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The problem of a uniform current interacting with bodies submerged beneath a
homogeneous ice sheet is considered, based on linearised velocity potential theory for
fluid and elastic thin plate theory for ice sheet. This problem is commonly solved by
the boundary element method (BEM) with the Green function, which is highly effective
except when the Green function becomes singular, and the direct solution of the BEM is
no longer possible. However, flow behaviour, body force and ice sheet deflection near the
critical Froude numbers are of major practical interest, such as in ice breaking. The present
work successfully resolves this challenge. A modified boundary integral equation (BIE) is
derived, which converts the singular Green function term to a far-field one and removes
the singularity. The BIE is then imposed at infinity for additional unknowns in the far field.
It is proved that the solution is finite and continuous at the critical Froude number F = Fc,
where the body starts generating travelling waves, and finite but discontinuous at depth-
based Froude number F = 1±. Case studies are conducted for single and double circular
cylinders and an elliptical cylinder with various angles of attack. A comprehensive analysis
is made on the hydrodynamic forces and the generated flexural gravity wave profiles, and
their physical implications are discussed. It is also concluded that the method developed
in this paper is not confined to the present case but is also applicable to a variety of related
problems when the BEM fails at the critical points.

Key words: wave-structure interactions, sea ice, surface gravity waves

1. Introduction
In recent years, new commercial shipping routes through the Arctic Ocean have
gradually become visible (Smith & Stephenson 2013). Icebreakers are commonly

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1018 A45-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
56

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0009-0006-6097-1679
https://orcid.org/0000-0002-3652-1970
mailto:g.wu@ucl.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.10564&domain=pdf
https://doi.org/10.1017/jfm.2025.10564


Y. Yang and G.X. Wu

employed to ensure safe and environmentally friendly navigation for offshore operations.
However, conventional icebreakers are often unsuitable for narrow channels, where
limited manoeuvring space presents operational challenges, and are inefficient in thin
ice conditions due to high fuel consumption and environmental impact. A promising
alternative involves utilising flexural gravity waves generated by submerged vehicles
(Kozin & Onishchuk 1994) or moving hovercraft on the ice sheet (Eyre 1977). To apply
these methods effectively, it is crucial to understand the physical mechanisms of the
hydrodynamic interactions between the moving body, flexural gravity waves and ice sheet
deformation.

For loads moving on an ice sheet, Takizawa (1985) conducted an experiment on an ice-
covered lake, and illustrated that the distribution of the generated flexural gravity waves in
the ice sheet was related to the speed of the load. To explain this observed phenomenon,
the ice sheet may be modelled as a Kirchhoff–Love plate, and the linearised velocity
potential theory for the fluid may be adopted. Based on this model, Davys, Hosking &
Sneyd (1985) employed the Fourier transform method and studied the three-dimensional
(3-D) problem of hydroelastic waves generated by a single source moving steadily on an
ice sheet. Later, Schulkes & Sneyd (1988) studied the 2-D transient problem of waves
generated by moving loads. Their results showed that, for this type of problem, there are
two critical Froude numbers F = Fc and the depth-based F = 1. When F < Fc, there is
no travelling wave to infinity and only evanescent ones; when Fc < F < 1, two travelling
waves emerge, travelling upstream and downstream, respectively; when F > 1, only the
upstream wave remains. Furthermore, Milinazzo, Shinbrot & Evans (1995) and Nugroho
et al. (1999) considered the problem of flexural waves generated by prescribed point and
distributed loads at the critical Froude numbers. They found that the velocity potential
and ice sheet deflection for both the 2-D and 3-D problems are unbounded at F = Fc. In
addition to a steadily moving load, Miles & Sneyd (2003) investigated the response of
a floating ice sheet to a line load accelerating from rest. Their results indicated that the
hydroelastic wave profile underwent a stable transition when the speed of the load passed
through the critical speed F = Fc. More recently, Hosking & Milinazzo (2022) further
extended the work to consider line loads of arbitrarily varying speed.

For bodies moving below an ice sheet, Savin & Savin (2012) simplified a 2-D circular
cylinder as a dipole, and obtained an analytical solution for a dipole moving uniformly
beneath a homogeneous ice sheet. Sturova (2013) further solved the 3-D problem of a
sphere moving at a forward speed based on the multipole expansion procedure (Wu 1995).
Li, Wu & Shi (2019) considered an equivalent problem of a uniform current interaction
with a circular cylinder submerged below an ice sheet. The Green function or the velocity
potential due to a single source was first derived, and then multipole expansion was
adopted to construct the velocity potential. They noticed that the resistance and lift on the
body experienced very rapid change when F was near Fc or 1. These were quite different
from the free surface problem, where there is only one critical speed at F = 1 (Lighthill
1978). Later, Yang, Wu & Ren (2021) further extended the work to the 3-D ice-covered
channel problem and found that the Green function is singular at an infinite number of
critical speeds. A major problem when the Green function becomes singular is that the
commonly used boundary element method (BEM) is no longer solvable. The behaviour
of the flow corresponding to the real body then becomes unknown because the solution
cannot be found. We may notice that the present case is very much different from that of
a load moving on the ice sheet (Milinazzo et al. 1995; Nugroho et al. 1999), where the
moving load is prescribed. Here, the potential needs to be found and its solution requires
the Green function. A closely related problem is that of a body advancing at forward speed
U below a free surface and oscillating with frequency ω. In the case of infinite water
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Figure 1. Sketch of the problem and the defined coordinate system.

