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GALOIS MODULE STRUCTURE OF THE INTEGERS
IN WILDLY RAMIFIED Cp ð Cp EXTENSIONS

G. GRIFFITH ELDER AND MANOHAR L. MADAN

ABSTRACT. Let LÛK be a finite Galois extension of local fields which are finite
extensions of Qp, the field of p-adic numbers. Let Gal(LÛK) = G, and ÓL and Zp be
the rings of integers in L and Qp, respectively. And let ŸL denote the maximal ideal of
ÓL. We determine, explicitly in terms of specific indecomposable Zp[G]-modules, the
Zp[G]-module structure of ÓL and ŸL, for L, a composite of two arithmetically disjoint,
ramified cyclic extensions of K, one of which is only weakly ramified in the sense of
Erez [6].

1. Introduction Let LÛK be a finite Galois extension of number fields with Galois
group, G. If ÓL, ÓK denote their rings of integers and Z denotes the ring of rational
integers, one may ask for the structure ofÓL as anÓK[G]-module, or as a Z[G]-module.
In either case, unfortunately, the Krull-Schmidt Theorem fails to hold, i.e. ÓL is not
necessarily uniquely expressible as a direct sum of indecomposable modules. However,
in the special case when K is the field of rationals, G is abelian and [L : K] is relatively
prime to the discriminant of L, Hilbert proved in 1897 that there is an element ã 2 ÓL

whose conjugates form a Z-basis ofÓL, i.e.ÓL is free as a Z[G]-module. (By the Normal
Basis Theorem for fields, a field basis of this type always exists.) The existence of a
normal integral basis is subject to arithmetic constraints. We refer the reader to Fröhlich’s
book, [7], for results concerning the existence of such a basis.

The Krull-Schmidt Theorem is valid if LÛK is a finite Galois extension of local fields,
i.e. finite extensions of Qp, the field of p-adic numbers. As a consequence of a theorem
of E. Noether [12], when the extension, LÛK, is at most tamely ramified, ÓL ≤ Zp[G]n0

as Zp[G]-modules, where [K : Qp] = n0 and Zp denotes the ring of p-adic integers
and G = Gal(LÛK). If however, the extension is wildly ramified, very little is known.
We refer the reader to Miyata [11] and Vostokov [18] for some results concerning the
ÓK[G]-module structure of ÓL, and to other papers of the authors for some situations
where the Zp[G]-module structure ofÓL is known. In particular, we cite the paper of the
second author with Rzedowski-Calderón and Villa-Salvador [13]; it was in [13] that this
type of question was first asked. We also draw particular attention to [4] where this type
of question is answered for elementary abelian, weakly ramified extensions of arbitrarily
large degree.

In this paper, we explicitly determine the Zp[G]-module structure of ÓL when L is
a totally ramified elementary abelian extension of K with degree p2 and has two breaks
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in its ramification filtration, the first break occurring with ramification number one.
Equivalently, this means considering the family of extensions, LÛK, which arise as the
composite of two arithmetically disjoint, ramified cyclic extensions of degree p, one of
which is only weakly ramified [6] (i.e. One of the two cyclic extensions has ramification
number equal to one).

We note that it is an easy exercise to determine the explicit Zp[G]-module structure of
ÓL in the case where L is the composite of an unramified cyclic extension of degree p, Lu,
and a ramified cyclic extension of degree p, Lw. Simply use the fact that in this situation
ÓL = Óu Ð Ów, where Óu and Ów are the rings of integers in Lu and Lw, respectively,
and Óu has a normal integral basis. See the example in Section 8 for further details.

Once one has considered partially ramified elementary abelian extensions it is natural
to consider fully ramified extensions. However to keep complications to a minimum, it
is perhaps natural to consider extensions which are the composite of two fields, one of
which is now only weakly ramified. This is what we do. Ullom [17] determined that
although the ring of integers in a weakly ramified extension does not have a normal
integral basis, the maximal ideal does.

As our following main result shows, one finds a very interesting and complicated
Zp[G]-module structure in the situation that we consider.

THEOREM 1. Let LÛK be a totally ramified elementary abelian extension of local
number fields, with [L : K] = p2 and G = Gal(LÛK) = hõÒ çi where the ramification
group Gb2 = hõi. Let [K : Qp] = e0f , e0 denoting the absolute ramification index.
Furthermore, let LÛK have two distinct lower ramification numbers, b1 and b2, with n
and r, nonnegative integers where r 2 f0Ò 1Ò    Ò p � 1g so that b2 = b1 + p(np � r).

If b1 = 1 and r 6= 1, then

ÓL ≤ E(n(p�1)�r)f ý (R1 
 EÒE;ïr)f ý (R1 
 EÒE; 1)(e0�n(p�1)+r�2)f

ý(R1 
 EÒZ ý R1; 1 ý 1)f ý (R1 
 E)(n(p�1)�r)f 

If b1 = 1 and r = 1, then

ÓL ≤
(

E(e0�1)f ý Zf ý Rf
1 ý (R1 
 E)e0 f for p = 2,

E(e0�1)f ý Zf ý (R1 
 EÒR1;ï)f ý (R1 
 E)(e0�1)f for p 6= 2;

as Zp[G]-modules. The Zp[G]-modules are described below.

Here are explicit descriptions of the indecomposable Zp[G]-modules. In each case
õ acts via multiplication by x, while ç acts via multiplication by y. Let Φp(x) =
(xp � 1)Û(x � 1) be the cyclotomic polynomial.

