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Abstract

The essential cover Mk of a class M is defined as the class of all essential extensions of rings
belonging to M. M is called essentially closed if Mk = M. Every class M has a unique essential
closure, i.e. a smallest essentially closed class containing M.

Let M be a hereditary class of (semi)prime rings. Then M is proved to be a (weakly) special
class if and only if M is essentially closed. A main result is that Mk is the smallest (weakly) special
class containing M. Further it is shown that the upper radical UM determined by M, is hereditary
if and only if UM has the intersection property with respect to Mk.

Introduction

Armendariz (1968) has found that a radical cr is hereditary if and only if
every essential extension of a cr-semisimple ring is cr-semisimple. He used this
result to give a new and quite simple proof of a result of Hoffman and Leavitt
(1968), namely that the lower radical determined by a homomorphically
closed and hereditary class of rings is hereditary.

It is our intention to derive some more results in radical-theory for rings
with the help of the notion of essential extension. In section 1 the essential
cover Mk and the essential closure Mc of an arbitrary class M of rings are
denned, and a characterization of essentially closed classes is given. Moreover
it is established that a ring R has no proper essential extensions if and only if
R has a unity element. In section 2 we show that the essential cover of a
hereditary class of (semi)prime rings is essentially closed. In section 3 the
results of section 2 are used for proving that for each hereditary class M of
(semi)prime rings the essential cover Mk of M is the smallest (weakly) special
class containing M. At the end of this section we find as a corollary a
necessary and sufficient condition for the upper radical UM determined by a
hereditary class M of (semi)prime rings to be supernilpotent.

The rings in this paper are assumed to be associative. They may fail to
have unity elements.
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[2] Essential extensions 341

1. Essentially closed classes of rings

Following Armendariz (1968) we say that an ideal A of a ring R is an
essential ideal if and only if B f l A / 0 for each nonzero ideal B of R, and
when this is the case R is said to be an essential extension of A. Clearly each
ring R is an essential extension of itself. If R is a prime ring, R is an
essential extension of any of its nonzero ideals, whereas R is subdirectly
irreducible if and only if it is an essential extension of a simple ring (note: all
simple rings are prime).

Now let M be an arbitrary class of rings. The class Mk, consisting of all
essential extensions of rings belonging to M, shall be called the essential cover
of the class M. The class M will be called essentially closed if M = Mk, i.e. if
every essential extension of a ring belonging to M, belongs to M. Each class M
can be embedded in an essentially closed class, namely as follows: define
Mw = M and M"+')=Mk° for each natural number i. Then the class
Mc = U,M0)is essentially closed, it contains the class M, and moreover, it is
contained in every other essentially closed class containing M. The latter
statements are immediate consequences of the above definitions; we there-
fore omit their proofs. The class Mc shall be called the essential closure of the
class M.

Recall that a class M is called hereditary if A <R G M implies A G M.
For each class M there exists a smallest hereditary class containing M, namely
the class HM consisting of all accessible subrings of rings belonging to M. The
class of all essential ideals of rings belonging to M shall be denoted by EM,
and the subclass of M consisting of all rings in M with a unity element shall be
written as Mt. We have MiCJVf CEM CHM for every class M. The class M
will be said to have property (P) if the following holds:

(P) a. Mi = M, i.e. each ring in M has a unity element;
b. if A G EM and S with unity element is an essential extension of A then

SGM.

LEMMA 1. Every ring R has an essential extension R' with unity element,
such that each ideal of R is an ideal of R' too.

PROOF. Let R be an arbitrary ring, and let Ri denote the well-known
Dorroh-extension of R. Using Zorn's lemma we have the existence of an ideal
A of R, which is maximal with respect to A fl R = 0. The maximality of A
with respect to A DR =0 ensures that R' = Rt/A is an essential extension of
(A + R)/A. The latter ring being isomorphic to R this proves that R' is an
essential extension of R with unity element. As is known, each ideal of R is
an ideal of R, too, so the same will be true for R'.
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THEOREM 1. Let M be a hereditary class of rings. Then M is essentially
closed if and only if the following two conditions are satisfied:

(1) Mi has property (P);
(2) M = EM,, i.e. M consists of all rings having an essential extension

with unity element in M.

PROOF. Supposing that the hereditary class M is essentially closed, let
R 6 Mi be one essential extension of the ring A, and let S with unity element
be another such essential extension. Mi CM implies R e M . Since M is
hereditary it follows that A G M. Now S is an essential extension of A G M
and M is essentially closed. Hence S G M. Since S has a unity element we find
S G Mi, proving that the class M, has property (P). Since M is hereditary and
M, C M we have EMi C M. To get the inverse inclusion, let REM, and let R'
denote an essential extension of R with unity element. By lemma 1 such an
extension exists. Since M is essentially closed we have R' G M. Hence
R' G Mi by the definition of Mi. Since R is an essential ideal of R' it follows
that R G EM,, proving the only if part of the theorem. To prove the converse
part, let M be a hereditary class of rings such that M, has property (P) and
M = EMi, and let S be an essential extension of a ring R belonging to M.
Then we have to prove that S G M. To do so, let S' be an essential extension
of S with unity element, such that every ideal of S is an ideal of S' too. Such
an extension exists by lemma 1. Then R is an ideal of S', and since R is
essential in S and 5 is essential in S' we even have that R is an essential ideal
of S'. Now R G M = EMi implies the existence of an essential extension
R' G M, of R. Since M, is supposed to satisfy condition (P) it follows that the
ring S' belongs to the class ML Hence S'G M, and since M is a hereditary
class it follows from this that S G M. This completes the proof.