depth, when τ = Uω/g = 1/4, where g is acceleration due to gravity, the corresponding
Green function is singular and the solutions near the critical value were found to change
very rapidly (Grue & Palm 1985; Wu & Eatock Taylor 1987; Wu 1991), and the problem
at the critical value is not solvable. Later, Liu & Yue (1993) proved the solution for a
real body of finite volume at τ = 1/4. They subsequently proposed a modified boundary
integral equation (BIE) for the solution at this critical point. Palm & Grue (1999) further
demonstrated that the solution for a foil of zero thickness with zero volume was also finite.
However, the procedure of Liu & Yue (1993) relies on the condition that an introduced
parameter Γ �= 0, which may not always be straightforward to verify in more general
cases. In this paper, we propose a novel procedure to solve the problem of a uniform
current passing bodies submerged beneath an ice sheet at the critical points F = Fc and
F = 1. Although the detailed derivation and results are provided only for the 2-D case, the
procedure can be used in 3-D problems. In particular, a new and modified BIE is derived
in which the effect of the singularity is removed. This enables us to obtain the solution at
the critical Froude number directly, which has not been achieved previously, and is highly
significant. Moreover, the approach here is more general and straightforward, and it can be
easily applied to a wide range of related problems.

The rest of the paper is arranged as follows. The boundary value problem and the Green
function are introduced in § 2. In § 3, the procedure to treat singularity and a modified
BIE are proposed. In § 4, case studies and results are presented for a single and double
submerged circular cylinder, as well as an ellipse with different angles of attack, followed
by the conclusions in § 5.

2. The boundary value problem and the Green function
The problem of a uniform current of speed U passing a body of arbitrary shape submerged
below an ice sheet sketched in figure 1 is considered. A Cartesian coordinate system O-xz
is defined, with the x-axis along the undisturbed water surface and against the direction of
the current, and the z-axis pointing vertically upwards. The undisturbed water has depth
H and its surface is covered by a homogeneous ice sheet.

The fluid with density ρ is assumed to be inviscid, incompressible and homogeneous,
and its motion is irrotational. The linearised velocity potential theory is employed for the
problem, as in those works mentioned above. The total velocity potential is written as

Φ(x, z) = −U x + φ(x, z), −∞ < x < +∞, −H � z � 0, (2.1)
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where φ denotes the disturbed velocity potential by the body, and is governed by the
Laplace equation, or

∇2φ = 0, −∞ < x < +∞, −H � z � 0. (2.2)

The boundary condition on the ice sheet provides (Li et al. 2019)

(
L

∂4

∂x4 + ρg

)
∂φ

∂z
+ ρU 2 ∂2φ

∂x2 = 0, z = 0, (2.3)

where L represents the flexural rigidity of the ice sheet. On the body surface SB and the
seabed, the impermeable boundary condition gives

∂φ

∂n
= Unx , on SB, (2.4)

∂φ

∂z
= 0, z = −H, (2.5)

where n = (nx , nz) represents the unit normal vector of SB . Apart from that, the radiation
condition should also be imposed at the far field, as a result of which the waves at x = +∞
and x = −∞ will have group velocities larger and smaller than U , respectively.

It is common that this kind of problem is solved through the BEM, in which the Green
function G(P, Q), or the velocity potential at the field point P(x, z) due to a source
located at Q(x0, z0) is essential; G satisfies all the boundary conditions above, apart from
that on the body surface SB . From Li et al. (2019), we have

G(P, Q) = ln
( r1

H

)
+ ln

( r2

H

)
− 2 Re

{∫
L

P(α)
[
C(z, α)C(z0, α)eiα(x−x0) − 1

]
K (α, U )

dα

}
,

(2.6)
where r1 =√(x − x0)2 + (z − z0)2, r2 =√(x − x0)2 + (z + z0 + 2H)2 and

P(α) = e−αH (Lα4 + ρg + ρU 2α
)
, (2.7)

C(z, α) = cosh α(z + H), (2.8)

K (α, U ) = (Lα4 + ρg
)
α sinh(αH) − ρU 2α2 cosh(αH). (2.9)

The integration route L in (2.6) is from 0 to +∞ and its path at singularities corresponding
to K (α, U ) = 0 follows the procedure of Lighthill (1978). The nature of this equation has
been discussed extensively by Yang, Wu & Ren (2024). When Fc < F = U/

√
gH < 1,

where Fc denotes the critical Froude number (Davys et al. 1985), K (α, U ) = 0 has two
positive real roots κ−1 and κ0 with κ−1 > κ0. The integration route L should pass under
(over) the first-order poles at κ−1 (κ0). The integration then can be split into the Cauchy
principal integration part and the residual part. Correspondingly there will be a κ−1 (κ0)
wave at x = +∞ (−∞). When F > 1, κ0 becomes a purely negative imaginary root and
its wave disappears. There is only one pole at κ−1, and its wave at x = +∞ remains.
When F < Fc, κ−1 and κ0 become a pair of conjugate complex roots, or κ−1 = κ0 with
Re{κ−1} > 0 and Im{κ−1} > 0. There is no singularity on L and no wave at infinity.
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3. Solution procedure for submerged bodies at critical Froude numbers
With the help of the Green function, the differential equation for φ can be converted into
an integral equation over the body surface (Wehausen 1973)

Λ(P)φ(P) =
∫

SB

[
φ( Q)

∂G(P, Q)

∂n0
− G(P, Q)

∂φ( Q)

∂n0

]
ds0, (3.1)

where Λ(P) denotes the 2-D solid angle at P , ∂/∂n0 represents the normal derivative at
(x0, z0). In general, the body surface can be discretised into small elements and (3.1) can
be solved numerically. However, complexity arises at a critical speed. To demonstrate the
problem explicitly, we may write

