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PERTURBATIONS OF NONLINEAR AUTONOMOUS
OSCILLATORS
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Abstract

A general theory is given for autonomous perturbations of non-linear autonomous
second order oscillators. It is found using a multiple scales method. A central part of
it requires computation of Fourier coefficients for representation of the underlying
oscillations, and these coefficients are found as convergent expansions in a suitable
parameter.

1. Introduction

Autonomous perturbations of the equation

d*u

i —f'(w) (1.1)
are considered when f’ (the  denotes derivative with respect to argument) is
such that (1.1) has a continuum of oscillatory solutions - or equivalently, a
continuum of closed trajectories in the phase (u, d—“‘) plane. Normally, f will
also be analytic and it is reasonable to assume this property.

Thus it is required that the second derivative f” is positive in a neighbourhood
of an simple zero u, of f’ and then, perhaps also provided suitable bounds are
placed on initial conditions #(0) and “11—‘,‘(0) , there will be some continuum
of oscillatory solutions of (1.1). Since perturbations of the (linear) harmonic
oscillator

() = k'u, k constant,
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are well studied (exhaustive references are given by Nayfeh [8]), it is envisaged
that f' is other than linear, although the theory of the perturbed linear oscillator
will follow as a special case.

The perturbed equation is taken to be

d?u du du
an +f()—€d—8( dt) (1.2)

where g is Lipschitz-continuous in its arguments in a region of the phase plane
containing the continuum of closed trajectories of (1.1), and € is a small para-
meter which may be taken to be positive. It is thus tacitly assumed that per-
turbations depending solely on u are analytic in ¥ and absorbed in f’ on the
left hand side of (1.2). The perturbation term in (1.2) is more general than the
corresponding term € (du /dt)G(u) in [4] .

For many purposes the existence theory of (1.2), obtained by phase plane
analysis, is sufficient. But sometimes approximations to solutions are required,
and these problems are discussed below using a multi-scale analysis based on
one employed by Kuzmak [4] in describing the behaviour of the Duffing equation
when its coefficients are slowly varying. Thus, in Section 3, the approximate
theory of (1.2) will be shown to reduce its solution to sequential integration of
two first order equations. The result of this calculation will allow description
of the evolution of solutions of the perturbed (1.2) in terms of solutions of the
unperturbed (1.1).

There is no reason in principle that the perturbed (1.2) must be autonomous,
but the complication possible with non-autonomous, fast perturbation of (1.2) is
illustrated in Section 5. The essential difficulty is that the first order non-linear
equations obtained on reduction may be awkwardly coupled, so that the resulting
problem is as complicated as the original. Even so, this reorganization of the
problem may lead to useful insights.

General statements of results are obviously unlikely for such an open problem
as specified by (1.2), but when g = +1 a concise result is available. The
oscillatory solutions of (1.1) are expressible as integrals of the first order equation

du
Pl *(c —2f@)'?, (1.3)
where ¢ > 2 f (u,) is a constant. In the phase plane these oscillations map onto

closed curves, symmetric about the u axis, with area given by the integral

Ac) = f(c —2f W) *du (1.4)
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whose value depends only on the value of c. The solutions of the perturbed (1.2)
with g = %1 evolve with ¢, and consequently A, now slowly varying in such a
way that

A(t) = A(0) exp(Zet) (1.5)

approximately.

Even for the linearly damped non-linear oscillator the evolutionary principle
suggested by (1.4) is not generally computable in closed form so an alternative,
possibly more tractable formulation, is also given. This is based on Fourier
representations of the solutions of (1.1), and these are discussed at length in
Section 4. It will enable the evolution of solutions of (1.2) to be described in
terms of the evolution of a parameter (A or D, below), now slowly varying,
which in turn can be used to calculate the Fourier coefficients, and a slowly
modulated, fast phase (i below).

The rationale for the method is given in Section 6, where it is also placed in
context with other studies.

2. The unperturbed oscillator

Solutions of (1.2) are described in this section in terms of a representation
of those of (1.1) with the parameter ¢, introduced in (1.3), allowed to vary
slowly and with a new ¢-like, fast variable. Thus, suppose the angular frequency
function v(c) is known for the oscillatory solution (1.3). Then all oscillatory
solutions of (1.1) can be expressed in the form

u(t)y =Ul(c; ¢t + k)v), 2.1

where ¢ and k& are constants which are fixed by the initial conditions. By use of
a Fourier synthesis, the underlying function U can be expressed as

U(c;vt) =) ay(c) cos(nvt), (2.2)
0

where the coefficients a, are analytic in ¢ on some region including an appro-
priate open interval of the real ¢ axis,

RI(c) > 2f(u,)
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since f is analytic in #. (Of course, c is restricted to real values in the following.)
Later a reparametrisation will establish analyticity of the coefficients in one or
other new parameter in an interval including the map of ¢ = f(u,), but for the
present it is more natural to use ¢ as the describing parameter.