COROLLARY 1. A class of simple rings is essentially closed if and only if
each ring in the class has a unity element.

Theorem 1 makes clear that each ring in a hereditary essentially closed
class M has an essential extension with unity element in the class M. In
theorem 2 below we shall see that rings with unity element can be character-
ized as rings having no proper essential extensions. To get this result we need
the following lemma.

LEMMA 2. Let S be a ring with unity element 1, and let A be an ideal of a
ring K. Then each ring epimorphism a: A —» S has an extension a: K —> S.

PROOF. The method of the proof is due to Suliriski (1958). Let S, A, K
and a: A —> S be as given in the lemma.

https://doi.org/10.1017/S1446788700018966 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018966


[4] Essential extensions 343

Since a is an epimorphism there exists an element e E. A such that
a(e) = 1. Since A is an ideal of K we have exe G A for each element x of K.
Hence a(x)= a (exe) defines a map which is clearly a ring homomorphism
extending a. This proves the lemma.

THEOREM 2. For each ring K the following three statements are
equivalent:

(1) K has no proper essential extensions;
(2) K is a direct summand of every ring containing K as an ideal;
(3) K has a unity element.

PROOF. The proof is cyclic. By lemma 1 each ring K has an essential
extension K' with unity element. If K has no proper essential extensions then
K' and K must coincide, so K must have a unity element. This proves the
implication (1) => (3). That (3) => (2) is well-known (see for example Szendrei
(1953)). Finally, if K is a direct summand of any of its extensions let R be an
essential extension of K. Then R = K 0 L for some ideal L of R. Since
K H L =0, and K is essential in R, it follows that L = 0, or R = K, proving
that K has no proper essential extensions. Hence (2) implies (1), completing
the proof.

2. The essential closure of a hereditary class of (semi)prime rings

In this section we show that the essential cover of a hereditary class of
(semi)prime rings is essentially closed. As a consequence we have that the
essential closure of such a class coincides with its essential cover.

LEMMA 3. An essential extension of a (semi)prime ring is again a
(semi)prime ring.

The proof is easy and will be omitted.

THEOREM 3. The essential cover of a hereditary class of (semi)prime rings
is again a hereditary class of (semi)prime rings.

PROOF. Let M be a hereditary class of (semi)prime rings. By lemma 3 we
only need to prove that Mk is a hereditary class. To do so, let R E Mk and /
an arbitrary ideal of R. By the definition of Mk, R has an essential ideal K in
M. Since I (~) K is an ideal of K, the hereditariness of the class M implies
/ Pi K G M. Now / (~l K is also an ideal of I and we claim that it is essential in
/. For let P be an ideal of / such that P n (/ D K) = 0. Then P D K = 0. Let
P' be the ideal of R generated by P. By Andrunakievic's lemma (1958) we
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have (P'fCP. Hence (P'f C\K = 0. Because of the essentiality of K in R it
follows that (P'f = 0, and since R is a semiprime ring this implies P' = 0, or
equivalently P = 0. Therefore / n K is an essential ideal of /. Together with
the fact that I C\ K E. M this implies I G Mk by the definition of Mk, proving
that the class Mk is hereditary indeed.

LEMMA 4. Let K be an essential ideal of the ring B, where B is an essential
ideal of the ring R. Then K', the ideal ofR generated by K, is essential in R.

PROOF. Suppose the opposite. Then there exists a nonzero ideal A of R
such that K' D A =0. Since B is essential in R it follows that A n B is a
nonzero ideal of B. Since K is essential in B it follows that K D A D B is
nonzero. Consequently K fl A is nonzero, which contradicts K'H A = 0.
This proves the lemma.

LEMMA 5. Let the semiprime ring I be an essential ideal in the ring R.
Then I" is an essential ideal too, for each natural number n.

PROOF. Let n be any natural number such that I" is not essential in R.
Then there exists a nonzero ideal A of R such that A fl /" = 0. Now A D / is
an ideal of / as well as of A, and since / is essential in R one has that
A n TV 0. Since 7 is a semiprime ring I does not contain nonzero nilpotent
ideals. Hence we have (A ni)n/0. Since (A D/)" CA D/" this implies
A fl I" 7^0, a contradiction. Hence the lemma follows.

THEOREM 4. The essential cover of a hereditary class of (semi)prime rings
is essentially closed.