K (α, U ) = (α2 − κ2
0
)(

α2 − κ2−1
)
Rc(α), (3.2)

where Rc(α) �= 0 when α > 0. Based on the discussion below (2.9), when F → Fc, κ0 and
κ−1 merge into κc and K (α, U ) → (α2 − κ2

c )2 Rc(α). In such a case, both K (κc, Uc) =
Kα(κc, Uc) = 0, where Uc = Fc

√
gH and Kα denotes the derivative with respect to α. As

a result, the residue at κc becomes infinite, or the Green function at Fc is infinite, and (3.1)
becomes unsolvable. This leads to the question of whether φ is also infinite or exists. To
answer this, we may define

Fc(α, P, Q) = P(α)

Rc(α)

[
C(z, α)C(z0, α)eiα(x−x0) − 1

]
, (3.3)

where Fc(α, P, Q) does not contain any real pole. In such a case, G in (2.6) becomes

G(P, Q) = ln
( r1

H

)
+ ln

( r2

H

)
− 2 Re

{∫
L

Fc(α, P, Q)

(α2 − κ2
0 )(α2 − κ2−1)

dα

}
. (3.4)

We may take out the singularities in (3.4), and write

∫
L

Fc(α, P, Q)

(α2 − κ2
0 )(α2 − κ2−1)

dα =
(

1
κ2−1 − κ2

0

)

×
∫ +∞

0

{[
Fc(α, P, Q)

α2 − κ2−1
− Fc(α, P, Q)

α2 − κ2
0

]
−
[
Fc(κ−1, P, Q)

α2 − κ2−1
− Fc(κ0, P, Q)

α2 − κ2
0

]}
dα

+
(

1
κ2−1 − κ2

0

) ∫
L

[
Fc(κ−1, P, Q)

α2 − κ2−1
− Fc(κ0, P, Q)

α2 − κ2
0

]
dα. (3.5)

Based on the definitions of L, κ0 and κ−1, using the residue theorem, we obtain∫
L

1
α2 − κ2−1

dα = π i
2κ−1

,

∫
L

1
α2 − κ2

0
dα = − π i

2κ0
. (3.6)

Substituting (3.5) and (3.6) into (3.4), we have

G(P, Q) = G̃(P, Q) + Ψ (P, Q), (3.7)
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where

G̃(P, Q) = ln
( r1

H

)
+ ln

( r2

H

)

− 2 Re

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
κ2−1 − κ2

0

∫ +∞

0

⎡
⎢⎢⎢⎣

Fc(α, P, Q)

α2 − κ2−1
− Fc(α, P, Q)

α2 − κ2
0

−Fc(κ−1, P, Q)

α2 − κ2−1
− Fc(κ0, P, Q)

α2 − κ2
0

⎤
⎥⎥⎥⎦ dα

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(3.8)

Ψ (P, Q) = πIm

{
1

κ2−1 − κ2
0

[Fc(κ−1, P, Q)

κ−1
+ Fc(κ0, P, Q)

κ0

]}
, (3.9)

with Fc(α, P, Q) defined in (3.3). When F → Fc, |κ−1 − κ0| → 0, we may apply
L’Hôpital’s rule to (3.8), which provides

G̃(P, Q) = ln
( r1

H

)
+ ln

( r2

H

)

− 2 Re
{

P.V.
∫ +∞

0

Fc(α, P, Q) −Fc(κc, P, Q)

(α2 − κ2
c )2 dα

}
+ O (|κ−1 − κ0|) .

(3.10)
Thus, G̃ is finite at F = Fc, and is consistent with the result obtained by applying the
Hadamard regularisation to the integral in (3.4). By contrast, Ψ (P, Q) is singular. Besides,
since (κ−1 − κ0) is imaginary when F < Fc, but real when Fc < F < 1, Ψ (P, Q) takes
different forms when F → Fc + 0±.

We may substitute (3.7) into (3.1), which provides

Λ(P)φ(P) =
∫

SB

[
φ( Q)

∂G̃(P, Q)

∂n0
− G̃(P, Q)

∂φ( Q)

∂n0

]
ds0

+
∫

SB

[
φ( Q)

∂Ψ (P, Q)

∂n0
− Ψ (P, Q)

∂φ( Q)

∂n0

]
ds0. (3.11)

The second integral in (3.11) is singular. To deal with this, we may investigate the nature
of the Green function more closely. At large |x − x0|, we may extend the integration route
L in (3.4) from α ∈ (0, +∞) to α ∈ (−∞, +∞). The path at the pole −κ−1 (−κ0) is the
same as that at κ−1 (κ0) when it is real. When they are complex, −κ−1 (−κ0) is in the
lower (upper) half-plane. Additionally, κ−1 = κ0 when F < Fc. In such a case, the residue
theorem can be used in the upper or lower half-plane, depending on the sign of (x − x0).
We need to keep only the leading κ0 and κ−1 terms, as well as the term due to the pole at
α = 0 in G, because other poles are on the imaginary axis (Yang et al. 2024) and decay far
more rapidly. This provides

G+∞(P, Q) = 2πIm

{
Fc(κ−1, P, Q)

κ−1(κ
2−1 − κ2

0 )

}
+ H(F − 1) × πIm

{
Fc(−κ0, P, Q)

κ0(κ
2−1 − κ2

0 )

}
+ Dx,

(3.12)

G−∞(P, Q) = [2 − H(F − 1)] × πIm

{
Fc(κ0, P, Q)

