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GALOISMODULE STRUCTURE OF THE INTEGERS
INWILDLY RAMIFIED C, x C, EXTENSIONS

G. GRIFFITH ELDER AND MANOHAR L. MADAN

ABSTRACT. Let L/K be afinite Galois extension of local fields which are finite
extensions of @y, the field of p-adic numbers. Let Gal(L/K) = G, and ©, and 7, be
therings of integersin L and @, respectively. And let 13, denote the maximal ideal of
L. We determine, explicitly in terms of specific indecomposable z,[G]-modules, the
ZpG]-module structure of O, and 33, , for L, acomposite of two arithmetically disoint,
ramified cyclic extensions of K, one of which is only weakly ramified in the sense of
Erez [6].

1. Introduction LetL /K beafinite Galois extension of number fields with Galois
group, G. If £, Ok denote their rings of integers and Z denotes the ring of rational
integers, one may ask for the structure of O, asan Ok [G]-module, or asa Z[G]-module.
In either case, unfortunately, the Krull-Schmidt Theorem fails to hold, i.e. © is not
necessarily uniquely expressible as adirect sum of indecomposable modules. However,
in the special case when K isthe field of rationals, G isabelian and [L : K] isrelatively
prime to the discriminant of L, Hilbert proved in 1897 that there is an element o € O,
whose conjugatesform aZ-basisof O, i.e. O, isfreeasaZ[G]-module. (By the Normal
Basis Theorem for fields, a field basis of this type always exists.) The existence of a
normal integral basisis subject to arithmetic constraints. Werefer the reader to Frohlich's
book, [7], for results concerning the existence of such a basis.

TheKrull-Schmidt Theoremisvalidif L /K isafinite Galois extension of local fields,
i.e. finite extensions of Qp, the field of p-adic numbers. As a consequence of a theorem
of E. Noether [12], when the extension, L /K, is at most tamely ramified, £ =~ Z,[G]"
as Zp[G]-modules, where [K : Qp] = ng and Z,, denotes the ring of p-adic integers
and G = Gal(L/K). If however, the extension is wildly ramified, very little is known.
We refer the reader to Miyata [11] and Vostokov [18] for some results concerning the
Ok [G]-module structure of O, , and to other papers of the authors for some situations
where the Z,[G]-module structure of O is known. In particular, we cite the paper of the
second author with Rzedowski-Calderon and Villa-Salvador [13]; it wasin [13] that this
type of question wasfirst asked. We also draw particular attention to [4] where thistype
of question is answered for elementary abelian, weakly ramified extensionsof arbitrarily
large degree.

In this paper, we explicitly determine the Z,[G]-module structure of O when L is
atotally ramified elementary abelian extension of K with degree p? and has two breaks
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in its ramification filtration, the first break occurring with ramification number one.
Equivalently, this means considering the family of extensions, L /K, which arise as the
composite of two arithmetically digoint, ramified cyclic extensions of degree p, one of
which isonly weakly ramified [6] (i.e. One of the two cyclic extensions has ramification
number equal to one).

We notethat it is an easy exerciseto determine the explicit Z,[G]-modul e structure of
O inthe casewhere L isthe composite of an unramified cyclic extension of degreep, Ly,
and aramified cyclic extension of degreep, Ly. Simply usethe fact that in this situation
QL = Oy - Ow, Where O, and Oy, are the rings of integersin L, and Ly, respectively,
and O, hasanormal integral basis. See the examplein Section 8 for further details.

Once one has considered partially ramified elementary abelian extensionsit isnatural
to consider fully ramified extensions. However to keep complicationsto a minimum, it
is perhaps natural to consider extensions which are the composite of two fields, one of
which is now only weakly ramified. This is what we do. Ullom [17] determined that
although the ring of integers in a weakly ramified extension does not have a normal
integral basis, the maximal ideal does.

As our following main result shows, one finds a very interesting and complicated
Z,[G]-module structure in the situation that we consider.

THEOREM 1. Let L/K be a totally ramified elementary abelian extension of local
number fields, with [L : K] = p? and G = Gal(L/K) = (o.7) where the ramification
group Gy, = (o). Let [K : Qp] = ef, e denoting the absolute ramification index.
Furthermore, let L /K have two distinct lower ramification numbers, by and by, with n
and r, nonnegative integerswherer € {0,1,...,p— 1} sothatb, = by + p(np —r).