Z =
Zp[xÒ y]

hx � 1Ò y � 1i
Ò R1 =

Zp[xÒ y]
hx � 1ÒΦp(y)i

Ò E =
Zp[xÒ y]

hx � 1Ò yp � 1i
Ò

(R1 
 EÒE;ïi) =

Zp[xÒy]
hxp�1Òyp�1i ý

Zp[xÒy]
hx�1Òyp�1iD�

Φp(x)Ò (y � 1)i
�E Ò
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R1 
 E =
Zp[xÒ y]

hΦp(x)Ò yp � 1i
Ò (R1 
 EÒR1;ï) =

Zp[xÒy]
hxp�1Òyp�1i ý

Zp[xÒy]
hx�1ÒΦp(y)iD�

Φp(x)Ò y � 1
�E Ò

(R1 
 EÒZ ý R1; 1 ý 1) =

Zp[xÒy]
hxp�1Òyp�1i ý

Zp[xÒy]
hx�1Òy�1i ý

Zp[xÒy]
hx�1ÒΦp(y)iD�

Φp(x)Ò 1Ò 1
�E 

Note that (R1 
EÒE;ï0) ≤ Zp[G]. For the convenience of the reader, we provide a table
recording certain other properties of these modules.

We also state here the result for theZp[G]-module structure ofŸL, the unique maximal
ideal of ÓL.

THEOREM 2. Under the conditions of the previous theorem. If b1 = 1,

ŸL ≤ E(n(p�1)�r)f ý (R1 
 EÒE;ïr)f ý (R1 
 EÒE; 1)(e0�n(p�1)+r�1)f ý (R1 
 E)(n(p�1)�r)f

as Zp[G]-modules.

The method of our proof, at times, involves investigating ÓT[G]-module structure,
where ÓT denotes the ring of integers in the field, T, which is the maximal unramified
extension ofQp contained in K. In particular, we create a basis overÓT of elements with
distinct valuations upon which we can track the Galois action. From the ÓT[G]-module
structure, the Zp[G]-module structure can be deduced.

In Section 2, we explain the assumption on the ramification filtration and the reason
for the restriction of our attention to the two fractional ideals, ÓL and ŸL.

In Section 3, we establish our notation. Then in Section 4 through Section 7 we prove
our two theorems.

At the end, in Section 8, we give an application of Theorem 1. We explicitly determine
the Galois module structure of the ring of integers in the maximal elementary abelian
p-extension of an arbitrary ramified quadratic extension of Qp, when p Ù 3.

We believe that the methods of this paper and those used in [3], [4], [5], and [13] may
be applied to prove structure theorems of this type for other classes of arithmetically dis-
tinguished extensions. However, the proof of a structure theorem in complete generality
will, probably, require new techniques.

2. Motivation for the ramification assumption In this section, we motivate the
assumption, b1 = 1 and also explain why we have restrict our attention to ÓL and ŸL.

Let us focus our attention for the moment onÓL. Let K0 be any intermediate extension
of an elementary abelian extension, LÛK, of degree p2 (K0ÛK has degree p). Let ÓK0 be
the ring of integers in K0, then the following canonical short exact sequence,

0 ! ÓK0 ! ÓL ! ÓLÛÓK0 ! 0Ò

can be used to determine the Galois module structure of ÓL. (Indeed, an analogous
sequence is provided in (2) which can be used to investigate the Galois module structure
of other fractional ideals.) From [13, Theorem 1], the Zp[G]-structure ofÓK0 is known. If
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Column I II III IV V VI VII

As Zp[õ]-module TLÛK1
(M) H0(õÒM) H0(GÒM)

MÛG Mõ Mç M ≤ Za ý Rb
1 ý Ec as Zp[õ] MÛMG as F[ç]

(aÒ bÒ c) = -module -module

Z Z Z (1Ò 0Ò 0) Z 0 L(1) Cp2

R1 R1 0 (p � 1Ò 0Ò 0) R1 R1 L(p � 1) 0

E E Z (pÒ 0Ò 0) E R1 L(p) Cp

R1 
 E 0 R1 (0Ò pÒ 0) 0 R1 
 E L(0) 0

(R1 
 EÒE;ïi) E E (iÒ iÒ p � i) E (R1 
 EÒR1;ïi) L(i) 0
0 � i � p � 1 if i = 0 if i = 0 if 0 � i � p � 2 if i = 0

Z ý R1 Z ý R1 R1 ý (R1 
 E) Cp

if i Ù 0 if i Ù 0 if i = p � 1 if i Ù 0

(R1 
 EÒR1;ï) R1 R1 (1Ò 2Ò p � 2) R1 (R1 
 EÒR1;ï) L(1) 0
0 � i � p � 2

(R1 
 EÒZ ý R1; 1 ý ïi) Z ý R1 Z ý R1 (i + 1Ò i + 1Ò p � i� 1) E (R1 
 EÒR1;ïi) L(i + 1) Cp

0 � i � p � 2

Properties of certain Zp[Cp ð Cp]-modules
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726 G. G. ELDER AND M. L. MADAN

the Zp[G]-module structure of ÓLÛÓK0 could be determined, then we could investigate
the structure of ÓL by describing the Zp[G]- module, Ext1Zp[G](ÓLÛÓK0 ÒÓK0 ).