κ0(κ
2−1 − κ2

0 )

}
− Dx, (3.13)
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where the subscripts ±∞ correspond to the sign of (x − x0), D is a constant due to the
pole at α = 0 and H(x) represents the Heaviside step function, reflecting the location of
the pole at different Froude numbers. When F < 1, from (3.9), (3.12) and (3.13) we have

G−∞(P, Q) + G+∞(P, Q) = 2Ψ (P, Q). (3.14)

This gives∫
SB

[
φ( Q)

∂Ψ (P, Q)

∂n0
− Ψ (P, Q)

∂φ( Q)

∂n0

]
ds0 = π

[
φ+∞(P) + φ−∞(P)

]
, (3.15)

where φ±∞ represents φ at x → ±∞. Applying (3.15) to (3.11), we have

Λ(P)φ(P) =
∫

SB

[
φ( Q)

∂G̃(P, Q)

∂n0
− G̃(P, Q)

∂φ( Q)

∂n0

]
ds0 + π

[
φ+∞(P) + φ−∞(P)

]
.

(3.16)
Based on the behaviour of G±∞(P, Q) at F < 1 in (3.12) and (3.13), we may write

φ+∞(P) = A+Re

{
1

κ2−1

[
C(z, κ−1)

C(0, κ−1)
eiκ−1x − 1

]}
+ B+Im

{
1

κ−1

C(z, κ−1)

C(0, κ−1)
eiκ−1x

}
+ C ,

(3.17a)

φ−∞(P) = A−Re

{
1
κ2

0

[
C(z, κ0)

C(0, κ0)
eiκ0x − 1

]}
+ B−Im

{
1
κ0

C(z, κ0)

C(0, κ0)
eiκ0x

}
− C ,

(3.17b)

where A± and B± are unknowns, C is known as the blockage constant for the free surface
problem (Mei & Chen 1976). When F → Fc + 0+, both κ−1 and κ0 are real and positive,
and φ±∞ are wavy functions. By contrast, when F → Fc + 0−, Im{κ−1} = −Im{κ0} =
ε → 0+, φ±∞ decay extremely slowly with x . If F = Fc is taken, ε = 0, and they become
wavy functions too. Substituting (3.17) into (3.16), and letting F = Fc, we obtain

Λ(P)φ(P) =
∫

SB

[
φ( Q)

∂G̃(P, Q)

∂n0
− G̃(P, Q)

∂φ( Q)

∂n0

]
ds0

+ π

[
A+ + A−

κ2
c

(
C(z, κc) cos(κcx)

C(0, κc)
− 1
)

+ B+ + B−
κc

C(z, κc) sin(κcx)

C(0, κc)

]
.

(3.18)
Compared with (3.11), G̃ in (3.18) is finite. However, the equation has four additional
unknowns, namely A± and B±. To resolve that, we may let |x | → +∞ in (3.10), and
invoke the theorem of residue for G̃. This provides

lim|x |→∞ G̃(P, Q) = sgn(x − x0)G̃∞(P, Q) + Dc|x − x0|, (3.19)

where sgn(x − x0) is the sign function, Dc = gπ/(gH − U 2
c ) and

G̃∞(P, Q) = πρU 2
c

2κ2
c

∂

∂κc

[
κcC(z, κc)C(z0, κc) sin κc(x − x0)

Rc(κc) sinh(κc H)

]
. (3.20)
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In (3.19), G̃∞(P, Q) is associated with κc wave terms in (3.17), and Dc|x − x0| is linked
to the blockage constant C . Therefore, by letting |x | → +∞ in (3.18), it becomes

π

[
(A+ − A−)

cos(κcx)

κ2
c

+ (B+ − B−)
sin(κcx)

κc

]
C(z, κc)

C(0, κc)

=
∫

SB

[
φ( Q)

∂G̃∞(P, Q)

∂n0
− G̃∞(P, Q)

∂φ( Q)

∂n0

]
ds0.

(3.21)

Substituting (3.20) into (3.21), and matching both sin(κcx) and cos(κcx) terms of the
equation, we obtain∫

SB

[
φ( Q)

∂G j ( Q; κc)

∂n0
− G j ( Q; κc)

∂φ( Q)

∂n0

]
ds0 = 0, j = 1, 2, (3.22a)

A+ − A− = κ2
c γc

∫
SB

[
φ( Q)

∂2G1( Q; κc)

∂κc∂n0
− ∂G1( Q; κc)

∂κc

∂φ( Q)

∂n0

]
ds0, (3.22b)

B+ − B− = κcγc

∫
SB

[
φ( Q)

∂2G2( Q; κc)

∂κc∂n0
− ∂G2( Q; κc)

∂κc

∂φ( Q)

∂n0

]
ds0, (3.22c)

where

G1( Q; κc) = −C(z0, κc)

C(0, κc)
sin(κcx0), (3.23a)

G2( Q; κc) = C(z0, κc)

C(0, κc)
cos(κcx0), (3.23b)

γc = ρU 2
c cosh2(κc H)

2κc Rc(κc) sinh(κc H)
. (3.23c)

Equation (3.22) then provides four additional equations. In such a case, the velocity
potential φ can be solved from (3.18) and (3.22). What is important here is that there is no
singular term in these equations. Also, the same equations are valid for both F → Fc + 0±.
Hence, the solution is continuous at F = Fc. This then resolves the difficulty caused by
the singularity of the Green function at F = Fc.