From its analyticity f is infinitely differentiable in u, so then U is an infinitely
differentiable function of ¢, and its Fourier coefficients consequently decay
rapidly: | a,(c) | will be o(n~/) for any integer j. The solution of the perturbed
equation (1.2) is specified below using the Fourier series representation (2.2) of
the solution of (1.1)

Ulc,t) = Y ay(c) cos(nr), (2.3)
0
so that
U(T)=Ul(c, 1) 2.4)
satisfies the equation
Zdzu ’
vVi—+ ffU) =0 2.5)
dt?

when v is evaluated at the chosen value of c.
Suppose a value of ¢ has been fixed, and U (c, t) calculated in accordance
with (2.3). Then the odd, co-periodic function (period unity)

alu >
w(t) = E(C’ T)=— Zna,, sin(nt) (2.6)
satisfies the first variation equation associated with (2.5), that is the linear
equation
2d2x "
vi— + ff(U)x =0. 2.7
dr

A second, linearly independent solution s of (2.7) is even but non-periodic
(except for the linear problem f”(U) = k?) since w (the first derivative of an
even periodic function) is odd and periodic, and f”(U) is co-periodic. So the
exceptional, resonant, case of Floquet theory [7] applies, and s can be expressed

as
s(1) = (Ktw(t) + W(1)), (2.8)
where d
K@) =v'Z 2.9)
dc
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and the even, co-periodic W is a Fourier cosine series
>\ da
W) =) —cos(nt). 2.10
() ; - cos(n7) (2.10)

These results (2.6, 2.8-10) follow on differentiating (1.1) with respect to ¢, and
partially with respect to ¢ at the solution of the one parameter family of initial
value problems

d
W@ =7/, =0, @.11)

where f~! denotes the branch of the inverse function with the greater values.

The subsequent calculations will require explicit evaluation of the necessarily
constant Wronskian V (c¢) of w and s. Since it is a constant, it is the same as its
mean on [—r, 7] and it follows that the Wronskian

o] 2
Vic) = dw (Z nz%) /4. (2.12)

Finally it is noted that all the above results need no formal change if the
problem is non-singularly reparametrised; if a new parameter A (or D) were
to replace ¢ then A- (or D-) derivatives would replace c-derivatives, as the
common factor d A /dc (or d D /dc) merely scales the solution (2.8).

3. The perturbation problem

To construct systematic approximations to solutions of (1.2), suppose that u
can be expanded as

u=Ze"U,,, (3.1)
0
and that each of the U, have dependence on two variables, which are
def
c(o) = c(et) 3.2)
(o is a slow variable) and, as a first guess,

V(o) =€'¢(0) (3.3)

(a fast variable). Essentially, the aim is to prescribe the evolution of ¢ and to
identify ¢ so that solutions of (1.2) are approximated by U, on a useful interval
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of ¥. Kuzmak [4] suggests that this will be so 1t the U, are constructed so that
they all have period 27 in .

Upon substituting (3.1) into (1.2) and arranging the resulting expression as a
power series in €, one obtains equations

L0y

& wzo+f(U0)=0 (3.4)
and
., 02U . U, .U, . PUy ..U
27U _ 2% o\ _ (16200 | 4300
¢ 81//2+f (UO)U1_¢8wg(U°’¢aw) <2C¢acaw+¢ 31#) (3.5)

by equating to zero the coefficients of the leading powers. In these equations
(3.4-5) and below, the " " " notation indicates derivative with respect to o (al-
though this new notation is technically superfluous).

By reference to (2.7), (3.4) would be satisfied if ¢ were chosen such that

¢ = v(c(0)), ¢ =/0 v(c(u))du (3.6

(an arbitrary constant could be added, if desired) and if U, were identified
through (2.4-5) as

Uo(c, ¥) = Ulc, ¥). (3.7

But it turns out that, because there may be two conditions to be satisfied for 27,
yr-periodicity of U,, a perturbation of the choice (3.6) is demanded so choose
instead

$(0) = v(c(0)) —erm(a) + Y _ €lm;(o), (3.62)
2

where m is, and eventually the m; are, to be fixed; this means that (3.5) must
now be
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82U|
n U U
31!’ + [ (WUn)U,
alp U, . 9%, aly . 0%,
=v——2yg | Up, v 2 2vm
”awg( ’ aw) (C”acaw+ aw)+ e
= R. (3.5a)
Likewise, linear equations
32U .
awz 2+ f"(Uo)U; =R, (3.5b)

govern the U; for j > 1, where the R, contain U, only for k < j, and m, only
fork < j.

