for isotropy.

Theorem 6.1. If K is an origin-symmetric convex body in R
n that is dual Lp isotropic,

then, for 1 � p � 2,

voln−1(K ∩ u⊥) �
[

n + p

n(p + 1)

]1/p √
n

(n!)1/n
V (K)(n−1)/n.

In order to prove Theorem 6.1, we first introduce a proposition given by Milman and
Pajor.

Proposition 6.2 (Milman and Pajor [29]). If K is an origin-symmetric convex
body in R

n, then, for p � 1 and u ∈ Sn−1,

(
1

V (K)

∫
K

|u · x|p dx

)1/p

� V (K)
2(p + 1)1/p voln−1(K ∩ u⊥)

. (6.1)

Proof of Theorem 6.1. If inequality (6.1) holds for a body K, then it obviously
holds for all dilates of the body. Thus, we may assume that ẼpK = B and

hΓpK(u) = (n + p)1/p

(
1

V (K)

∫
K

|u · x|p dx

)1/p

�
(

n + p

p + 1

)1/p
V (K)

2 voln−1(K ∩ u⊥)
.
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On the other hand,

hΓpK(u) =
(

n + p

V (K)

∫
K

|u · x|p dx

)1/p

= n1/p

(
1

nṼ−p(K, B)

∫
Sn−1

|u · v|pρK(v)n+p dS(v)
)1/p

� n1/p

(
1

nṼ−p(K, B)

∫
Sn−1

|u · v|2ρK(v)n+p dS(v)
)1/2

= n1/p

(
1

nV (K)

∫
Sn−1

|u · v|2ρK(v)n+p dS(v)
)1/2

= n1/p−1/2.

Combining the two inequalities above with those in Proposition 6.2, we have

voln−1(K ∩ u⊥) �
[

n + p

n(p + 1)

]1/p √
n

2
V (K). (6.2)

By Theorem 5.6, ẼpK = B implies that

V (K)1/n � 2
(n!)1/n

. (6.3)

Combining (6.2) and (6.3) yields the desired inequality. �

If K is an origin-symmetric convex body in R
n, the Blaschke–Santaló inequality [34]

is the right-hand side of

4n

n!
� V (K)V (K∗)

� ω2
n.

There is equality in the second line if and only if K is an ellipsoid. The first inequality
is a central conjecture, known as the Mahler conjecture: among origin-symmetric convex
bodies the volume-product is minimized by cubes and cross-polytopes. The first inequality
has been verified for the class of zonoids (and their polars) by Reisner [31, 32] (see
also [11]).

For the volumes of the Lp John ellipsoids of polar reciprocal convex bodies we have
the following result.

Theorem 6.3 (Lutwak et al . [28]). If K is an origin-symmetric convex body in R
n,

then, for 0 < p � ∞,

n−n/2ω2
n � V (EpK)V (EpK

∗)

� ω2
n.

with equality in the second line if and only if K is an ellipsoid and equality in the first
line if K is a cube or the octahedron.
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We also have the following similar result.

Theorem 6.4. If K is an origin-symmetric convex body in R
n, then, for 0 < p � ∞,

n−n/2ω2
n � V (ẼpK)V (ẼpK

∗) � nn/2ω2
n.

Proof. From

1√
n

Ẽ∞K ⊆ K ⊆ Ẽ∞K and V (K) � V (ẼpK) � V (Ẽ∞K),

we obtain
n−n/2V (Ẽ∞K) � V (K) � V (ẼpK) � V (Ẽ∞K). (6.4)

From
√

nẼ∗
∞K ⊇ K∗ ⊇ Ẽ∗

∞K and the definition of Ẽ∞K,

V (Ẽ∗
∞K) � V (K∗) � V (ẼpK

∗) � V (Ẽ∞K∗) � nn/2V (Ẽ∗
∞K). (6.5)

By combining (6.4), (6.5) and the fact that V (Ẽ∞K)V (Ẽ∗
∞K) = ω2

n, we obtain the
desired result. �
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