Unfortunately, in general, the structure of the Zp[G]-module, ÓLÛÓK0 , can be unlim-
ited in potential complexity. If Gal(LÛK0) = hõi, where Gal(LÛK) = hõÒ çi, then since the
relative trace, TLÛK0 = Φp(õ), takesÓL intoÓK0 , theZp[G]-module,ÓLÛÓK0 , can be rein-
terpreted as aZp[êp][hçi]-module, where êp is a primitive p-th root of unity. Jacobinskihas
shown that, for p Ù 3, there are infinitely many indecomposableZp[êp][hçi]-modules [1,
p. 691]. To avoid the difficulty that this result presents, in this paper we restrict ourselves
to circumstances under which ÓLÛÓK0 is free as a Zp[êp][hçi]-module,

ÓLÛÓK0 ≤ Zp[êp][hçi]n0 (1)

(We furthermore restrict ourselves to those ideals for which the analogous result holds.)
As the following lemma indicates, in order for (1) to hold, it is necessary that there

be a subfield, K00, of LÛK distinct from K0 such that the extension LÛK00 has ramification
number equal to one.

LEMMA 1. Unless there is an intermediate extension, K 00, such that the ramification
number of LÛK00 is 1, it is not possible that

ÓLÛÓK0 ≤ Zp[êp][hçi]n0 as Zp[G]-modulesÒ

where hçi = Gal(LÛK00), K0 is distinct from K00 and hõi = Gal(LÛK0).

PROOF. Clearly, Zp[êp][hçi] ≤ Zp[hçi]p�1 as Zp[hçi]-modules and so the coho-
mology group H0(hçiÒ Zp[êp][hçi]n0 ) = 0. However, if the ramification number of
LÛK00 is greater than 1, then ô00, a prime element of K00, gives a nonzero element of
H0(hçiÒÓLÛÓK0).

In order for an intermediate extension, K00, to exist with the ramification number of
LÛK00 equal to one, it is necessary that the first lower ramification number of LÛK be
one.

Before we go on, we turn our attention to the question of determining the Zp[G]-
module structure of other fractional ideals. We remark that since 1 2 ÓL also lies in
ÓK0 , there is the following canonical isomorphism:

ÓLÛÓK0 ≤ ŸLÛŸK0 as Zp[G]-modules

Now letŸi
L be any fractional ideal. Clearly the canonical short exact sequence exists,

which can be used to determine the Galois module structure of Ÿi
L,

0 ! ŸdiÛpe
K0 ! Ÿi

L ! Ÿi
LÛŸ

diÛpe
K0 ! 0Ò(2)

where dxe denoting the least integer function, and ŸdiÛpe
K0 is the largest fractional ideal

in K0 contained in Ÿi
L. Obviously ÓL ≤ ôt

KÓL and ŸL ≤ ôt
KŸL as Zp[G]-modules.

As a result, the only fractional ideals of L which we have not considered are those
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fractional ideals, Ÿi
L, for which i is not congruent to 0 or 1 modulo p2. As the following

lemma shows unless i � 0Ò 1 mod p2, it is never the case that Ÿi
LÛŸ

diÛpe
K0 is free as a

Zp[êp][hçi]-module.

LEMMA 2. Unless i � 0Ò 1 mod p2, it is not possible that

Ÿi
LÛŸ

diÛpe
K0 ≤ Zp[êp][hçi]n0 as Zp[G]-modulesÒ

PROOF. Following the proof of Lemma 1, one sees that ô00diÛpe, where ô00 is a prime
element of K00, is a nonzero element of H0(hçiÒŸi

LÛŸ
diÛpe
K0 ) whenever i 6� 0Ò 1 mod p2.

As a consequence of these lemmas we restrict our attention to the two ideals, ÓL and
ŸL, and furthermore assume the first ramification number of LÛK to be one.

3. Notation We standardize our notation. Assume that LÛK has two distinct rami-
fication numbers, b1 = 1 and b2, where necessarily b2 = 1 + p(t � 1) for some t greater
than 1. Let K1 be the fixed field of the ramification group Gb2 = hõi, and let K2 be any
intermediate extension distinct from K1 with Gal(LÛK2) = hçi. Then the ramification
number of LÛK2 equals the ramification number of K1ÛK which is 1. The ramification
number of LÛK1 is b2 and the ramification number of K2ÛK is t. Now, there exist unique
n 2 Z and r 2 f0Ò 1Ò    Ò p � 1g, such that b2 = 1 + p(np� r). Clearly, t � 1 = np� r.

Let T be the maximal unramified extension of Qp contained in K. Let ÓL, Ó1, Ó2,
ÓK, ÓT be the ring of integers in L, K1, K2, K, and T respectively. Let ŸL, Ÿ1, Ÿ2, ŸK,
ŸT be their unique maximal ideals, ôL, ô1, ô2, ôK, ôT prime elements and vL, v1, v2, vK,
vT the additive valuations of these respective fields such that vL(ôL) = v1(ô1) = v2(ô2) =
vK(ôK) = vT(ôT) = 1.