In order that the evolution of solutions of (1.2) be usefully approximated by
Uo (3.7), it is necessary that the 2, ¥ -periodic, right hand side R of (3.5a)
satisfy conditions involving the solutions (2.6, 2.8) of the homogeneous (2.7)

/v“szdlp =0, ]v'st dyr =0, 3.8)

the integrals each being taken over the period of U[—mn, 7]. These two condi-
tions (3.8) will allow the solution U, of (3.5a) to be also periodic in ¥, and this
in turn admits a corollary of Kuzmak’s [4] implied result to justify using the
approximation u ~ U, on an interval at least O(e~') of ¥ and hence ¢. Thus
conditions (3.8) determine the slowly varying functions ¢ and m. Since v is
assumed to be slowly varying, a factor can be taken through the integrals and
the two conditions (3.8) reduced to

/Rwdt/fzo, /dewzo. (3.8a)

Kuzmak [4] used the first part of this observation (3.8a) to discuss the evolu-
tion of solutions of equations not very dissimilar to (1.2), but not the second, for
it was unnecessary in the restricted class of perturbations he considered. As will
be demonstrated by an example in Section 5 below, the second condition may
be necessary for a complete result even when the underlying oscillator (1.1) is
linear (so that the first variation operator corresponding to (2.5) is the same as
its generator). The argument leading to (3.8-8a) is given in Section 6. When
they are satisfied, a ¥ -periodic particular integral U, can be calculated, and the
most general y-periodic solution of (3.8a) with period 2 is

Uy, 0) = Ai(0)w®) + Uir (¢, 0),
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where A; and m; can be found by applying conditions to the coperiodic R,

/Rz wdy =0, fRzSdl// =0, (3.8b)

the integrals again being overa ¢ period. This pattern of calculation can then
be iterated to arbitrary order.
The first of the conditions (3.8a) reduces to

U . 92U oU _PUN\ U
/Rwdlﬁ /(v—g(U vaw) (2cvacaw+ W)—*-Z‘)m_@i)i)—t;dw

U . U aU \\aoU
- [l ) Cogyiag s e -0 @

on using the results (2.6, 3.7) and appealing to the slow variation property of m
and v, which allows the factor vm to be treated as a constant, to show that the
last term in the period integral makes a zero contribution.

The result (3.6a) enables the second part of (3.9) to be expressed as

2U . aU\aU 2U 1 ., dvoU
2' o ___d 2 172 1/2 eV Aetindndl
/(C”acaw”aw)az/f v=frv (" dcay 12" dcaw)aw v

a oU\ aU
_9ad 129 [ 2
—2c/v e (v 3‘/f> awdw
. d alu
=% (”/(aw) d’”)
d ou

as in Kuzmak’s [4] analysis. The last expression can be interpreted in at least
two ways. Since the integral is over a period, the Fourier representation (2.3) of

U gives
U )
f (aw) dy =7 Z(na,,) (3.11)

and likewise, in terms of the first integral (1.3) of (1.1), itis

f (Zg) dy = ?S(C—Zf(u))"zdudifA() (3.12)
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the area of the loop in the phase plane representing the cyclic solution of (1.1)
parametrised by the value of ¢. Thus, when g = 1, the condition (3.9) is

— —A=0
do

leading to the result foreshadowed in (1.5). Alternatively, this condition could
be expressed as

d -1

e _a(%2)

do dc

where A(c) is assumed to be known. Any more complicated form of g will
usually require some manipulation to obtain a result in closed form, if this is
possible.

The scheme proposed here is to here is to utilise the identification (3.11), and
calculate the first period integral in (3.9)

aU aU aU U aUu oU
[ (e (vgg)) s =+ [ (e (vv3g)) sgaw =50

approximately using truncated Fourier series representations of U, and finite
approximations to v(c). To justify this procedure qualitatively, appeal is made
to the rapidity of convergence of the Fourier series representation of U, which
follows from the analyticity of the non-linear term f” in the governing equation.
Then the evolutionary equation

dA
- =5 (3.10a)
where A and B are in principle known functions of ¢, may be used to summarise
(3.10). Similar results are common in the literature.

