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Abstract

The paper is concerned with formation of singularities in a density stratified fluid subject to
a monochromatic point source of frequency a. The frequency of the source is assumed to
be such that the steady-oscillation equation is hyperbolic in the neighbourhood of the source
and degenerates at a critical level. We obtain asymptotic formulae demonstrating how the
solution diverges as t -»• oo on the characteristic surface emanating from the source. It is
shown that, at points of the surface that belong to the critical level, the solution behaves as
t2/2 exp {i(pt + n/2)} as / —• oo, whereas its large time behaviour at the other points of
the surface is given by t'/2 exp {i(at + TZ/2 ± n/A)}.

1. Introduction

Processes of propagation and stabilization of waves in a stratified fluid possess a
number of peculiarities connected with the anisotropic character of its dispersion
relations. For instance, in the case of the Boussinesq approximation, it follows from the
dispersion relations that the energy of oscillations of frequency a can propagate from
a point x = (X], x2, x3) solely along the directions forming an angle arccos (a/N(x3))
with the vertical line. Throughout the paper N Cx3) denotes the buoyancy frequency (cf.
[10]). In a stratified fluid subject to a monochromatic source the property mentioned
results in the appearance of structures which consist of points connected with the source
by rays of energy propagation and which are characterized by greater amplitude of
oscillation. Such structures were observed experimentally (see [12]); their formation
in time was studied theoretically in [8, 2, 11, 14, 15].

In the present paper the formation of such structures is studied on the assumption
that the forcing is a monochromatic point source. As in [14], the study is based
upon the properties of the steady-oscillation equation. The cone of directions along
which energy of short waves corresponding to the frequency of the monochromatic
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source propagates is nondegenerate if and only if the steady-oscillation equation is
hyperbolic. In [14] the problem was considered under the restriction that the steady-
oscillation equation was hyperbolic in the whole space. In this paper that restriction
is lifted, which necessitates taking into account the presence of a critical level where
the degeneration of the steady-oscillation equation and the turn of its characteristic
rays take place.

2. Statement of the problem and auxiliary results

We study properties of the solution to the equation

32

— (V2 - p2)u + N2(x3)V
2u = S(x - x°)eiat, (1)

x = (x,x3), x = (xux2), x° = (0,0,h),

where S(x) is Dirac's delta-function, subject to the zero initial conditions u\,=0 =
u,\t=o = 0 and the condition at infinity |w| —> 0 as |JC| —> oo. Equation (1) simulates
waves in a density-stratified fluid and turns into the equation of internal waves in
the Boussinesq approximation when fi = 0. The buoyancy frequency is assumed
throughout to be a smooth function satisfying the conditions

Nin{ = infN(x3) > 0, Nsap = sup N(x3) < oo, K < 0. (2)
dN(x3)

dx.

Regarding the frequency a, we assume

Ninf < a < N(h). (3)

Condition (3) corresponds to the situation when the rays bearing the energy of short-
wave oscillations of frequency a emanate from*0 and turn at the critical level x3 = ha,
where N(ha) = a.

The solution possessing the necessary properties is of the form

u(x,t)= [' e>°«-Mx,x°,T)dT, (4)

where e(x, x°, r) is the fundamental solution of (1) that equals zero when t < 0 and
vanishes as |.x| -> oo. The fundamental solution of (1) with N(x3) = const was
constructed in [4] (see also [16]). A derivation of e(x, x°, r) and study of some of its
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properties for N(x3) ^ const were carried out in [5]. Its Laplace transform e(x, x°, p)
is an analytic function of p at p g [-iNsup, iNsup]. Also, the formula

*\ )). (5)

is valid for fixed x,x° and \p\ -> oo . Taking advantage of the analyticity of
e(x, x°, p), (5) and the convolution theorem for the Laplace transform we get from
(4) that

1 ra+ioo ^gPt _ eial^

,t) = -—: — 7—e{x,x°,p)dp, a > 0.
27T« Ja-ioo (P ~ IO)

After that, putting a = 0, we rewrite u(x, t) as

1
. , — — s(x,x°,ico)dco. (6)

2TTI J_ao (co- cr)

It is assumed in (6) that e(x, x°, ico) = lim e(x, x°, ico + S) where the limit exists.

The function s(x, x°, ico) satisfies the steady-oscillation equation

Lw
xe(x, JC°, ico) = S(x - x°), (7)

where La
x = - ^ ( V 2 - 02) +

The large-time behaviour of (6) can be studied on the basis of information about
singularities of e(x, x°, ico). That information is obtained from analysis of (7).