Ifb;=1landr # 1, then

O & BP0 g (R @ E E; \')f @ (R, @ E, E; 1)® -2
BRIQEZOR; 13 1) @ (R @ E)P-D-f

If by =1andr =1, then

E@ D 7 o R @ (R @ E)® forp=2,
E@ D o Z @ (R @ ER; A\ @ (R @E)® D forp#2

V=

as Zp[G]-modules. The Z,[G]-modules are described below.

Here are explicit descriptions of the indecomposable Z,[G]-modules. In each case
o acts via multiplication by x, while v acts via multiplication by y. Let ®p(x) =
(xP — 1)/ (x — 1) be the cyclotomic polynomial.

(x=1y-1) (x— 1. dy(y)) =Ly —1)
Loyl o Zpxy]
(R1 ® E,E; )\i) — De-ly-1)  (x-1y-1)

(Pp().(y— 1))
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Zp[x.y] Z,[x.y]
p > o) < p

Zo[X, Y] o—1y—1 X—1,8,(y))
RROE= —2—2 _ (RRQER;))= u
(®p(x). yp — 1) ((Pp¥.y — 1))
Zo[xy] Zo[xy] Z,[x1
xpfpl,);g—n ® <xfp1§/xl) ® <xfi¢)1(>:(y))

_ T
ROEZOR;1®1)= ((®p(x). 1.2))

Note that (R, @ E. E; A\%) =~ Z,[G]. For the convenience of the reader, we provide atable
recording certain other properties of these modules.

Wealso state heretheresult for the Z,[ G]-modul e structure of 3., the unique maximel
ideal of .

THEOREM 2. Under the conditions of the previoustheorem. If by =1,
B, gn(p—1)-nf @ (RLQEE; )\f)f & (R QEE; 1)(%*ﬂ(pfl)+f*1)f B R ® E)(n(rkl)*f)f

as Z,[G]-modules.

The method of our proof, at times, involves investigating O1[G]-module structure,
where 1 denotes the ring of integers in the field, T, which is the maximal unramified
extension of Q, containedin K. In particular, we create abasisover Ot of elementswith
distinct valuations upon which we can track the Galois action. From the O+[G]-module
structure, the Z,[ G]-module structure can be deduced.

In Section 2, we explain the assumption on the ramification filtration and the reason
for the restriction of our attention to the two fractional ideals, O, and 13, .

In Section 3, we establish our notation. Then in Section 4 through Section 7 we prove
our two theorems.

At theend, in Section 8, we give an application of Theorem 1. We explicitly determine
the Galois module structure of the ring of integers in the maximal elementary abelian
p-extension of an arbitrary ramified quadratic extension of Q,, whenp > 3.

We believe that the methods of this paper and those usedin [3], [4], [5], and [13] may
be applied to prove structure theorems of thistype for other classesof arithmetically dis-
tinguished extensions. However, the proof of a structure theorem in complete generality
will, probably, require new techniques.

2. Motivation for the ramification assumption In this section, we motivate the
assumption, b; = 1 and also explain why we have restrict our attention to O and 3.

Let usfocus our attention for the moment on O, . Let K’ be any intermediate extension
of an elementary abelian extension, L /K, of degreep? (K’ /K has degree p). Let Ok be
thering of integersin K’, then the following canonical short exact sequence,

0—> DK/—>D|_—>Q|_/QK/—>0,

can be used to determine the Galois module structure of ©. (Indeed, an analogous
sequenceis provided in (2) which can be used to investigate the Gal ois modul e structure
of other fractional ideals.) From [13, Theorem 1], the Z,[ G]-structure of Ok isknown. If
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the Z,[G]-module structure of £ /O, could be determined, then we could investigate
the structure of O, by describing the Z,[G]- module, Ext%p[G] (OL/ Ok, Lx).