We let ï(i) be the largest power of ŸK to divide Ÿi
L¥LÛK, where ¥LÛK is the relative

different. Similarly we let ï2(i) be the largest power of ŸK to divide Ÿi
K2
¥K2ÛK, letting

ï2(0) be simply ï2. Since LÛK2, and K1ÛK have the same ramification number we can
let ï1(i) denote both the largest power of ŸK to divide Ÿi

K1
¥K1ÛK and the largest power

of ŸK2
to divide Ÿi

L¥LÛK2
. We finally let ï02(i) be the largest power of ŸK1

to divide

Ÿi
L¥LÛK1

.
It can be easily shown using [15, p. 64 Proposition 4] and b1 = 1, that

ï(i) =
$

i + (2)(p2 � 1) + (b2 � 1)(p � 1)
p2

%
Ò ï2(i) =

$
i + (t + 1)(p � 1)

p

%
Ò

ï1(i) =
$

i + (2)(p � 1)
p

%
Ò ï02(i) =

66664 i +
�
2 + p(t � 1)

�
(p � 1)

p

77775Ò(3)

where bxc denotes the greatest integer less than or equal to x. Note that ï02(0) = ï02(1) =
(np � r)(p � 1) + 1, and that

¾ï02(0)
p

³
= n(p � 1) � r + 1
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As a result of ramification theory [15], if TLÛK denotes the relative trace from L to K, and
TLÛK1

ÒTLÛK2
ÒTK1ÛK, TK2ÛK are defined similarly,

TLÛK(Ÿi
L) = Ÿï(i)

K Ò TLÛK1
(Ÿi

L) = Ÿ
ï0

2(i)
1 Ò TLÛK2

(Ÿi
L) = Ÿï1(i)

2 Ò(4)

TK1ÛK(Ÿi
1) = Ÿï1(i)

K Ò TK2ÛK(Ÿi
2) = Ÿï2(i)

K 

4. The structure of ÓLÛÓ1 Now we establish the fact that b1 = 1 is sufficient for
ÓLÛÓ1 to be a free Zp[êp][hçi]-module. (Note that ŸLÛŸ1 ≤ ÓLÛÓ1. We will not
make further reference to ŸLÛŸ1 in this section.)

LEMMA 3.
ÓLÛÓ1

(õ � 1)ÓLÛÓ1
≤ Fp[hçi]n0

as an Fp[hçi]-module, where Fp is the field of p elements.

PROOF. Since ÓLÛÓ1 is a Zp[êp][hçi]-module, ÓLÛÓ1

(õ�1)ÓLÛÓ1
is an Fp[hçi]-module,

where the indecomposable Fp[hçi]-modules are L(i) = Fp[x]
(x�1)i for i = 1Ò 2Ò    Ò p and ç

acts via multiplication by x. Note that L(p) ≤ Fp[hçi]. So there are nonnegative integers
faig

p
i=1, such that

ÓLÛÓ1

(õ � 1)ÓLÛÓ1
≤ ý

pX
i=1

L(i)ai

as Fp[hçi]-modules. Now ÓLÛÓ1

(õ�1)ÓLÛÓ1
≤ ÓL

(õ�1)ÓL+Ó1
and so,

(ç � 1)p�1
 

ÓL

(õ � 1)ÓL +Ó1

!
= (ç � 1)p�1L(p)ap 

Since (ç � 1)p�1 � 1 + ç + Ð Ð Ð + çp�1 mod p, and dimFp

�
(ç � 1)p�1L(p)

�
= 1, we find

that,

ap = dimFp

 
(1 + ç + Ð Ð Ð + çp�1)

ÓL

(õ � 1)ÓL + Ó1

!


By (3) and (4), (1 + ç + Ð Ð Ð + çp�1)ÓL = Ÿï1
2 = Ÿ2. Therefore we calculate:

ap = dimFp

 
Ÿ2 + (õ � 1)ÓL + Ó1

(õ � 1)ÓL + Ó1

!
= dimFp

0
B@ Ÿ2

Ÿ2 \
�
(õ � 1)ÓL +Ó1

�
1
CA(5)

In order to calculate this dimension, we simplify its denominator:
Ifã 2 ÓL,å 2 Ó1 and ú 2 Ÿ2 such that (õ�1)ã+å = ú, then på = (1+õ+Ð Ð Ð+õp�1)ú

and soå 2 ÓK. Since vL((õ�1)ã) ½ 1+b2 Ù 0 and vL(ú) ½ p Ù 0, it follows that vL(å) Ù
0. Therefore å 2 ŸK, and we find thatŸ2\

�
(õ�1)ÓL +Ó1) =

�
Ÿ2\ (õ�1)ÓL

�
+ŸK.

Now if ã 2 ÓL, ú 2 Ÿ2 such that (õ � 1)ã = ú, then (1 + õ + Ð Ð Ð + õp�1)ú = 0. Since

vL

�
(õ � 1)ã

�
½ 1 + b2, ú 2 Ÿ2 \ Ÿ1+b2

L = Ÿ
d

1+b2
p e

2 . Let y0 = 1, y1 = ô2, y2 = õô2 Ð ô2,

y2 = õ2ô2 Ð õô2 Ð ô2Ò Ð Ð Ð as in Sen [14]; so that v2

�
(õ � 1)yi

�
= i + t for (iÒ p) = 1,
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(õ� 1)ypi = 0. Using these yi’s as a basis for Ÿ
d

1+b2
p e�t

2 overÓT , it is easy to see (as in [9,

Prop 4]) that the part ofŸ
d 1+b2

p e
2 killed by the trace (1 +õ+ Ð Ð Ð+õp�1) is (õ� 1)Ÿ

d 1+b2
p e�t

2 .