Now the consequences of the second of the conditions (3.8a) are examined on
the assumption that c(o') has been calculated as described above. This condition
is that the integral over the period [—x, 7]

. (o
/RSdl// = 2vm/ Wsdzp +f(...)sd1ﬁ (3.13)

vanishes, where the slow variation of v and m allows their factoring through
the integral. The second integral above reduces because s in (2.8) is even on
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[—m, ], while w = (8U9v)(2.6) is a sine series, so the condition requiring
the vanishing of the expression (3.13) becomes just

aUu aU ) *U
/(310 (U Ual,lf))de +2vm‘/aw2sdtﬁ 0. (3.14)

The first integral in (3.14) is in principle a known function of c; it is now argued
that the integral coefficient of m in it is also known, so (3.13) provides an
equation for m. The period-integral [, 7] coefficient of m is

/aw dy = /—sdw (3.15)

But also, integration of the Wronskian V of w = dU /3y and s
dw a’s

= —5 - — (3.16)
ay dw
over [—, ] shows that the period integral (3.15) satisfies
82
2/ 31#2 sdyr = f(V)d¢ =2nV, 3.17
where V(c) is to be determined from (2.12). Equation (3.14) can thus be
summarised as J
m=2"— ), (3.14a)
do

where C(c) is a known function. Equations (3.10a) and (3.14a) control the
approximation Uy (3.7) through the parameter c, and the argument . They can
be integrated sequentially for an explicit result.

To carry out the evaluation implied by (3.14) requires an extra computational
effort and it may not be justified. This assessment is made on the qualitative
grounds that the useful information resides in a knowledge of c(c) = c(et),
and this does not require an evaluation of m. It suffices for many purposes, in
particular proof of approximation, to show only the existence of an m, which
contributes a slow modulation to the phase integral

c(o)

9@ = | (v —emiw) (¢w) du

Again, any non-singular reparametrisation of the solutions of the unper-
turbed (1.1) would only require replacing ¢ with the new parameter wherever it
occurred.
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4. Calculation of Fourier coefficients for underlying oscillation

The first aim is to describe a procedure for expanding the Fourier coefficients
a, of U (and hence of w = 3U/dt) as analytic functions of a parameter which
depends on ¢ and is not necessarily small. The usual descriptions of these
calculations either do not carry the calculation beyond the third harmonic in the
general case (the fifth harmonic in special ones) or, when they do, are restricted
to specific cases such as, for example, the standard Fourier representations [10]
of Jacobian Elliptic functions. In the following a method is described which
gives sequential calculations of finite truncations of convergent power series
representations of the successive Fourier coefficients; the latter are analytic
functions of a new parameter A which replaces c. (A is roughly proportional
to (c — 2f(u,))'?, and some of the coefficients are consequently singular in ¢
at the zero of the surd.) Of course, for utility of the power series coefficient
representation, A should not be too large but the common radius of convergence
of all the power series is not necessarily small. In principle these calculations
can be extended to arbitrary powers of the parameter.

Because it turns out that A is not the most convenient parameter for calcu-
lations (as opposed to proof construction or data reduction), a further repara-
metrisation introduces the amplitude of the fundamental D (= a,) as parameter.
This is shown to be an analytic function of A, and vanishes linearly with A as
A — 0, so the two parametrisations are equivalent. The use is made of D as
parameter in some cases in the literature, but without formal justification.

The following results will be obtained below: a one parameter family of
periodic solutions of (1.1) can be expressed in terms of a parameter

A = (maxu — minu)/2
as

o0
ut) =up+ A Z A" g, cos(nve),
0

where v and all the «, are analytic functions of A%, As a corollary it will be
shown that an alternative representation is

u(t) = uo + D cos(vt) + D Y _ D"y, cos(nvr),
0
n#l
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where v and a, are analytic functions of D?, and D is the amplitude of the
fundamental. (A reader for whom these results are unexceptional is advised to
skip the demonstration.)

A solution of (1.1) in the form (2.3) can be uniquely specified by choice of
the parameter c, the initial condition

du
E(O) =0, 4.1)

and the sign of the second derivative, say

d2
d—t':(O) <0. 4.2)

The basic criterion in the choice of a new parameter is that the Fourier
coefficients are analytic in it wherever they exist including c = 2 f (u,). Assume
that u,, the zero of the derivative f', is known. Then for a range of values of
¢ > 2 f(u,) there will be two solutions « = H, u = L of the equation

def

f) = flug) =c/2— fu,) = & (4.3)

which fix the extreme (local and global) values of u on a cycle by specifying
the values of u at which its derivative vanishes. The property that there are only
two zeros of the derivative per cycle is generic for periodic solutions of (1.1).
As f is analytic, there exists an analytic function H in the variable § such that

H@) —u, =8y +hS+h8*+...+h,8"+...), 4.4
L) —u, = H(=8) — u,, 4.5)

the series having at least a finite radius of convergence. The coefficients 4; in
the series depend on the evaluations of the derivatives of f at u,, for example

ho = (2/" ()" > 0,
hy = — " o)/ (3(F" u)?), (4.6)
By = (F")) 5/ (1I8V2Z(F"Wo))?) = (£ (ue)) /(6 2(f" w0))?).