Apart from the critical speed at F → Fc, where (κ−1 − κ0) → 0, there is another critical
speed at F → 1, where κ0 → 0 (Yang et al. 2024). In particular, when F → 1−, κ0 → 0+.
As can be seen from (3.8) and (3.9), the Green function is singular. Using L’Hôpital’s rule
in (3.3) at α = κ0, we have

lim
κ0→0+ Re {Fc(κ0, P, Q)} = 3κ2−1

[
(z + H)2 + (z0 + H)2 − (x − x0)

2]
2H3 . (3.24)

Hence, (3.8) becomes

G̃(P, Q) = ln
( r1

H

)
+ ln

( r2

H

)

− 2 Re

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P.V.
∫ +∞

0

⎡
⎢⎢⎢⎣

Fc(α, P, Q)

κ2−1(α
2 − κ2−1)

− Fc(α, P, Q)

κ2−1α
2

+ 3
[
(z + H)2 + (z0 + H)2 − (x − x0)

2]
2H3α2

⎤
⎥⎥⎥⎦dα

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ O(κ0),

(3.25)
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which is finite. Correspondingly (3.9) may be written as

Ψ (P, Q) = π

κ2−1
Im
{Fc(κ0, P, Q)

κ0

}
+ G̃−1∞ (P, Q), (3.26)

where

G̃−1∞ (P, Q) = π

κ3
−1

Im {Fc(κ−1, P, Q)} . (3.27)

Here, Ψ (P, Q) is unbounded because of the 1/κ0 term. The singular term may also be
removed using the procedure in (3.14)–(3.16). In fact, at F = 1−, κ0 → 0+, we may apply
the theorem of residue to (3.25). Letting |x | → +∞, we obtain

lim|x |→∞ G̃(P, Q) = sgn(x − x0)
[
G̃−1∞ (P, Q) + G̃0∞(P, Q)

]+ D0|x − x0|, (3.28)

where D0 = (9π/5H)(1 − (5L/ρgH4)), and

G̃0∞(P, Q) = π

2H3 (x − x0)
3 − 3π

2H3

[
(z + H)2 + (z0 + H)2](x − x0). (3.29)

We may further let F = 1− in (3.17b) and invoke L’Hôpital’s rule. This gives

φ−∞(P) = 1
2

A−
[
(z + H)2 − x2 − H2]+ B−x − C . (3.30)

Substituting (3.17a) and (3.30) into (3.16), we have

Λ(P)φ(P) =
∫

SB

[
φ( Q)

∂G̃(P, Q)

∂n0
− G̃(P, Q)

∂φ( Q)

∂n0

]
ds0

+ π

[
1
2

A−
(
(z + H)2 − x2 − H2)+ B−x

]

+ π

[
A+
κ2−1

(
C(z, κ−1) cos(κ−1x)

C(0, κ−1)
− 1
)

+ B+
κ−1

C(z, κ−1) sin(κ−1x)

C(0, κ−1)

]
.

(3.31)
We may perform an operation similar to that in (3.18). In (3.31), letting |x | → +∞,
invoking (3.28) and matching terms of sin(κ−1x), cos(κ−1x), (z + H)2 − x2 and x in
the BIE. The following equations can be obtained:

A+ = κ2−1γ−1

∫
SB

[
φ( Q)

∂G1( Q; κ−1)

∂n0
− G1( Q; κ−1)

∂φ( Q)

∂n0

]
ds0, (3.32a)

B+ = κ−1γ−1

∫
SB

[
φ( Q)

∂G2( Q; κ−1)

∂n0
− G2( Q; κ−1)

∂φ( Q)

∂n0

]
ds0, (3.32b)

A− =
∫

SB

[
φ( Q)

∂G3( Q)

∂n0
− G3( Q)

∂φ( Q)

∂n0

]
ds0, (3.32c)

B− =
∫

SB

[
φ( Q)

∂G4( Q)

∂n0
− G4( Q)

∂φ( Q)

∂n0

]
ds0, (3.32d)
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where G j ( j = 1, 2) are defined in (3.23a) and (3.23b), and

G3( Q) = 3
H3 x0, (3.33a)

G4( Q) = 3
2H3

[
x2

0 − (z0 + H)2
]
, (3.33b)

γ−1 = ρgH cosh2(κ−1 H)

κ2−1 Rc(κ−1) sinh(κ−1 H)
. (3.33c)

In such a case, A±, B± and φ at F = 1− can be solved from (3.31) and (3.32), and the
solution is finite. Moreover, if we substitute (3.32) back into (3.31), φ in fact can be solved
directly from the BIE involving a modified Green function G ′(P, Q)

Λ(P)φ(P) =
∫

SB

[
φ( Q)

∂G ′(P, Q)

∂n0
− G ′(P, Q)

∂φ( Q)

∂n0

]
ds0, (3.34)

where

G ′(P, Q) = G̃(P, Q) + πγ−1
[G2(P; κ−1)G1( Q; κ−1) − G1(P; κ−1)G2( Q; κ−1)

]
+ π H3

3

[G3(P)G4( Q) − G4(P)G3( Q)
]
. (3.35)

This removes the singularity F = 1− and involves the unknowns only on the body
surface. When F → 1+, κ0 → 0− × i (Yang et al. 2024). We notice from (3.3) that
Re{Fc(κ0, P, Q)} → O(κ−1

0 ), and thus (3.24) is no longer valid. To deal with that,
Fc(κ0, P, Q) in (3.8) and (3.9) can be replaced with [Fc(κ0, P, Q) +Fc(−κ0, P, Q)]/2.
Noticing

lim
κ0→0

[
Re{Fc(κ0, P, Q) +Fc(−κ0, P, Q)}

2

]
=3κ2−1

[
(z + H)2+ (z0 + H)2− (x − x0)

2]
2H3 .