Unfortunately, in general, the structure of the Z,[G]-module, O / Ok, can be unlim-
ited in potential complexity. If Gal(L /K’) = (o), whereGal(L /K) = (0,7), thensincethe
relativetrace, T = Pp(0), takes O into O/, the Z,[G]-module, £ /O, canberein-
terpreted asaZp[(p][(7)]-module, where(, isaprimitive p-th root of unity. Jacobinski has
shownthat, for p > 3, there areinfinitely many indecomposable Z,[¢,][(Y)]-modules[1,
p. 691]. To avoid the difficulty that thisresult presents, in this paper we restrict ourselves
to circumstances under which O / Ok isfree asazZy[¢p][(7)]-module,

D O/ Ok = ZlGl[()]1™

(We furthermore restrict ourselvesto thoseideals for which the analogousresult holds.)

As the following lemma indicates, in order for (1) to hold, it is necessary that there
beasubfield, K”, of L /K distinct from K’ such that the extension L /K" has ramification
number equal to one.

LEMMA 1. Unlessthereis an intermediate extension, K”, such that the ramification
number of L /K" is 1, it is not possible that

O/ Ok 22 Zp[Gl[(1)]™  asZp[G]-modules,

where (7) = Gal(L/K"), K" isdistinct fromK” and (o) = Gal(L /K").

ProOOF. Clearly, Zp[G][(7)] = Zp[(7)]P~! as Zp[(7)]-modules and so the coho-
mology group HO((Y), Zp[¢][(V)]™) = 0. However, if the ramification number of
L/K" is greater than 1, then 7", a prime element of K”, gives a nonzero element of
HO((7), O/ D). .

In order for an intermediate extension, K”, to exist with the ramification number of
L/K” equal to one, it is necessary that the first lower ramification number of L /K be
one.

Before we go on, we turn our attention to the question of determining the Z,[G]-
module structure of other fractional ideals. We remark that since 1 € O, also liesin
Ok, there isthe following canonical isomorphism:

DL /O = P/ By as Z[G]-modules.

Now let B! beany fractional ideal. Clearly the canonical short exact sequenceexists,
which can be used to determine the Galois module structure of 3!,

@ 0— /P — B — /B —o0.

where [x| denoting the least integer function, and i)sL'/ Pl is the largest fractional ideal
in K’ contained in B} . Obviously O =~ 7O and B = 7t P as Zp[G]-modules.

As a result, the only fractional ideals of L which we have not considered are those

https://doi.org/10.4153/CJM-1997-035-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-035-2

Cp X Cp-EXTENSIONS 727

fractional ideals, 33} , for which i is not congruent to 0 or 1 modulo p2. A_sthefollowi ng
lemma shows unless i = 0,1 mod p?, it is never the case that B! /3/°! is free as a
Zp[Ge][(Y)]-module.

LEMMA 2. Unlessi = 0,1 mod p?, it is not possible that
PL/ /P = ZIGIIMI™  asZp[Gl-modules,

PrROOF.  Following the proof of Lemma 1, one seesthat 7”I'/Pl, where 7" is a prime
element of K”, is anonzero element of HO((7), %L/EBL'/M) wheneveri # 0,1 mod p. =

As aconsequence of these lemmas we restrict our attention to the two ideals, ©, and
23, and furthermore assume the first ramification number of L /K to be one.

3. Notation We standardize our notation. Assume that L /K has two distinct rami-
fication numbers, b; = 1 and by, where necessarily b, = 1 + p(t — 1) for somet greater
than 1. Let K; be the fixed field of the ramification group Gy, = (o), and let K be any
intermediate extension distinct from Ky with Gal(L/K2) = (7). Then the ramification
number of L /K equals the ramification number of K; /K which is 1. The ramification
number of L /K is b, and the ramification number of K, /K ist. Now, there exist unique
neZandr € {0,1,...,p—1},suchthatb, =1+ p(np—r). Clearly,t —1=np—r.