In terms of the Fourier expansion (2.3) one has

H®) =) a, L® =) (-)an (4.7)
0 0
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so the relations

H(8) L)

=8 Z oy, (4.8)

241854 + 1, 4.9

S
H(6) +L(8) ad ad
Sos S

follow. To set the problem in the desired form change the variable to
u—u, = Av, (4.10)

where the new parameter, depending on c, is

AzL—zﬂ(—ﬁﬂmowhﬁ...) @1

and it is a natural one. The inverse of this relation is
8§ = Ahy' —hhi* A% +..), (4.12)

this series being also in even powers of A so that /A is analytic in ¢ but more
importantly, the ratio (H — u,)/A is analytic in § and thus also in A, in an
interval including A = 0. The Fourier coefficients a, of 1 and A, of v are
simply related:

a,=AA, n=1...00, and ay— uy= AA. “4.13)

If the substitution (4.10) is made in (1.1) and the non-linear term expanded
about u, the result is

d2 " n-2) £(n) 'l—l —
dt2+f(°)ZA f (0)——f,,(u o= = 4.14)

This equation is more general than the usual example chosen for discussion
which has only a cubic non-linearity (the Duffing equation, or its variants), and

its solution is consequently more elaborate. The essential observation to be
made is that its solutions satisfying initial conditions

v(0) = (H —u,)/A, %(O) =0, — <0
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are analytic in the parameter A at A = 0. This follows from the analyticity of
(H — up)/ A, and standard theory for initial value problems in ordinary differen-
tial equations. As a consequence, the Fourier coefficients of periodic solutions
of (4.14) and the frequency are also analytic in A in an interval including A = 0,
so their formal power series representations have finite convergence radius.
Following the usual Poincaré-Lindstedt [8] approach, introduce a new vari-
able
T = vt, 4.15)

with the frequency v expressed through an expansion

v /" (u,) = (1 +) va”‘> : (4.16)
1

where the v, are constants to be determined.
A description is given of the processes by which the corresponding expansion
of the Fourier coeffients is inferred. The assumption

A, = A" g, 4.17)

on the Fourier coefficients (4.15) leads to a consistent solution proceedure. This
is so because, on this (4.17) basis, expansions of terms in (4.14) are

A"yt = Ar] {q,,,,, cos(nt) + Agp-1cos((n — 1)t) + gpn_zcos((n — 2)t)
+ Agun-3c08((n — 3)7) + g, cos(jt) x terms factored
altemnately by 1 and A down to either Ag, o or Qn,o}

+ 3 Afgy i cos((k + 1)), (4.18)

as can be verified by induction. In this last expression the coefficients g, ; are
each formal power series in even powers of A only, with coefficients depending
on the «r;. Next, use the Fourier representation of v suggested by (4.17) to satisfy
(4.14) to some fixed order in A, in terms of the Fourier basis set. Thus at O(1)
the result is

«, arbitrary, 4.19)

on consideration of the fundamental. (Naturally, this arbitrariness cannot persist,
for the solution (4.17) would then have a free parameter extra to A. o, must be
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chosen eventually so that (4.8) and (4.11) are satisfied.) At O(A), in addition to
the previous, on considering the zeroth and second modes, determine both of

o = —f"(u)a}/(Af" () and = f"(u,)e}/(12f" (o))  (4.20)

are determined; at O(A?) the coefficients of the zeroth and second modes are
unchanged, but a requirement is put on each of the fundamental and third modes
resulting in the condition

vi = (o] FOu,) + 45" ()20 + a2)) /(8" (u,)) (4.21)

and
oy = en (2 £ O () + 120, f" (1,))/ (192" (u,)). (4.22)

If the calculation is taken to a higher order, the situation is rather more com-
plicated. Thus, if it is desired to satisfy (4.14) to O(A?), the equations used
to determine v, and «; are formally unaltered, but the equations used above to
make vanish the coefficients of cos(0t) and cos(27) are modified by the addition
of terms factored by A2. These equations are in the form (omitting the argument
u, of the derivatives)

"2
fa . . )
a + L = A? x a polynomial expression in variables o, o, a2, Vi,
0 4f/l
f///aZ
3a, — 7 f”l =A?x a polynomial expression in variables ay, @, az, a3, v;

and they can be solved for new expressions for oy and a, by using the already
obtained results (4.19-21) on their right hand sides. The result will be the first
two terms in the series expansion in even powers of A of oy and «,, in terms
of a), with the coefficients of A° given by the appropriate right hand sides of
(4.20). There is also obtained a linear equation for a further coefficient ( that of
cos(41))
" @
1504 = %(cxlag +a3/2) + éff—”a
which can be solved (for what is now seen to be the coefficient of A° in the
power series expansion in even powers of A of a4, as a function of &) using
(4.19-21) for the «; on the right hand side.
Symbolic manipulation software might be used to continue the procedure
suggested by the foregoing - that is, successively satisfying equation to pro-
gressively increased powers of A, and so obtaining at each stage an extra term

f(S) .
192f,,°‘1 4.23)