Therefore ú 2 (õ � 1)Ÿ
d

1+b2
p e�t

2 . Since d 1+b2
p e � t = 0, ú 2 (õ � 1)Ó2. The extension

K2ÛK is fully ramified, therefore (õ� 1)Ó2 = (õ� 1)Ÿ2. So, (õ� 1)ã 2 (õ� 1)Ÿ2 and
we find that

Ÿ2 \
�
(õ � 1)ÓL +Ó1

�
=
�
Ÿ2 \ (õ � 1)ÓL

�
+ŸK = (õ � 1)Ÿ2 + ŸK

As a result, (5) can be rewritten as,

ap = dimFp

 
Ÿ2

(õ � 1)Ÿ2 + ŸK

!


For ú 2 Ÿ2, (1+õ+ Ð Ð Ð+õp�1)ú � pú
�
mod(õ�1)Ÿ2

�
, therefore pŸ2 � (õ�1)Ÿ2 +ŸK.

Let

0 !
(õ � 1)Ÿ2 +ŸK

pŸ2
!

Ÿ2

pŸ2
!

Ÿ2

(õ � 1)Ÿ2 + ŸK
! 0(6)

be the canonical short Fp-exact sequence. Clearly, dimFp(
Ÿ2

pŸ2
) = pe0. To calculate

dimFp(
Ÿ2

(õ�1)Ÿ2+ŸK
), using (6), we will first calculate, dimFp(

(õ�1)Ÿ2+ŸK
pŸ2

). Using the proof
of [13, Theorem 1] we find that

Ÿ2 ≤ Z(ï2(1)�1)f ý R(ï2(1)�1)f
1 ý En0�(ï2(1)�1)f as Zp[hõi]-modules

So there are elements fãiÒ åiÒ úig in Ÿ2 such that

Ÿ2 =
(ï2(1)�1)fX

i=1
Zpãi +

(ï2(1)�1)fX
i=1

Zp[õ]
Φp(õ)

åi +
(e0�ï2(1)+1)fX

i=1
Zp[õ]úi(7)

And from this explicit basis it is easy to explicitly determine ŸK and (õ � 1)Ÿ2, and
find that

dimFp

 
(õ � 1)Ÿ2 + ŸK

pŸ2

!
= (p � 1)e0f (8)

Using (6) ,(7), we find that

ap = dimFp

 
Ÿ2

(õ � 1)Ÿ2 + ŸK

!
= e0f 

By counting dimensions, we find that ai = 0 for i 6= p.

LEMMA 4. Zp[êp][hçi] is a local ring with unique maximal ideal:

N = (êp � 1)Zp[êp][hçi] + (ç � 1)Zp[êp][hçi]
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PROOF. This is a simple exercise following [8, Theorem 1.7, p. 76].

PROPOSITION 1. Let LÛK be a totally ramified Galois extension of local fields, with
Gal(LÛK) ≤ Cp ð Cp, where LÛK satisfies the condition, b1 = 1. Then

ÓLÛÓ1 ≤ Zp[êp][hçi]e0 as Zp[G]-modules

PROOF. This is the standard argument employing Nakayama’s Lemma, using Lem-
mas 3, 4. We omit the details.

We now note that as Zp[G]-modules

Zp[êp][hçi] ≤
Zp[G]
hΦp(õ)i

≤ R1 
 E

5. The structure of Ó1 and Ÿ1 Although the Galois module structure of Ó1 and
Ÿ1 may be easily determined as in [13], we determine it through an explicit basis as in
[5].

As in [5], because v1

�
(ç � 1)iô1ôm

K

�
= (i + 1) + pm, it is easily shown that

f(ç � 1)iô1ô
m
Kgi=0Ò1ÒÒp�1;m=0Ò1Òe0�1(9)

provides a ÓT-basis for Ÿ1. Clearly, f(ç � 1)iô1ôm
Kgi=0ÒÒp�1, for each value of m, is an

ÓT[G]-module summand of Ÿ1, where

ÓTô1ôm
K + ÓT(ç � 1)ô1ôm

K + Ð Ð Ð + ÓT(ç � 1)p�1ô1ôm
K ≤ ÓT[hçi]Ò

as ÓT[G]-modules. Therefore as is proven in Ullom [17]

Ÿ1 ≤ ÓT[hçi]e0 as ÓT[G]-modules

Similarly,

f(ç � 1)iô1ôm
Kgi=0Ò1ÒÒp�1;m=0Ò1ÒÒe0�2 [ f(ç � 1)ipô1ô�1

K gi=0Ò1Òp�2(10)

[ f(1 + ç + Ð Ð Ð + çp�1)ô1ô
�1
K g

provides a ÓT-basis for Ó1. One may check, as in [5, Lem 4], that the ÓT-submodule
of Ó1 given by the p � 1 elements:

fpô1ô
�1
K � (1 + ç + Ð Ð Ð + çp�1)ô1ô

�1
K g [ f(ç � 1)ipô1ô

�1
K gi=1ÒÒp�2

is closed under the action of ç. The only difficulty lies in expressing (ç � 1) Ð (ç �
1)p�1pô1ô�1

K in terms of the other elements. Simply use the equation xp =
Pp

i=0

�
p
i

�
(x�1)i

to find that xp � 1 =
Pp

i=1

�
p
i

�
(x � 1)i. Therefore (xp�1 + Ð Ð Ð + x + 1) =

Pp
i=0

�
p

i+1

�
(x � 1)i,

and (ç�1)p�1ô1ôm
K = �

�
pô1ô�1

K � (1 +ç+ Ð Ð Ð +çp�1)ô1ô�1
K

�
�
Pp

i=0
( p

i+1)
p (ç�1)ipô1ô�1

K .