(3.36)
Hence, G̃(P, Q) in (3.25) is still valid. The parameter Ψ (P, Q) in (3.26) should be
modified as

Ψ (P, Q) = π

2κ2−1
Im
{Fc(κ0, P, Q)

κ0
+ Fc(−κ0, P, Q)

κ0

}
+ G̃−1∞ (P, Q). (3.37)

In such a case, (3.14)–(3.16) are still satisfied. However, since κ0 is imaginary here,
G±∞ in (3.12) and (3.13) contain the decaying wave component κ0 in both upstream and
downstream regions. Based on the behaviour of G at infinity, φ±∞ should be rewritten as

φ+∞(P) = A+Re

{
1

κ2−1

[
C(z, κ−1)

C(0, κ−1)
eiκ−1x − 1

]}
+ B+Im

{
1

κ−1

C(z, κ−1)

C(0, κ−1)
eiκ−1x

}

+ iE+
κ0

[
C(z, κ0)

C(0, κ0)
e−iκ0x − 1

]
+ C , (3.38a)

φ−∞(P) = E−
iκ0

[
C(z, κ0)

C(0, κ0)
eiκ0x − 1

]
− C , (3.38b)
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where E± are unknowns. Letting F = 1+ in (3.38a) and (3.38b), we obtain

φ+∞(P) = A+Re

{
1

κ2−1

[
C(z, κ−1)

C(0, κ−1)
eiκ−1x − 1

]}
+ B+Im

{
1

κ−1

C(z, κ−1)

C(0, κ−1)
eiκ−1x

}

+ E+x + C , (3.39a)
φ−∞(P) = E−x − C . (3.39b)

Following a similar procedure above, we may substitute (3.39) into (3.16). This provides

Λ(P)φ(P) =
∫

SB

[
φ( Q)

∂G̃(P, Q)

∂n0
− G̃(P, Q)

∂φ( Q)

∂n0

]
ds0 + π(E+ + E−)x

+ π

[
A+
κ2−1

(
C(z, κ−1) cos(κ−1x)

C(0, κ−1)
− 1
)

+ B+
κ−1

C(z, κ−1) sin(κ−1x)

C(0, κ−1)

]
.

(3.40)
Letting |x | → +∞ in (3.40), using (3.28), as well as matching functions sin(κ−1x),
cos(κ−1x) and x in the BIE, (3.32a) and (3.32b) can be also obtained for A+ and B+.
Besides, for E±, we have∫

SB

[
φ( Q)

∂G3( Q)

∂n0
− G3( Q)

∂φ( Q)

∂n0

]
ds0 = 0, (3.41a)

E+ − E− =
∫

SB

[
φ( Q)

∂G4( Q)

∂n0
− G4( Q)

∂φ( Q)

∂n0

]
ds0. (3.41b)

Hence, the velocity potential φ at F = 1+ can be solved from (3.32a), (3.32b), (3.40)
and (3.41). These equations have no singularity. The analysis above also shows that φ at
F = 1± is discontinuous due to the difference in the modified equations.

4. Results and discussion
In the following computation, typical values of physical parameters of the ice sheet and
the fluid domain are selected as (Li et al. 2019)

ρ = 1025 kg m−3, g = 9.8 m s−2, L = 4.5788 × 108 N m, H = 40 m. (4.1)

As shown in figure 2, two submerged body configurations are considered, namely, a single
ellipse or two circular cylinders positioned beneath an ice sheet, for case studies. In the
numerical implementation, each body surface is discretised into 128 linear elements, and
equations are discretised and treated based on the procedure in Lu, He & Wu (2000), and
the solution has been found to be convergent.

4.1. Verification through a single circular cylinder submerged below an ice sheet
Computation is first conducted for a single circular cylinder, which corresponds to a special
case of figure 2(a) with dimensions b = a = H/8, and its centre is located at (xc, zc) =
(0, −2a). The distribution of the velocity potential φ on the surface of the body is shown
in figure 3, where tan θ = (z − zc)/(x − xc). It can be seen that the results by the modified
BIE at F = Fc and F = 1± are fully consistent with those by the usual BIE, or (3.1), when
F is sufficiently close to these critical Froude numbers. Besides, as shown in figures 3(b)
and 3(c), noticeable differences can be observed in the curves of φ versus θ at F = 1−
and F = 1+, which further verifies the proof in § 3, that φ is discontinuous at F = 1.
In such a case, the solution at F = 1 is not unique, and any suitable linear combination
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(xc, zc) (x1, z1) (x2, z2)

a a1 a2

2d

(a) (b)

β

b

Figure 2. Sketch of the conducted case studies. (a) A single ellipse; (b) double circular cylinders.
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(a) (b) (c)Modified BIE, F = Fc
BIE (3.1), F = 0.787

BIE (3.1), F = 0.786882

Modified BIE, F = 1−

BIE (3.1), F = 0.999
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Modified BIE, F = 1+

BIE (3.1), F = 1.001

BIE (3.1), F = 1.00001

Figure 3. Velocity potential around the surface of the single circular cylinder at critical speeds: (a) F → Fc;
(b) F → 1−; (c) F → 1+; (H = 8a, (xc, zc) = (0, −2a), Fc ≈ 0.786882).

of solutions at F → 1− and F → 1+ can be a solution at F = 1. Furthermore, another
interesting observation is that, when F → 1+, the solution of φ tends to U x . This can be
confirmed by substituting it into (3.32a), (3.32b), (3.40) and (3.41), and it can be verified
that all these equations are satisfied. It should be noted that φ = U x is the solution only
for the case of F = 1+, as it does not satisfy the far-field conditions in any other cases,
including F = 1−.