2
1a2+
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in the expansions of previously calculated partial expansions of the odd, or of
the even coefficients «; (taking the expansion of v2/f”(u,) in place of one for
1), together with the coefficient of A° in the expansion of the next unknown
coefficient. In effect then, appeal has been made to the analyticity of the coeffi-
cients ¢, in A — in fact they are analytic in A% —so each of the a,,, n # 1, should
have been expanded as power series

a(Ajay) = Y Aa, (). (4.24)
0
(An illustrative example of the Fourier expansion
U=A Z A"y, cos(nvt)
0

is supplied by the Jacobian Elliptic function
q'"»*

s cos((@n + D)

cn(t) = bg'? Z

given in [10]. Here b(g) is a constant, and the parameter of the expansion g
has been chosen so that its coefficients have a very simple form. Then ¢'/?
corresponds to the present parameter A, and there must be a locally linear,
analytic connection between the two.)

Thus closed, consistent equations determining each of the «; , and the v, can
be obtained by substituting the expansions (2.2, 4.13,4.16,4.17,4.24) in (4.14)
and then equating to zero the coefficients of cos(j ) occurring to order A'!, A2,
A3, ..., A", ...sequentially, with «, arbitrary.

The essence of the calculation is in this sequencing. Suppose, for example
n > 3, and the computation has been completed to O(A"~2) so that the following
coefficients are known (using |k ] to denote the integer part of k > 0)

@203 €n-3,03 (@40, ¥n-0,1); - -5 (Fnr0y - Wnr, g )5 -

; (00, -+, az_l"ilj); (o0, - - 1"-31) and (v, ..., vL#J)

r=1,. ( —1);(20 and

in terms of a;. The coefficients o, o; @,_s,,_ a2y

12)°
V|21, are then determined from new equations, or reconﬁrmed from existing
equations, as follows. First recompute all the terms A®~Yv* k = 1,...,n

to O(A"1). This calculation will require the above specified set of unknown
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coefficients only in the recomputation of the linear term v, and will generate no
harmonics cos(mt), m > n, at O(A"™") or larger. There will be no alteration to

existing calculations of A Dv* k =1,..., (n — 1) at O(A"!) or larger. Sim-
ilarly the unknown set of coefficients only occur linearly in the recomputation
of

L5 d*v
%
(1 + Z UkA )F
at O(A™") and harmonics higher than the n’* are not generated at O(A"),
or larger, and there are no other changes at O(A"~2) or larger. Thus those
of the specified set of coefficients which are new are calculated from a set of
independent equations obtained by substituting the finite series described above
into the truncation of (4.14) after the A"~! term. A similar calculation scheme
is found in Milne-Thomson’s solution [6] of an integral equation (Nekrasov [9])
describing a steady water wave profile.

But if, for simplicity, attention is retricted to the coefficients oy to o3 inclusive
(that is, the truncation of the calculation at O(A?)) then using the truncation of
the relation resulting from (4.8) and the definitions (4.10, 4.11, 4.13, 4.17)

a+ Ay ~ Y Aoy = 1, (4.24)
0

the result follows
o = 1= B ((F2(F)7 + F9)192f7) +0(a%. (4.25)

In the foregoing description the results have been made possible from the ana-
lyticity property of the solution of initial value problems for ordinary differential
equations. This leads to Fourier coefficients which are analytic functions of a
parameter A containing what is in effect an initial condition ¢. But it is possible,
and very convenient, to take the reparametrisation a stage further. Noticing that
the amplitude D = Agq, of the fundamental cos(t) is an analytic function of A
with a particular form (4.25), then it follows from the inverse function theorem
that A is an analytic function of D with the same form, differing only in the
coefficients. This implies that descriptions of the solution can equally well be
parametised by the amplitude D = Ac«, = a; of the fundamental, and so one
has now the solution description
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u—u, = Dv, v(r) = Z D" My, cos(nrt), (4.26)
0
where
Ar=a =1 a,=) D¥au(l), n#l, 4.27)
0
and
v/ () = (1 +y DZ"uka)) : (4.28)
1

Thus, by a somewhat circuitous route, a convenient parametrisation of the
solutions of (1.1) is found. It would have been pleasing to be able to go directly
to the final result, but the analyticity properties were not apparent. It is remarked
that, for analysis of data from numerical simulations of non-linear oscillators,
the parameter (4.4-5, 4.11) A = (max(u) — min(«))/2 on a cycle, is the more
easily inferred and is equally useful. But D is the better one for theoretical
studies.