Since these p � 1 elements, in addition, are clearly annihilated by (1 + ç + Ð Ð Ð + çp�1),
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they form an ÓT[G]-module summand of Ó1 isomorphic to ÓT[êp] where ç acts via
multiplication by êp, a p-th root of unity. As a result,

Ó1 ≤ ÓT ýÓT[êp]ýÓT[hçi]e0�1 as ÓT[G]-modules

Note the Ó1 is almost free as an ÓT[hçi]-module which loosely put, corresponds to the
fact that the extension, K1ÛK, is barely wild.

We will be interested in those ÓT-basis elements which lie in the image of the trace
map,

TLÛK1
(ÓL) = TLÛK1

(ŸL) = Ÿ
ï0

2
1 = Ÿ(np�r)(p�1)+1

1 

To begin with, we note that the case r = 1 occurs precisely when the ramification number,
t, of K2ÛK is equal to pe0Û(p�1), so b2 = p2e0Û(p�1)� (p�1) and ï02(0) = pe0�p +2.
If p = 2, then ï02(0) = 2e0, so (1 + õ)ÓL = 2Ó1, and (1 + õ)Û2 is an idempotent element
giving ÓL ≤ Ó1 ý ÓT[êp][hçi]e0 as ÓT[G]-modules. The Zp[G]-module structure of
ÓL is then determined by restriction of coefficients. We will henceforth assume that
whenever r = 1 we have p 6= 2.

Sinceï02(0) Ú pe0, there are always elements in (10) which lie in the image of the trace
map. In fact if r 6= 1, then for each m = 0Ò 1Ò    Ò n(p�1)�r�1, v1

�
(ç�1)iô1ôm

K

�
Ú ï02(0)

for all i. When m = n(p�1)�r, then v1

�
(ç�1)iô1ôm

K

�
Ú ï02(0) for i = 0Ò 1Ò    Ò r�1, while

v1

�
(ç�1)iô1ôm

K

�
½ ï02(0) for i = rÒ    Ò p�1. Finally, for m = n(p�1)�r+1Ò    Ò e0�2,

v1

�
(ç� 1)iô1ôm

K

�
½ ï02(0) for all i. And since r 6= 1, the ramification number, t, of K2ÛK

is relatively prime to p and strictly less than pe0Û(p � 1). So np � r + 1 Ú pe0Û(p � 1)
and therefore, ï02(0) � v1(pô1ô�1

K ).
If r = 1, then for m = 0Ò    Ò e0 � 2, v1

�
(ç � 1)iô1ôm

K

�
½ ï02(0) for all i, and

v1(pô1ô�1
K ) Ú ï02(0) � v1

�
(ç � 1)pô1ô�1

K

�
.

For each m, we define öm as follows: If r = 1, then let

öm :=
(

0 m = 0Ò 1Ò    Ò e0 � 2
(ç � 1)pô1ô�1

K m = e0 � 1(11)

(Note that öe0�1 lies in the ÓT[hçi]-summand, ÓT[êp]. Clearly pô1ô�1
K � (1 + ç + Ð Ð Ð +

çp�1)ô1ô�1
K generates ÓT[êp], and öe0�1 is ç � 1 applied once to this generator.)

If r 6= 1, then let

öm :=

8>>><
>>>:

0 m = 0Ò    Ò n(p � 1)� r � 1
(ç � 1)rô1ô

n(p�1)�r
K m = n(p � 1)� r

ô1ôm
K m = n(p � 1)� r + 1Ò    Ò e0 � 2

pô1ô�1
K m = e0 � 1

(12)

(Note that ön(p�1)�r lies in a free ÓT[hçi]-summand, and that ön(p�1)�r is ç � 1 applied
r times to the generator of this module. Furthermore, öm for each m = n(p � 1) � r +
1Ò    Ò e0 � 2 is the generator of the free ÓT[hçi]-summand to which it belongs. Finally,
observe that öe0�1 =

�
(1 +ç+ Ð Ð Ð +çp�1)ô1ô�1

K

�
+
�
pô1ô�1

K � (1 +ç+ Ð Ð Ð +çp�1)ô1ô�1
K

�
.

https://doi.org/10.4153/CJM-1997-035-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-035-2


732 G. G. ELDER AND M. L. MADAN

As a result, öe0�1 is the sum of the generators of the two summands, ÓT and ÓT[ê]. We
will use these observations in Section 7.)

Finally, we observe that anyÓT-basis element which lies non-trivially in Ÿï0

2(0)
1 ÛpÓ1

may be expressed as (ç � 1)iöm for some i and some m. Let M := fm j 0 � m �

e0 � 1Ò öm 6= 0g, then the öm, m 2 M, provide a ÓTÛpÓT[hçi]-basis for Ÿ
ï0

2(0)
1 ÛpÓ1.

If ë1Ò ë2Ò    Ò ëf is a basis for ÓT over Zp, then öm Ð ëj, m 2 M j = 1Ò    Ò f , provides

a Fp[hçi]-basis for Ÿ
ï0

2(0)
1 ÛpÓ1. We will use this observation in the next section.

On the other hand, when handling the Galois module structure of ŸL, one can easily
check that ï02(1) Ú pe0 � 1 always. Therefore there are always elements of the basis
in (9) whose valuation is greater than or equal to ï02(1). In fact, define öm = 0 for each
m = 0Ò 1Ò    Ò n(p � 1)� r � 1, ön(p�1)�r = (ç � 1)rô1ô

n(p�1)�r
K , and öm = ô1ôm

K for each
m = n(p� 1)� r + 1Ò    Ò e0 � 1. Furthermore, analogous observations concerning how
the öm may be expressed in terms of ÓT[hçi]-basis elements, and how the öm, m 62 M,

provide a ÓTÛpÓT[hçi]-basis for Ÿ
ï0

2(1)
1 ÛpŸ1 can be made.