3. Singularities of s(x, x°, ico)

Let co G (Mnf, N(h)) and introduce

N2(XT.)
^ - l , Sdx3,h,co)=

O)2 Jh

,h,co)= ql/2(co,r1)dr1,

Jh

S2(x3,h,co)= [qxl\co,n)dr)+ f ql/2(co,r1)dr1,
Jh Jx3

where hm satisfies the relation N{ha) = co. The functions 5I2(^3, h, co) will be used
only for x3 < ha. Let us fix H € (h, ha). The main order singularities of e(x, x°, ico)
are described by the function

Wh(x, o>) = - — l — q~l/4(co, h)q-l'\co, x3)
An co2

x j(Sf(x3, h, co) - \x\2)'l/2 + e-1"11 (S2
2(x3, h, co) - | i | 2 )" ' / 2 ] (8)
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JR2

x d2kAx a , ft, (9)

when x3 > H. In (9) Ai(z) denotes Airy's function (see, for example, [13]) and
function f Qc3, <y) given by

2/3

We use also the notation x = (JCI , JC2), k — (fci,^), ^ = 1̂̂ 1 + ^2^2- When
|Jc| > Sn the argument of the complex number (S2 — |x|2)~1/2 in (8) is assumed to
equal (—n/2). If x3 = /im the expression {—£/<?} is taken to equal its limiting value
as x3 -»• / i w :

hm {
I

(10)

At any fixed x, Wh(x, co) differs from E(X,X0, ico) by a function bounded within a
neighbourhood of a> e (Nin{, N(h)). Expressions (8)-(9) are derived by considering
the problem (wh = wh(x3, \k\, co))

d2wh

~dxj

w = U)
x,=h-0

3> (O)lVh - I

dw"

= 0 , h;

dx3

dwh

dx3

\wh\is bounded as |JC3| -> 00. (11)

It is clear that the solution to this problem satisfies the equation

d2wh

dx\
k2q2(x3, co)wh - = -co2b(x3 - h)

and that the inverse Fourier transform of wh with respect to ic,

(12)

satisfies (7). The character of the singularities of (12) is determined by the behaviour
of to* at large \k\. This information can be obtained with the aid of the Liouville-Green
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(or WKB) method (see, for example, [13]). In the case under study three intervals of
variation of x3 must be considered: (—oo, h), {h, H) and (H, +oo). The asymptotic
solution of (11) corresponding to the fundamental solution of (1) vanishing at negative
t and at |x | —*• oo has the form

»/ I ^ exp{t|£||Si(x3,ft,a>)|+i7r/2} exp{i|*|S2(jc3, h, co)}
{x3, k, co) = \- A — (13)

2 2 x l \ h ) l ' \ , x3)\k\ ql/4(co, x3)

when x3 < H and

W(x3,k,co) = B \-^ " ' \ Ai (\k\2/3i:(x3,co)) (14)
[ q(co, x3)\ V /

when x3 > H. The values A and B, which depend only on co and |jfc|, are determined
from the condition that, at x3 = H, (13) and (14) are to match as \ic\ -> oo. The
inverse Fourier transform with respect to k then leads us to (8)-(9).

If co e (0, Nmf), then instead of (8)-(9), we obtain for Wh{x, co) just the first term
in the braces on the right-hand side of (8). Such Wh(x, co) can also be obtained
by a method based on Hadamard's expansion of the fundamental solution of Lx in
powers of the geodesic distance generated by L" [7]. In deriving (8)-(9) we used the
connection between singularities of solutions to hyperbolic equations and asymptotic
solutions to oscillatory problems [9]. When deriving formulae (13)-(14) we also made
use of [1] and [13].

Neither (13) nor (14) depend on /}, which means that the final asymptotic formulae
will not include /?. However, we use the assumption /5 ^ 0, since it guarantees
the existence of e(x, x°, t) and provides its Laplace transform with the necessary
analytical properties [5].

4. Large-time behaviour of the solution on the characteristic surface

Let us introduce surfaces K° (x°) whose points x (x ^ x°) satisfy the relations

\x\2 = S2
n(x3,h,a) (« = 1,2).

Each characteristic ray of L° emanating upwards from the source turns at the critical
level X3 = ha. The parts of such rays beyond the turning points form the surface
Kj (x°). The surface K°(x°) is made up of characteristic rays of Lx emanating
downwards from the source and segments of characteristic rays of Lx connecting the
source and the turning points. We denote the union of K°(x°) and K\ (x°) by K"(x°).

Our aim is to describe the large-time behaviour of u(x, t) at points of Ka (x°). The
principal term of the asymptotic expansion of (6) at large times is determined by the
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expression

u(x,t) l— f Wh(x,co)(eiwl-e"")(co-arldco, (15)

for x € Ka(x°) where a is small and positive. The symbol ~ indicates that the
expressions on the two sides of the relation have the same principal terms in their
large-time expansions. If x belongs to Ka (JC°) but does not lie on the critical level,
then, in the neighbourhood of co = a, the main-order singularities of E(X, x°, ico) are
described by (8). In that case Wh(x, co) behaves like (co — o)~l/1 near co = a. On
substituting (8) into (15) we find

u(x, t) ~ fi;l(x3, h, o) r1/2 exp{i(ot + <pn)} (16)

for x e K°(x°), x3 ̂  ha, where cp{ = 3n/4, <p2 = n/4 and

l}S
2
n(x3,h,co = ,

1/2

ql/4(a,h)qi/4(a,x3).