Let T be the maximal unramified extension of Q, contained in K. Let O, O1, O,
Ok, O7 bethering of integersin L, K1, Kz, K, and T respectively. Let 13, 13,, 13, By,
B+ betheir unique maximal ideals, «r, 71, 72, Tk, 71 prime elementsand v, vy, vz, Vk,
vr the additive valuations of these respective fields such that vi () = vi(m1) = Va(mr2) =
Vi (mk) = vr(mr) = 1. _

We let \(i) be the largest power of 33, to divide 3, D, x, where D, i istherelative
different. Similarly we let A,(i) be the largest power of 13, to divide ﬂsiKszKz/K, letting
A2(0) be simply A,. Since L /K>, and K1 /K have the same ramification number we can
let A1(i) denote both the largest power of 3 to divide 33}<1®K1 /k and the largest power
of 1, to divide ibiL‘DL/KZ. We finally let \5(i) be the largest power of 33, to divide
BLOLk,-

It can be easily shown using [15, p. 64 Proposition 4] and b; = 1, that

. , L | i
A(I) = {I - (2)(p 1) ;Z(bz 1)(p 1)J )\2(i) = \‘WJ
' —~ i+ (2+p(t—1))(p—1
€ i) = {%J A0 = ll +(2+p( p ) (P )J,

where | x| denotesthe greatest integer less than or equal to x. Note that A5(0) = A\5(1) =
(np—r)(p — 1) +1, and that

[@W:n(p—l)—r+l.
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Asaresult of ramification theory [15], if T« denotestherelative tracefrom L to K, and
TL/kes TL/Kee The/ko Tiy k @€ defined similarly,

@ D =RO TG = R0 T mh = w0,
T k(B = PO, T (Bh) = B0

4. Thestructureof O /©; Now we establish the fact that b; = 1 is sufficient for
O /91 to be afree Zy[¢][(V)]-module. (Note that 3, /W1 =~ O /O1. We will not
make further reference to 3, /1, in this section.)

LEMMA 3. oL/
POl |
—_— ~F Mo
G0 /0, = )]
asan Fp[(7)]-module, whereF, is the field of p elements.

PrROOF. Since £ /901 is a Zp[¢][(v)]-module, % is an Fp[(7)]-module,
where the indecomposable F,[(Y)]-modules are L(i) = Li% fori=1,2,...,pand~y
acts viamultiplication by x. Note that L(p) = Fy[(7)]. So there are nonnegative integers
{a},, suchthat

iady Sac NP :
(U - l)DL/Ql =
aSFP[<7>]-mOdules Now O/901 o, and .

(0=DOL/O1 = (@=L

Lo

(c— DO +9O,

0 -2 )=0-1 e

Since (Y — 1Pt = 1+7v +--- +7*"L mod p, and dim¢ ((v — 1)P~'L(p)) = 1, wefind
that,

- di -y ~L
3 d'm'Fp((1+A/+ 7 )(U—l)DL"'Ql)'

By (3) and (4), (1 +7 +--- +7P" 1O = R* = ,,. Therefore we calculate:

5) ap:dirrupp(%*("_l)gﬁgl) aim [ ¥ )

(c— 10+ 9Oy "\ BN (0~ DOL+Dy)

In order to calculate this dimension, we simplify its denominator:

If o € O, 6 € O1andr € B, suchthat (c—L)a+3 = 7,thenpd = (L+o+- - -+0P )7
andso (3 € Ok. Sincevi ((c—1)a) > 1+b, > 0andvi(r) > p > 0,itfollowsthat v (3) >
0. Therefore 3 € By, andwefind that 13,M ((0 — 1) O +O1) = (BN (0 — )OL) + By

Now if « € O, 7 € B3, suchthat (¢ — D)o =7, then (L+ o +--- + P )7 = 0. Since
2]

VL((O'—l)O() >1+by, 7€ %zﬂfbsz = ISL P . Letyo=1,y1 =7, Y2 = omp - T,
Y2 = 0°m2 - 0Ty - M.+ -+ @ in Sen [14]; so that vo((o — 1)yi) =i +tfor (i.p) = 1,
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by
(c — Dy, = 0. Using thesey;'sasabasisfor ] toverSDT, itiseasytosee(asin|[9,
p 2
by thZ]_[
p

Prop 4]) that the part of 35, ®  killed by thetrace (1+0+ - - + 0P 1) is (o — 1)1,

1+b.
Thereforer € (o — 1)1]3£_pZH. Since [“—pbﬂ —t=0,7 € (0 — 1)O,. The extension
Kz /K isfully ramified, therefore (o — 1)05 = (0 — 1)1,. S0, (¢ — D € (0 — 1)V, and
we find that

BN ((U — DO+ D1) = (332m (0 — 1)‘DL) + By = (0 — DB, + By

Asaresult, (5) can be rewritten as,

ap :dime(L).