5. Examples

Examples of the application of the method described in Section 3 above to
perturbations of non-linear oscillatory problems are of necessity elaborate, and
it may suffice to demonstrate the method’s use to look instead at a perturbed
linear oscillator. Essentially the same but slightly extended principles as used
in Section 2 can be used to study solution behaviour of the equation

d? d

d—t‘z‘+u =ed-l:(l—u2)+chos(At+9) (.1)
— the weakly non-linear, forced van der Pol oscillator. The parameters F, 8 are
O(1), and if A is near resonant,

A= (1+¢€l), (5.2)
the problem is that of "soft resonant” excitation discussed by Nayfeh [8] . The

excitation or forcing term is included to indicate the escalation of difficulty
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caused by the presence of such terms, which act to couple the amplitude (3.9)
and phase (3.14) equations. It also shows a case where the second of the two
conditions (3.8a) must be used in order to arrive at the correct description of the
interaction.

In the notation of Sections 2 and 3 above, the Fourier representation of the
solution for the unperturbed oscillator can be taken to be

Uy = ay cos(yr). (5.2)

and since, for this linear oscillator ,

v=1, (5.3)
it follows (3.3, 3.6a) that
¥ =t—/06rr't(or)da=t—m(a) 54
with the slow variable (3.2)
o = €t. (5.5)

(Use of a, rather than D to denote the amplitude of the fundamental is only
made so as to reflect the special property of the underlying oscillator.)

In this case the first variation (2.7) is the same as that governing the underlying
oscillator, and a linearly independent pair of its solutions can be chosen with
unit Wronskian V. They are

w(y) =asin(y) and s@) = W) = (a)~ cos(¥), (5.6)

since the K in (2.8) is identically zero in this case. The first condition given in
(3.8), modified by the addition of the non-homogeneous forcing term in (5.1),
and using (3.11), is

da} 2 7 2 2 )
n—%— = a,/: (1 — aj cos“(y)) sin“(Y) dy

+a, F /” sin®(Y) sin(Lo + m(o) + 0)dy. 5.6)

n

Evaluation of the integrals in the preceding line yields the evolutionary equation

da} a? :
e ay(l — Z) 4+ a,F sin{Lo + m(o) +6) 5.7
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or
dar _ a1 9 F oo +m+6) (5.8)
—_— = =l - — — St - .
do — 20 g T pmseTm
The equation following from the condition (3.14) is
dm o
2o = —2a,)" Fcos(Lo +m +0). 5.9)

These equations (5.8-9) become (6.2.68-69) in [8] on introducing a new variable
(Lo +m+8), withwy = 1.

An example of calculating the Fourier representation of non-linear oscillators
is now given. The exercise is masochistic, but the Fourier coefficients for the
solution of the Duffing equation

2
z—tl:+u+u3=0 (5.10)

correct to O(A”) are found. Following the procedure given in Section 4 it is
seen straight away that all the even Fourier coefficients are zero, and that the
odd coefficients in the expansion of

o0
u(t) = A Z A" U, cos(nvt)
0

are, explicitly to O(A?) in the coefficient A+~ g,

oy = (@3/2°%) — 213 A%/2'%) + (417a] A*/2") + O(A®),

as = o) /2'%) — (27a] A?/2'%) + 0(AY),

a; = (a] /2%) + 0(A?) (5.12)
and all others are of smaller order. Also the expansion of v is

v=1+ (Ba?A?/2%) — (150} A*/28%) + (303a8A5/2'%) + O(A®).  (5.13)

(If the amplitude of the fundamental D had been used as a parameter in place
of A, (5.12-13) would have the same numerical coefficients but «; replaced by
unity and A by D.) These results are an extension of those given by Nayfeh
[81(pp. 171-173) and agree with them in the terms in common, with wy = 1.
The o, (A) relation required by (4.23) is supplied by solving

a {1+ (@] A?/32) — (5a{A*/2%) + (391a$A%/2"%) + O(A®)} = 1

https://doi.org/10.1017/50334270000009541 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000009541

[21] Perturbations of nonlinear autonomous oscillators 465
and the result is |
o =1 — (A?/2°%) + (23A%/2'% — (563A%/2"%) + O(A?Y). (5.14)
It follows that the required frequency relation is
v(A) =1+ (3A%/2%) — (21A*%/2%) 4+ (705A8/2') + O(AY), (5.15)
where A(c) as defined in (4.3, 4.5,4.11) is
Ae) = (142077 - 1) (5.16)

and A? is analytic in ¢ at ¢ = 0. The quantity A defined in (3.12) can be
evaluated to O(AS) as

A(D) = 27%v(A) (A%a2(A) + 9A%2(A) +...) (5.17)

using (5.12-14). The basic quantity is thus more sensitive to v at small A as
(5.17) expands to

A(A) =277 (1 + (3A%/2°) — 21A%/2%) + (705A%/2") +..)
x (D* + (9D°%/2"°) — (189D%/2') + (466D'°/2%) + .. ),

with D = (a; A).