6. A refinement of the structure of ÓLÛÓ1 and ŸLÛŸ1 Let ë1Ò ë2Ò    Ò ëf be
the basis for ÓT over Zp chosen in the previous section. In this section we construct a

Zp[G]-basis forÓLÛÓ1 which is compatible with the Fp[G]-module basis ofŸ
ï0

2(0)
1 ÛpÓ1

given by föm Ð ëj j öm 6= 0Ò j = 1Ò    Ò fg. In everything that we do, from now on, there

is an analogous result for ŸL or Ÿï0

2(1)
L ÛpŸ1. For ease of exposition we will not include

those details pertaining to ŸL, but focus all of our attention on ÓL.

LEMMA 5. Let M = fm j öm 6= 0g, then for each öm, m 2 M listed in (11) and (12)
there is a óm 2 ÓL such that TLÛK1

(óm) = öm. In fact fóm Ð ëj j m 2 MÒ j = 1Ò    Ò fg
can be supplemented with elements fóm Ð ëj j m 2 f0Ò 1Ò    Ò e0 � 1g � MÒ j = 1Ò    Ò fg
where TLÛK1

(óm) = 0 when m 62 M, so that fóm Ð ëj j m 2 f0Ò 1Ò    Ò e0�1gÒ j = 1Ò    Ò fg
is a Zp[G]-module basis of ÓLÛÓ1.

PROOF. From (3) it is easily seen that TLÛK1
(Ÿap+b2

L ) = TLÛK1
(Ÿap+b2�1

L ) = Ð Ð Ð =

TLÛK1
(Ÿap+b2�(p�1)

L ) = Ÿa+b2
1 . Therefore, for any element, ñ, of Ó1 with valuation a + b2

there exists an element óap+b2 2 Ÿap+b2
L ÛŸap+b2+1

L so that TLÛK1
(óap+b2 ) = ñ. As a result

there are elements óm 2 ÓL so that TLÛK1
(óm) = öm.

Soon we will use Nakayama’s Lemma applied to the Zp[ê][hçi]-module, ÓLÛÓ1.
Note that if M is the unique maximal ideal of Zp[ê][hçi] (Lemma 4), then
(ÓLÛpÓ1)ÛM (ÓLÛpÓ1) ≤ ÓLÛ

�
(õ � 1)ÓL + (ç � 1)ÓL +Ó1)

�
= V .

Now using the fact observed earlier that föm Ð ëj j m 2 MÒ j = 1Ò    Ò fg is an Fp[hçi]-

basis of Ÿï0

2(0)
1 ÛpÓ1 we show that the óm Ð ëj, m 2 M are linearly independent in V .

Suppose that
P

amÒjóm Ð ëj = (õ � 1)ã + (ç � 1)å + ú for some amÒj 2 Zp, ãÒ å 2 ÓL and
ú 2 Ó1. Then act via the trace, TLÛK1

, and find that
P

amÒjöm Ð ëj = (ç � 1)TLÛK1
(å) + pú.

Clearly TLÛK1
(å) can be expressed as

P
bmÒj(ç)öm Ð ëj for bmÒj(ç) 2 Zp[hçi]. ThereforeP

(amÒj � (ç � 1)bmÒj(ç))öm Ð ëj 2 pÓ1. Since the öm Ð ëj are a Fp[hçi]-basis this forces
the amÒj to be zero.
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Now that we have shown that the óm Ð ëj are a linearly independent set in the Fp-vector
space, V , where by Proposition 1 we know this vector space to have dimension e0f
over Fp, let óm Ð ëj = ómÒj for m 2 M, j = 1Ò    Ò f , and supplement these elements with
elements in ÓL, calling them

n
ómÒj j m 2 f0Ò 1Ò    Ò e0 � 1g � M; j = 1Ò    Ò f

o
, so that

we have a basis of V .
Now consider a óm0Òj0 2 ÓL where m0 62 M. Since the öm Ð ëj provide a Fp[hçi]-basis

of Ÿ
ï0

2(0)
1 ÛpÓ1, TLÛK1

(óm0Òj0 ) =
P

bmÒj(ç)öm Ð ëj + pú for bmÒj(ç) 2 Zp[hçi] and ú 2 Ó1.
As a result we may change our basis for V replacing óm0Òj0 by óm0Òj0 �

P
bmÒj(ç)ómÒj � ú.

In this way the TLÛK1
(ómÒj) = 0 for m 62 M.

Then as a result of Lemma 4 and Nakayama’s Lemma, the fómÒj j m = 0Ò 1Ò    Ò
e0 � 1; j = 1Ò    Ò fg provide a Zp[G]-module basis for ÓLÛÓ1.

7. The Galois module structure of ÓL and ŸL In the following proof we make
liberal use of the arguments in [1, Section 8A, Section 34B and Section 34C]. We note that
those same arguments have been used in [2] to classify a family of Zp[G]-modules which
include the indecomposable Zp[G]-modules that appear in the statements of Theorem 1
and Theorem 2.