(0 — DB, + By
Forr € B,, (L+o+---+0P 1) = pr(mod(c—1)%3,), thereforepP3, C (0 — 1)1, + Py
Let
_)(0_1)332+qu_>&_) B, _
© ° P PP, e DL, B O

be the canonical short Fp-exact sequence. Clearly, dimpp(%zz) = pep. To calculate

dime(wﬁjW), using (6), we will first calculate, dimpp(%). Using the proof
of [13, Theorem 1] we find that

132 ~ Z()‘Z(l)_l)f @ mﬁ‘z(l)fl)f @ EnO_O‘Z(l)_l)f asZp[<o->]_modu|es'

So there are elements { . 3. 71} in B8, such that

(h2(D)—-1)f (r2()-1)f Zy[o] (Eo—A2(1)+1)f
() Vo= Y Zpoit+ Bi+ > Zploln
i=1 =1 ®plo) i=1
And from this explicit basis it is easy to explicitly determine 33¢ and (¢ — 1)33,, and
find that
@ dim, (=252 < - .
PR,

Using (6) ,(7), we find that

By counting dimensions, wefind that & = 0 for i # p. ]

LEMMA 4. Z,[¢][(7)] isalocal ring with unique maximal ideal:

N = (G — DZp[GI[(M)] + (v — DZp[GI ()]
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PrROOF. Thisisasimple exercisefollowing [8, Theorem 1.7, p. 76]. ]

ProPOSITION 1. Let L /K be a totally ramified Galois extension of local fields, with
Gal(L/K) =~ C, x Cp, where L /K satisfiesthe condition, by = 1. Then

DL /01 = Zp[Gl[(1)]®  as Zp[G]-modules.

PROOF. Thisis the standard argument employing Nakayama's Lemma, using Lem-
mas 3, 4. We omit the details. ]

We now note that as Z,[G]-modules

Zy[G]

(Pp(0))

5. Thestructureof ©; and 13; Although the Galois module structure of £, and
B1 may be easily determined asin [13], we determine it through an explicit basisasin
[5].

Asin [5], becausevy ((y — 1)'my7f) = (i + 1) + pm, it is easily shown that

Zp[Gp][{7)] = ~R ®E.

9) {( = D' mmYiz01...p-1:m=0.1...e0—1

O1[G]-module summand of 13, where
Ormm + O1(Y — Dmymlg + -+ + O (y — P bmyrg = O1[(7)],
as O1[G]-modules. Therefore asis provenin Ullom [17]
P12 O7[(V)]®  as O7[G]-modules.
Similarly,

(10 {0 = D'mimDYizot....p-tmeot...ep—2 U {(Y — D)'pmimg bizo1. p-2
U{@+y+---+P HYmmct}

provides a Ot-basis for ©1. One may check, asin [5, Lem 4], that the Ot-submodule
of O, given by the p — 1 elements:

{pmmct — @+ +- -+ Y UL — D pramt e, p2

is closed under the action of . The only difficulty lies in expressing (v — 1) - (v —
1)P~*pmymct interms of the other elements. Simply usethe equation x* = 5° (?) (x— 1)
tofind that X’ — 1= 5P, (P)(x — 1)\. Therefore (= +--- +x+ 1) = 5P (,P ) (x — 1),
and (Y — )P 1myald = —(pﬂﬂTEl —(L+y+--- +Wp_1)7r17r§1) -3, @(ﬁ — ) pmimct.
Since these p — 1 elements, in addition, are clearly annihilated by (1+ 7 + - -- +7P~1),
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they form an O+[G]-module summand of £ isomorphic to O+[¢y] where v acts via
multiplication by ¢, a p-th root of unity. Asaresult,

Q1= O1 @ O7[¢] @ O7[(M]®  as O7[G]-modules.