The resistance FR and lift FL on on the body can be evaluated by numerically
integrating the pressure p over its surface, or

FR = −
∫

SB

p(P)nx ds, FL =
∫

SB

p(P)nzds, (4.2)

where

p = −1
2
ρ
[∇(φ − U x) · ∇(φ − U x) − U 2]. (4.3)

The minus sign in FR means that the force is positive when it is in the direction of the
incoming current. The corresponding results from BIE are shown in figure 4, where the
solution based on the multipole expansion by Li et al. (2019), applicable for F �= Fc and
F �= 1, is also included for comparison and validation. Additionally, the hydrodynamic
forces at F = Fc and F = 1± are calculated using the modified BIE, with the numerical
values being also presented in table 1. In figure 4(a), FR = 0 at F = Fc + 0−, which can
be known from the far-field formula (Yang et al. 2021), since no wave exists at infinity.
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Li, Wu & Shi (2019)
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Li, Wu & Shi (2019)
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0

Figure 4. Resistance (a) and lift (b) on the circular cylinder versus the depth-based Froude number (H = 8a,
(xc, zc) = (0, −2a), Fc ≈ 0.786882).

Hydrodynamic force F = Fc F = 1− F = 1+

FR/πρga2 0 1.0626 0
FL/πρga2 0.0144 0.1334 0

Table 1. Resistance and lift on the circular cylinder at critical Froude numbers (H = 8a, (xc, zc) = (0, −2a),
Fc ≈ 0.786882).

When F passes F = Fc, a rapid change occurs, followed by a peak in FR at F > Fc. By
contrast, in figure 4(b), a very large peak value of the lift FL is observed before F = Fc,
while at F = Fc, FL is relatively small but non-zero. At F = 1±, clear and sudden jumps
in the hydrodynamic forces can be observed in both figures 4(a) and 4(b), indicating that
the forces at this point are discontinuous. Besides, both FR and FL tend to zero as F → 1+
since φ → U x , as discussed above.

The ice sheet deflection can be calculated from

η(x) = L

ρgU

∂4φ

∂x3∂z
+ U

g

∂φ

∂x
, z = 0. (4.4)
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F = Fc (modified BIE) 

F = 0.788

Figure 5. Ice sheet deflection η due to a circular cylinder versus x as F → Fc (H = 8a, (xc, zc) = (0, −2a),
Fc ≈ 0.786882).

Figure 5 shows the ice sheet deflection η(x) near the critical speed F = Fc. The maximum
deflection occurs just before F = Fc, and forms a pronounced trough at F = 0.77. By
contrast, η(x) is bounded and not particularly large at F = Fc. This is consistent with the
variation trend of the lift observed in figure 4(b). This behaviour implies that subcritical
speeds slightly smaller than Fc may be the most efficient speeds to generate sufficient
force capable of fracturing the ice sheet. The parameter η(x) near F = 1± is presented
in figure 6. The results by the conventional BIE in (3.1) gradually tend to those by the
modified BIE as F → 1±. However, η(x) tends to the result at F = 1− much more quickly
than that at F = 1+. In particular, a significant difference can still be observed between
results at F = 1.001 and F = 1+, even though the Froude numbers are very close. We
may substitute (3.30) into (4.4). This provides η(x) → U (−Ax + Bx )/g as F → 1− at
x = −∞, because the wavenumber downstream tends to 0. By contrast, at F → 1+, η(x)

becomes flat because φ tends to U x .

4.2. A uniform flow passing an ellipse submerged below an ice sheet
We next analyse a submerged elliptical cylinder with aspect ratio b/a = 2 and its centre
located at (xc, zc) = (0, −2a), as shown in figure 2(a). Three angles of attack β = 0◦, 15◦
and 30◦ are considered as case studies for non-circular and asymmetric bodies. The lift
FL and resistance FR against the depth-based Froude number F are shown in figure 7,
which is obtained through the usual BIE. The values of FL and FR at F = Fc and F = 1±
are computed using the modified BIE and given in table 2. In figure 7, it can be seen
that the variation trends of FL and FR are quite similar to those of a circular cylinder
shown in figure 4. For FR in figure 7(a), when F > 1, the effect of β on the resistance is
significant. At a fixed value of F , as β increases, a clear increase in FR can be seen. For FL
in figure 7(b), when F < Fc, at a fixed value of F , FL increases with the angle of attack
β. By contrast, when F > Fc, the influence of β on FL is not so obvious. Additionally,
the results in table 2 further indicate that FL is bounded and relatively small at F = Fc,
but a very significant peak occurs just before F = Fc. This again suggests that an effective
strategy for ice breaking by an underwater vehicle may be to operate at speeds slightly
below F = Fc, rather than exactly at F = Fc.
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Figure 6. Ice sheet deflection η due to a circular cylinder versus x as F → 1; (a) F → 1−; (b) F → 1+;
(H = 8a, (xc, zc) = (0, −2a), Fc ≈ 0.786882).

Angle of attack Hydrodynamic force F = Fc F = 1− F = 1+

β = 0◦ FR/πρga2 0 1.8346 0
FL/πρga2 0.1037 −0.0999 0

β = 15◦ FR/πρga2 0 1.9147 0
FL/πρga2 0.1021 −0.1205 0

β = 30◦ FR/πρga2 0 2.5439 0
FL/πρga2 0.1032 0.0038 0

Table 2. Resistance and lift on an ellipse at critical Froude numbers (H = 8a, b = 2a, (xc, zc) = (0, −2a),
Fc ≈ 0.786882).