Let ómÒj be the Zp[G]-module basis of ÓLÛÓ1 given in Lemma 5. Let ömÒj = öm Ð ëj

also. Then

ÓLÛÓ1 =
e0�1X
m=0

fX
j=1
Zp[G]ómÒj

ë
≤ (R1 
 E)e0f (13)

From now on we will suppress the range of values that m and j take and simply refer toP
m and

P
j instead of

Pe0�1
m=0 and

Pf
j=1. Let ì be the inclusion map from Ó1 into ÓL, and

let ô be the projection map from ÓL onto ÓLÛÓ1. We have the following Zp[G]-exact
short sequence,

0 !Ó1
ì
! ÓL

ëŽô
! (R1 
 E)e0 f ! 0Ò(14)

which gives rise to a long exact sequence [1, Theorem 8.6] and determines an element
ò in Ext1Zp[G]

�
(R1 
 E)e0f ÒÓ1

�
[1, p. 175–176] in the following way: Let fzmÒfg be

indeterminants with
P

m
P

j Zp[G]zmÒj a free Zp[G]-module and let ymÒj = Φp(õ)zmÒj . Let
ß 2 HomZp[G](

P
m
P

j Zp[G]zmÒjÒÓL) be induced by ß(zmÒj) = ómÒj which in turn induces
ñ 2 HomZp[G](

P
m
P

j Zp[G]ymÒjÒÓ1) such that ñ(ymÒj) = ömÒj. We have the following
Zp[G] commutative diagram,

0 �!
P

m
P

j Zp[G]ymÒj �!
P

m
P

j Zp[G]zmÒj �! (R1 
 E)e0f �! 0

ñ
??y ß

??y =
??y

0 �! Ó1
ì

�! ÓL
ëŽô
�! (R1 
 E)e0f �! 0

Since
P

m
P

j Zp[G]zmÒj is projective [1, p 174],ò 2 Ext1Zp[G]

�
(R1
E)e0f ÒÓ1

�
, corresponds

with and is completely is completely determined by

ñ̄ 2
HomZp[G](

P
m
P

j Zp[G]ymÒjÒÓ1)

p HomZp[G](
P

m
P

j Zp[G]ymÒjÒÓ1)
Ò
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which is completely determined by a “diagonal” matrix A with the ömÒj appearing along
the “diagonal”.

We now refer back to the “notes” following (11) and (12). Suppose that r 6= 1, then
matrix A appears with only zeros in the first

�
n(p � 1) � r

�
f rows and columns. As a

consequence, (n(p � 1)� r)f copies of Eý (R1 
 E) decompose off of ÓL. Now by the
remark associated with (12), ñ(yn(p�1)�rÒj) = (ç � 1)r for each j = 1Ò    Ò f . Therefore f
copies of (R1 
 EÒE;ïr) decompose off.

For each m = n(p � 1) � r + 1Ò    Ò e0 � 2 and each j = 1Ò    Ò f , ñ(ymÒj) = 1; so
(R1
EÒE; 1)(n(p�1)�r�2)f appears in the decomposition ofÓL. Finally ñ(ye0�1Òj) = 1ý1 2
ZýR1, so that (R1
EÒZýR1; 1ý1)f decomposesoff. This is the complete decomposition
of ÓL. One may easily check as in [2] that the modules are indecomposable.

Note that the case r = 1 is handled similarly; while the argument determining the
Zp[G]-module structure of ŸL follows in an analogous manner.

8. A canonical example In this section, we apply the main result of this paper in
a canonical situation. Assuming that p Ù 3, we consider the Galois module structure
of the ring of integers in the maximal elementary abelian p-extension, L, of a ramified
quadratic extension, KÛQp. Clearly the p-th roots of unity are not present in K, and so by
a result of Shafarevich [16], Gal(LÛK) is the direct product of three copies of the cyclic
group of p elements, Gal(LÛK) ≤ Cp ðCp ðCp. Since there exists a ramified extension
of degree p over K with ramification number equal to one, and another with ramification
number equal to two [10], and since there exists an unramified extension of degree p
over K [15], L must actually be the composite of these three extensions. We will denote
these extensions by L1, L2 and Lu respectively, so that L = Lu Ð L1 Ð L2. Let Lw be the
composite of L1 and L2. Clearly LwÛK satisfies the conditions of Theorem 1, with f = 1,
n = 1, r = p � 1 and e0 = 2. Therefore if Ów denotes the ring of integers in Lw,

Ów ≤ (R1 
 EÒZ ý R1; 1 ý 1)ý (R1 
 EÒE;ïp�1) as Zp[Gal(LwÛK)]-modules

LetÓu,ÓK,ÓL denote the ring of integers in Lu, K and L respectively. Using the fact that
LuÛK is unramified, while LwÛK is fully ramified it is easy to show thatÓL = ÓuÓw. By
a theorem of E. Noether [12], using the fact that LuÛK is unramified and therefore tame,
we find that Óu has a normal integral basis over ÓK. Therefore, if Gal(LuÛK) = höi,
there is an ã 2 Óu such that ãÓK + ö(ã)ÓK + Ð Ð Ð + öp�1(ã)ÓK = Óu. Therefore,

ÓL = ÓuÓw

= ãÓw + ö(ã)Ów + Ð Ð Ð + öp�1(ã)Ów

≤ Zp[höi]
Zp Ów

≤ Zp[höi]
Zp

�
(R1 
 EÒZ ý R1; 1 ý 1) ý (R1 
 EÒE;ïp�1)

�

as Zp[Gal(LÛK)]-modules.
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