Note the £, is amost free as an O+[(Y)]-module which loosely put, correspondsto the
fact that the extension, K1 /K, is barely wild.
We will be interested in those Ot-basis elements which lie in the image of the trace
map,
M, —\(D—1)+
Tk (D0) = T, (B) = Py2 = P,

To beginwith, we notethat the caser = 1 occurs precisely when the ramification number,
t, of Ko /K isequal to pey/(p— 1), sob, = p?ep/(p— 1) — (p— 1) and A5(0) = pey— p+2.
If p=2, then X\5(0) = 2ep, s0 (1 +0)OL = 204, and (1 + o) /2 is an idempotent element
giving £ & O; & O7[¢][(7)]® as O1[G]-modules. The Z,[G]-module structure of
O is then determined by restriction of coefficients. We will henceforth assume that
wheneverr = 1wehavep # 2.

Since A\5(0) < pey, therearealwayselementsin (10) which lieintheimage of thetrace
map. Infactifr # 1,thenforeachm=0.1.....n(p—1)—r—1,vi((Y—1)'m7l) < A\5(0)
foralli. Whenm = n(p—1)—r, thenvi (Y—1)'mmf) < Ay(0)fori =0, 1..... r—1,while
vi((—)'mmd) > Ap(0) fori=r,.... p—1.Finaly, form=n(p—1)—r+1,..., &—2,

vl((w - 1)‘7r17r2) > \5(0) for al i. And sincer # 1, the ramification number, t, of Ky /K
isrelatively prime to p and strictly lessthan pey/(p — 1). Sonp—r +1 < pey/(p — 1)
and therefore, A\5(0) < vi(pmimgl).

Ifr =1 thenform=0,.... & — 2, vi((y — Dimm) > A5(0) for all i, and
va(pmamt) < A5(0) < va((Y — Dpmymet).

For each m, we define pr, asfollows: If r = 1, then let

0 m=0,1,....e—2

(11) pm = [ (v — 1)p7r17rg1 m=g-—1

(Note that pe,—1 liesin the O1[(Y)]-summand, Ot[¢]. Clearly prymet — (L +7 +--- +
VP Ym et generates Ot[¢p], and pe,—1 isY — 1 applied onceto this generator.)

If r #1, thenlet
0 m=0,....np—1)—-r—1
(12) )0 )'mr® D m=np-1)—r
Pm-= 9 o m=nP—1)—r+L....e—2
primgt m=e—1

(Note that pnp—1)—r liesin afree O+1[(7)]-summand, and that pnp-1)—r isY — 1 applied
r times to the generator of this module. Furthermore, pm, foreachm=n(p— 1) — r +
1....,e — 2isthe generator of the free O1[{7)]-summand to which it belongs. Finally,
observethat pe, 1 = ((1+7 +- - +7P Hmmc?) + (promct — (L7 +- - + P )mmet).
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Asaresult, pe,—1 isthe sum of the generators of the two summands, Ot and O+[¢]. We
will use these observationsin Section 7.)

Finally, we observethat any Or-basis lement which lies non-trivially in 3,2 /p0;
may be expressed as (Y — 1) pm for somei and somem. Let M = {m | 0 < m <
e — L. pm # 0}, then the pm, m € M, provide a O/ pOr[(V)]-basis for %ié(o)/pﬁl.

If 91,12, ..., ¢ isabasisfor O over Z,, then pm -, me Mj=1,....f, provides
afFp[(v)]-basisfor Isié(o) /pL1. We will usethis observation in the next section.

On the other hand, when handling the Gal ois module structure of 3, , one can easily
check that A\5(1) < pey — 1 always. Therefore there are always elements of the basis
in (9) whose valuation is greater than or equal to A\5(1). In fact, define py, = 0 for each
m=0,1....n(p— 1) —r —1, pyp-1y—r = (Y — 'ma? ", and p = m7? for each
m=n(p—1)—r+1....e— 1 Furthermore, analogous observations concerning how

the pm may be expressed in terms of O+[(7)]-basis elements, and how the pm, m ¢ M,
providea Ot /pO+[(7)]-basis for ibiz(l)/pi]sl can be made.