Now consider the situation when x e Ka (x°) and x3 = ha. In this case we have
to substitute the representation (9) for Wh(x, co) in (15) and taking (10) into account,
obtain

u(x,t)~ma [ dco{e>™' ~ ^ P [ d2kAi(\k\2/3c;(x3,co))
JC T_a (co - a) JR2 \ /

x |£|~5/6exp \i (\k\S\(ha, h, co)

where 1/6
e i u \

mn =
, h) V 2N'(ha)

Passing to polar coordinates in the integral over k we evaluate the integral with respect
to (p at large p by the stationary-phase method. This gives the formula

2TT \ l / 2 r+a , (eia" -eial)( In \ C
u(x, t) ~mCT —— I / dco

\S(cr)J Ja
I / dco

\S(cr)J Ja_a (co-o)
x dpp-i/3Ai(p2/^(ha,co))exp{ip(S(co)-S(cj)) + in/4}, (17)

Jo

where S(co) = S\(hw, h,co). Further transformations are made with the aid of the
formulae

S(co)-S(a) = -v(co)(co-a), (18)
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where ir(co) and v(co) are differentiable functions of co and

Jh

Using (18) and making a change of variables in the integral over p, transforms (17)
into the form

S(a)J Ja_a

Ca+a (pia" — p'a'\dcoi (co-a)
/•OO

x / dr r"1/3Ai (r2/3(co - a)1 /3f(co))exp{-irv(co)sgn(co- a)}.
Jo

Expanding the integral over r in powers of (co - a)1/3

S(a)) r(5/3)(3v(a))V3 ' e '
where F denotes Euler's gamma function.

5. Concluding remarks

A monochromatic point source of frequency a e (Ninf, N(h)) operating in an
inviscid stratified fluid causes infinite growth in the amplitude of the solution as
t -> oo on the characteristic set Ka(x°). In contrast to the case o e (0, Â inf), the
characteristic rays forming this surface experience reflection from the critical level
x3 = ha . If x € K°, x3 ^ h, ho, then according to (16), the solution behaves as
ti/2ei(ot+3*/4) w h e n f _* oo. At points of the set K%(xQ) (x3 # ha), composed of
reflected characteristic rays, the solution behaves as t1/2e'(al+7'/4) when t -> oo. At
turning points we have by (19) that u ~ |const(a)|f2/3el(t7'+7r/2) as t -» oo.

We discussed a very special case of a monotone N(x3) admitting the presence
of not more than one critical level. A situation exhibiting two critical levels can
be observed if we take a buoyancy frequency having a unique maximum and a e
(max N(±oo), N(h)). In that case a formal asymptotic solution of (11) leads to an

amplitude singular on a surface composed of characteristic rays emanating from the
source and experiencing successive turns at the critical levels. In a neighbourhood of
each turning point the character of the singularity is the same as that of (9), whereas
in the neighbourhood of the rest of the surface, the singularity is described by terms
similar to those of (8). Therefore, the divergence rate results are expected to be like
those we obtained above (that is, t2/3eia' at turning points and tl/2eial on the rest of
the characteristic surface). A rigorous consideration of the problem with two critical
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levels requires summation of an infinite number of remainder terms of the asymptotic
solution to (11) and estimation of the sum at large \ic\ . We do not dwell on it here.

The results presented in this paper can be arrived at if one takes advantage of the
procedure proposed in [3] for determining the large-time behaviour of the Green's
function of the equation of internal waves. On the other hand, the large-time beha-
viour of s(x, x°, t) can be calculated with the aid of formulae (8)-(9), which contain
information about singularities of e(x, x°, p) on the imaginary axis.

Our final remark concerning the model used here. The infinite growth of \u(x, t)\
considered is indicative of the limitations of the model's applicability. The results
of this paper, as well as those of [2, 8, 11, 14 and 15], show where and when the
model of an ideal stratified fluid fails to describe the wave process. A more realistic
model of a viscous stratified fluid is governed by an equation whose steady-oscillation
equation is not hyperbolic, which rules out the propagation of singularities of limiting
amplitude. For instance, in the case of the Boussinesq approximation and a constant
buoyancy frequency N(x3) = N = const, one should use Py(id/dxj, d/dt) instead
of the differential operator in the left-hand side of (1). Here y denotes the kinematic
viscosity and PY(kj, p) = —k2p2 — yk4p — N2k2 (see, for example, [6]). The
solution of the problem analogous to (1) for such a fluid possesses limiting amplitude
Wy(x) = F^lx[l/Py(kj, p)] continuous in the whole space, that is, the effects under
study are smoothed out by the viscosity and, in viscous models, can no longer be
associated with the formation of singularities. Rather, we can speak about greater
values of wy(x) in a neighbourhood of the characteristic surface. However, those
values become infinite on that surface as y vanishes.
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