4.3. A uniform flow passing double circular cylinders submerged below an ice sheet
A case study is also conducted for multiple submerged bodies, as shown in figure 2(b).
We consider two identical circular cylinders with radius a = H/8, submerged at z1 =
z2 = −2a, with the distance between their centres being d = 4a (or x1 = −2a, x2 = 2a).
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Figure 7. Resistance (a) and lift (b) on the ellipse versus the depth-based Froude number under different
angles of attack (H = 8a, b = 2a, (xc, zc) = (0, −2a), Fc ≈ 0.786882).

The indices 1 and 2 refer to the cylinders in the downstream and upstream regions,
respectively. The values of FL and FR versus F are shown in figure 8, and the values
at critical Froude numbers are shown in table 3. When F < Fc, similar to the case
of a single circular cylinder (Li et al. 2019), the profile of the flexural gravity wave
should be symmetrical about the origin, and there is no wave at the far field. Hence,
the total resistance should be zero. However, as shown in figure 8(a), the resistance on
each cylinder is non-zero. When F is small, F (1)

R is positive and F (2)
R is negative, which

means mutual expulsion between the two bodies. As F increases and approaches Fc, F (1)
R

becomes negative, while F (2)
R becomes positive, gradually creating a strong attraction

effect between the two bodies. Different from a single body, it can be seen that the
resistance has a large magnitude just below the critical speed. At F = Fc, the magnitudes
of both resistances drop to relatively small values, which can be seen in table 3. As for lift
in figure 8(b), F (1)

L = F (2)
L when F < Fc because of symmetry. When Fc < F < 1, both

F (1)
R and F (1)

L are positive, whereas F (2)
R and F (2)

L are always negative. At F = 1, clear
jumps can also be found in the lifts and resistances in figure 8 and table 3. When F > 1,
it can be seen that F (1)

R remains positive, while F (2)
R remains negative, and the attraction

effect between two bodies becomes stronger as F increases within the range considered.
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Figure 8. Resistance (a) and lift (b) on the double circular cylinders versus the depth-based Froude number
(H = 8a, z1 = z2 = −2a, d = 4a, Fc ≈ 0.786882).

Cylinder No Hydrodynamic force F = Fc F = 1− F = 1+

Cylinder 1 F (1)
R /πρga2 1.1062 1.8774 0

F (1)
L /πρga2 0.2147 0.4569 0

Cylinder 2 F (2)
R /πρga2 −1.1062 −0.2169 0

F (2)
L /πρga2 0.2147 −1.2284 0

Table 3. Resistance and lift on two circular cylinders at critical Froude numbers (H = 8a, d = 4a,
z1 = z2 = −2a, Fc ≈ 0.786882).

5. Conclusion
The problem of a uniform current passing bodies submerged beneath an ice sheet at
the critical Froude numbers F = Fc and F = 1± is investigated, based on the linearised
velocity potential theory for the fluid and the elastic thin plate model for the ice sheet. It
has been shown that, although the Green function is singular as F → Fc and F → 1, the
velocity potential due to a real body remains finite. Particularly, the solution is continuous
at F = Fc, bounded but discontinuous at F = 1±. Additionally, a modified BIE is proposed
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to solve φ at these critical Froude numbers. The key to the success of this procedure has
been to convert the singular terms in the conventional BIE to the velocity potential at the
far field, thereby removing the singularity.

Various case studies are conducted to verify the mathematical proof and procedure. A
single and double circular cylinder, as well as an elliptical cylinder with different angles of
attack have been considered. The results are obtained through the usual BIE with F being
sufficiently close to the critical Froude number and comparisons are made with results
at the critical Froude number by the modified BIE. Detailed analyses are also conducted
for the hydrodynamic forces on the submerged body and the generated flexural gravity
waves. The following features have been observed. (i) The lift on the body is bounded
and relatively small at F = Fc. However, when F is slightly below Fc, a large positive
lift force occurs on the cylinder, which leads to a large deflection of the ice sheet. This
may be used as an effective Froude number for ice breaking. (ii) When the depth-based
Froude number F = 1+ and F = 1−, clear differences are observed in both the forces
and the ice sheet deflection profiles. This further indicates that the solution at F = 1 may
not be unique. In particular, when F → 1+, it is found that φ → U x , which leads the
hydrodynamic forces on the body to tend to 0, and the deflection profile to become flat.
(iii) For a single submerged body, the resistance is zero at F < Fc; For multiple submerged
bodies, although the total resistance is zero at F < Fc, the resistance on each individual
body is non-zero and it can be very large when the Froude number is just below the critical
one. In the case of two submerged circular cylinders, depending on F , both attraction and
repulsion effects can occur between the two bodies.

The present work has successfully resolved the challenge of solving the velocity
potential problem through BIE with the Green function at the critical Froude numbers.
This has allowed us to obtain some detailed results and gain some insights into the physics
at and near the critical Froude number. What is more significant is that the solution
procedure developed in this work is not just confined to the current problem, but can
also be used in a wide range of related problems, for example, the singular problem in
Liu & Yue (1993), the singular problem of fluid and structure interaction at critical Froude
numbers or natural frequencies in an ice-covered channel Yang et al. (2021, 2022) and also
a uniform current interaction with a 3-D body in unbounded ocean.
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