The advantage of working with D, the amplitude of the fundamental, as
parameter is further emphasised when calculating the second solution s as given
by (2.8-10).

6. Discussion of earlier work

Kuzmak’s theorem [4] does not supply an error bound for the approximation
(here U,) on the specified interval, but one could probably be constructed along
the lines of the proof given by Guckenheimer and Holmes [3] for the averaging
method. (Rough but conservative calculations suggest the approximation is
valid on an O(e~}) interval of t.) The condition (3.8) that controls the evolution
of the system, of which Kuzmak’s [4] (1.16-17) is a special case, can be obtained
as follows.

Because (1.2) is autonomous and its solutions have an essentially oscillatory
character under the assumptions of Section 1, the evolution of all its trajectories
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can be studied by examination of the set of initial value problems for a range
of u values, with du/dt = 0 and d?u/dt* > 0 ; and it is assumed that the
initial conditions on U, are chosen from this set. Then the particular integral
U,p of (3.5a) must satisfy the null initial conditions U,p(I) = U,,(I) = 0
appropriate to the perturbation problem, where in the light of the prescription
above I = —m. This solution is

v ¥
szUlp(l//)=w/ delﬁ—s/ Rwdy,

I 1

v 14
ViU, (%) =w’/ Rsdy —s'f Rwdy, 6.1)
I !

where V is the Wronskian (2.12), R and w are period 27, v -periodic functions,
but from (2.8)

s(¥) = Kyw@) + W)

is not (although the even function W is). If this solution U, returns to its
initial values after a period of the coefficient f”(Up) in (3.5a) — that is, when
Y = I + 27 = 7 — then it too will be 2 periodic in v, since the differential
equation (3.5a) which is solved by (6.1) has only coefficients with a 27 period
in that variable. So necessary and sufficient conditions for periodicity of U, p in
yr are that the integrals over the period vanish:

I+2n
f Rwdy =0 (6.2)
1

(Kuzmak’s condition), and the new condition

1421
f Rsdy =0. (6.3)
1

The most general U, that is 2x periodic in ¢ is U, = A,w + U,p where A,(0)
is at present arbitrary. (It will be found, along with m,(0), as a consequence of
applying (3.8b).)

This (U, 2w -periodic in ) is the requirement for application of the Kuzmak
Theorem [4]. So necessary and sufficient conditions for periodicity of U, in i are
given by (6.2-3). It is noted that while (6.2) is a Fredholm alternative condition
arising from the Sturm-Liouville problem for the homogeneous equation (2.7)
with periodic boundary conditions, (6.3) is not, since s is not periodic and hence
not an eigenfunction.
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Clearly, the same argument will require conditions

I1+2n 142
/ R,wdz/x:/ Rjsdy =0, j=23,...
1 )

to be satisfied by the co-periodic right hand sides R; of (3.5b). These conditions
will determine sequentially A;(o) and m; (o), where the former are coefficients
of €/ in an expansion of the coefficient of w in a representation of solutions of
(1.2).

The last condition (6.3) can be reformulated. Using (2.8), integrate by parts
the expression

' ¥
o) =f R(Kyw + W)dy s/ Rsdy
1 1

and obtain
14 v 14
Q(I/I)ZK‘RII/ Rwdw—/ ((K/ Rwdn//)—RW)dtlf, 6.4)
1 I 1
so that (6.3) is

I4+2n v
oW +27) = —f ((Kf R wdw) - R,W) dy = 0. (6.5)
1

1

From (6.2), the function

1
P<w)=/ Rwdy
I

is periodic in v, and hence its integral over a period is proportional to its mean
(P). So (6.5) can be restated as

I+2m
@m)™ RWdy = K(P) (6.6)
!
and this form may be more convenient for evaluation.

There are a number of recent studies [ 1, 2] which use the Kuzmak technique to
calculate the evolution of oscillators whose underlying oscillation is non-linear,
and older work is summarised in [8]. These studies are restricted to problems
for which (3.8, 3.8a) is not required. For example Bourland and Haberman [1]
specify the perturbing function to be odd in the first derivative, and while they

https://doi.org/10.1017/50334270000009541 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000009541

468 P. B. Chapman [24]

calculate a phase perturbation it is found from considerations other than the use
of (6.3) at the first order. They lift the parity restriction in [2] , but the method
used here (employing 6.3) is apparently more concise and systematic.

Although it seems a natural way of tackling the problem, use of the Fourier
representation of the underlying oscillation seems to be novel in the present
context. It makes routine the evaluation of the integrals which are consequences
of the Kuzmak theory.
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