6. A refinement of the structure of O /971 and B, /W1 Let n1.n2..... nt be
the basis for Ot over Z, chosen in the previous section. In this section we construct a
Z,[G]-basisfor O, / O, whichiscompatiblewith theF,[G]-module basisof 35,27 /p0,
givenby {pm-nj | pm Z0.j =1..... f}. In everything that we do, from now on, there
is an analogous result for 13, or i]st/z(l)/pfbl. For ease of exposition we will not include
those details pertaining to 3, , but focus all of our attention on ..

LEMMA 5. Let M = {m| pm # O}, then for each pm, m € M listed in (11) and (12)
thereisavm € O such that Ty jx,(vm) = pm. Infact {vm - [ me M.j =1.....f}
can be supplemented with elements {vm - n; | me {0.1..... -1} —M.j =1,.... f}
where T, (vm) = Owhenm ¢ M, sothat {vm-n; [ m€ {0.1,....e—1}j=1,.... f}
isa Zp[G]-module basis of O /1.

PrROOF. From (3) it is easily seen that TL/Kl(qstbZ) = TL/Kl(qsﬁwbrl) = ... =
T, (B2 P~Y) = 38 Therefore, for any element, i, of ©1 with valuation a + b,
there exists an element vapw, € PP /PP so that T, (Vaprn,) = 1. As aresut
there are elementsvm € O sothat Ty jk, (vm) = pm.

Soon we will use Nakayama's Lemma applied to the Z[¢][(7)]-module, O /1.
Note that if M is the unique maximal ideal of Zy[¢][(V)] (Lemma 4), then
(O1/pO1)/M (D1/pD1) & O/ ((0 — DOL+( — DOL+0p)) = V.

Now using the fact observed earlier that {pm-7; | meM.j=1,..., f}isanFp[(7)]-
basis of Isi,z(o)/le we show that the vy, - 75, m € M are linearly independent in V .
Supposethat >~ amjvm - 1j = (0 — Da + (Y — 1) + 7 for some anj € Z,, o, f € O and
7 € O1. Thenact viathetrace, T, and find that 3= amjpm - n; = (Y — )Tk, (B) + pr.
Clearly Ty k,(8) can be expressed as 5= bmj()pm - 1j for bmj(7) € Zp[(7)]. Therefore
Y(@mj — (0 = Dbmj())om - nj € pO1. Since the pm - 1 are aFp[(7)]-basis this forces
the anj to be zero.
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Now that we have shown that the v, - 1; are alinearly independent set in the F,-vector
space, V', where by Proposition 1 we know this vector space to have dimension egf
overFp, letvym - nj =vmj forme M, j =1,....f, and supplement these elements with
elementsin Oy, calling them {vm; | me {0.1.....@ — 1} —M;j = 1.....f}, sothat
we have abasisof V.

Now consider avm, j, € £ wheremy ¢ M. Sincethe py, - 1 provide aFp[(7)]-basis
of Jsi/z(o)/pﬁl, TL/Kl(VfTb-jo) = me.j(’Y)pm -1+ pr for bm.j(’Y) € Zp[("/>] and T € O1.
Asaresult we may change our basisfor V' replacing v j, bY vmy.jo — = bmj(Y)vmj — 7.
Inthisway the T /i, (vmj) =0form¢ M.

Then as a result of Lemma 4 and Nakayama's Lemma, the {vmj | m=0.1....,
e—1j=1,..., f} provide aZ,[G]-module basis for O /O;. n

7. The Galois module structure of © and 3. In the following proof we make
liberal useof theargumentsin[1, Section 8A, Section 34B and Section 34C]. We notethat
those same arguments have been used in [2] to classify afamily of Z,[G]-moduleswhich
include the indecomposable Z,[ G]-modules that appear in the statements of Theorem 1

and Theorem 2.
Let vmj be the Z,[G]-module basis of O /1 givenin Lemmab. Let pmj = pm - 1
also. Then
e—-1 f 0
(13) Ou/01= 3 Y LlClvm = (R © B,
m=0 j=

From now on we will suppressthe range of valuesthat mand j take and simply refer to
Y mand 35 instead of Z?;:_Ol and ijzl. Let . betheinclusion map from ©; into O, and
let 7 be the projection map from O onto O /1. We have the following Z,[G]-exact
short sequence,

(14) 0— 950 B R oE 0.

which givesrise to a long exact sequence[1, Theorem 8.6] and determines an element
¢ in Ext} 1 ((RL @ E)®', 1) [1, p. 175-176] in the following way: Let {zns} be
indeterminants with Y-, 3 Zp[G]zm; a free Z,[G]-module and let yn,; = ®p(0)zn;. Let
¢ € Homg, 6 (3m Xj Zp[G]zmj, ©1) beinduced by ¢(zm;) = vmj which in turn induces
p € Homy 16 (Cm X Zp[Glymj. O1) such that i(ymj) = pmj. We have the following
Z,[G] commuitative diagram,

0— XnYZplClymj — ZmyZplGlzmj — R®B> —0

| /| |

nom

0 — Ql —I—> "CL — (Rj_ ® E)eOf — 0

Sincey"m ¥y Zp[Glzm; isprojective[1,p174], ¢ € Ext] g ((Ri©®E)®, 1), corresponds
with and is completely is completely determined by

Homz, (6 (Xm 35 Zp[GlYmj. ©1)
pHOMy, 16 (Cm Y Zp[Glym;. O1)

https://doi.org/10.4153/CJM-1997-035-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-035-2

734 G. G. ELDER AND M. L. MADAN

which is completely determined by a* diagonal” matrix A with the pmj appearing along
the “diagonal”.

We now refer back to the “notes” following (11) and (12). Suppose that r # 1, then
matrix A appears with only zeros in the first (n(p -1 - r)f rows and columns. As a
consequence, (n(p — 1) — r)f copiesof E @ (Ry ® E) decompose off of . Now by the
remark associated with (12), p(Ynp-1-rj) = (Y — 1) foreachj = 1,...,f. Therefore f
copiesof (R; ® E, E; \") decompose off.

Foreachm=n(p—21) —r+1....,e¢—2andeachj = 1,..., f, ulymj) = 1; s0
(Ri®E, E; 1)"P-Y-1-2f appearsin the decomposition of . Finally ju(Ye,-1j) = 101 €
Z®Ry, sothat (Ry®E, Z&Ry; 161)" decomposesoff. Thisisthe completedecomposition
of O . One may easily check asin [2] that the modules are indecomposable.

Note that the caser = 1 is handled similarly; while the argument determining the
Z,[G]-module structure of 33, follows in an analogous manner. ]

8. A canonical example In this section, we apply the main result of this paper in
a canonical situation. Assuming that p > 3, we consider the Galois module structure
of the ring of integers in the maximal elementary abelian p-extension, L, of a ramified
quadratic extension, K / Qp. Clearly the p-th roots of unity are not presentin K, and so by
aresult of Shafarevich [16], Gal(L /K) is the direct product of three copies of the cyclic
group of p elements, Gal(L /K) =~ C, x C, x C,. Since there exists aramified extension
of degreep over K with ramification number equal to one, and another with ramification
number equal to two [10], and since there exists an unramified extension of degree p
over K [15], L must actually be the composite of these three extensions. We will denote
these extensions by L3, L, and L, respectively, sothat L = L, - L; - L. Let Ly, be the
composite of Ly and L. Clearly Ly /K satisfiesthe conditions of Theorem 1, withf = 1
n=1,r=p— 1land e = 2. Thereforeif ©,, denotesthering of integersin L,

we (RI®EZGR;1a 1)@ (R ®EENT) asZy[Ga(Ly/K)]-modules.

Let Oy, Ok, O denotethering of integersin L, K and L respectively. Using thefact that
L./K isunramified, while L, /K isfully ramified it is easy to show that O = O,0y. By
atheorem of E. Noether [12], using the fact that L, /K is unramified and therefore tame,
we find that O has a normal integral basis over Ok. Therefore, if Gal(Ly/K) = (p),
thereisan o € Oy suchthat aOx + p(a) Ok + - - - + pP~ () Ok = Oy. Therefore,

o) 0,0

VL= Myw
= aOy+ p(@)Ow + - - + )P H) Oy
~ Z,[(p)] @2, Ow
Zo[(p) @z, (RLOEZGR;1e 1) & (R @ E.E AT

12

as Zp[Gal(L /K)]-modules.
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