PROOF. Let M be a hereditary class of (semi)prime rings, and let R be an
essential extension of a ring B belonging to Mk, the essential cover of M.
Then, by the definition of Mk, B contains an essential ideal K in M. Now
lemma 4 applies: K', the ideal of R generated by K, is essential in R.
Furthermore, by theorem 3, Mk is a hereditary class of semiprime rings. So
K', being an ideal of the semiprime ring B, is semiprime. Therefore (K'Y is an
essential ideal of the ring R, by lemma 5. By Andrunakievic's lemma we have
(K'f C K. Since K is in M, and M is hereditary, it follows that {K'f belongs to
M. Thus the ring R has an essential ideal in M. Therefore R belongs to Mk,
proving that Mk is essentially closed indeed.

COROLLARY 2. Let M be a class of prime simple rings. Then Mk, the
essential cover of M is essentially closed and is precisely the class of all
subdirectly irreducible rings for which the rings in M act as hearts.
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3. Special and weakly special classes

Our next theorem will show that special and weakly special classes of
rings can equally well be defined by using the concept of essential closedness.
For an ideal A of a ring R let A * = {x G R | xA = Ax = 0}. We recall that a
special class M is defined by Andrunakievic (1958) as a hereditary class of
prime rings satisfying the condition:

(Cl) If A G M is an ideal of a ring R, then RIA * G M,

and a weakly special class M by Rjabuhin (1965) as a hereditary class of
semiprime rings satisfying the condition:

(C2) If A G M is an ideal of a ring R, and A * = 0, then R 6 M .

These concepts are important since it was shown that the upper radical UM
determined by a (weakly) special class M is hereditary, and has the intersec-
tion property relative to the class M; that is the property that the UM-radical of
an arbitrary ring R equals the intersection of all ideals / of R such that
R/IGM (see Leavitt (1973)). Clearly if the radical a has the intersection
property relative to a class N then all rings in N are cr-semisimple.

LEMMA 6. Let M be a class of (semi)prime rings. Then the following
statements are equivalent:

(1) M satisfies (Cl);
(2) M satisfies (C2);
(3) M is essentially closed.

PROOF. Let M be a class of semiprime rings, and let A G M be an ideal
in the ring R. Since A is a semiprime ring it is clear that A * is maximal in R
relative to having zero intersection with A. Consequently, R/A* contains
(A* + A )/A * as an essential ideal. The latter ring being isomorphic to A, this
together with A G M implies R/A* E. Mk. Hence, if M is essentially closed,
then Mk = M yields R/A* E. M, proving that (3) implies (1). The implication
(1) => (2) is trivial. Finally suppose that M satisfies (C2), and let A G M be an
essential ideal in R. Since A * is an ideal of R having zero intersection with A
it follows that A * = 0. Therefore (C2) applies, which yields R G M, proving
that M is essentially closed. This completes the proof.

As an immediate consequence of lemma 6 we have

THEOREM 5. A hereditary class of (semi)prime rings is (weakly) special if
and only if it is essentially closed.

Now we are able to show that each hereditary class of (semi)prime rings
generates a (weakly) special class.
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THEOREM 6. The essential cover Mk of a hereditary class of (semi)prime
rings is a (weakly) special class. In fact Mk is the smallest (weakly) special
class containing M.

PROOF. Let M be a hereditary class of (semi)prime rings. By theorem 3
Mk is again a hereditary class of (semi)prime rings, and by theorem 4 Mk is
essentially closed. Then theorem 5 yields that Mk is a (weakly) special class.
This proves the first part of the theorem. To prove the second part, let N be a
(weakly) special class containing M. By theorem 5 the class N is essentially
closed. Hence M CN implies Mk CN, completing the proof.

Regarding the upper radical classes UM and UMk determined by a
hereditary class M of (semi)prime rings and its essential cover respectively,
we observe that, since M CMk, the inclusion UMk C UM will hold. One may
ask for conditions to ensure equality. In this connection we state

THEOREM 7. Let M be a hereditary class of (semi)prime rings, and let Mk

be its essential cover. Then the following statements are equivalent:
(1) UM is a hereditary radical;
(2) Mk CSUM;
(3) UM = UMk;
(4) UM has the intersection property with respect to Mk;
(5) UM n Mk = 0.

PROOF. The proof is cyclic.
(1) => (2): Let UM be hereditary and R G Mk. By the definition of Mk

the ring R has an essential ideal / in M. Since UM is hereditary we have
UM(I) = IH UM(R). Now I e M implies UM(I) = 0. Hence / n UM(R) =
0. Since I is essential in R it follows that UM(R) = 0, or equivalently
R G SUM. This proves that Mk C SUM.

(2)^>(3): MkCSUM implies SUMkCSUM, or equivalently UM C
UMk. But M C Mk, so UMk C UM, and thus UM = UMk.

(3) =£. (4): Since Mk is a (weakly) special class (by theorem 6), it follows
from Andrunakievic (1958) or Rjabuhin (1965) that UM = UMk has the
intersection property relative to Mk.

(4) =£> (5): Let UM have the intersection property relative to Mk. Then
any R G Mk is L/M-semisimple and so UM fl Mk =0.

(5) => (1): Let A be an ideal of a ring R with A&. UM. Then there is
some ideal 7 of A such that 0^ A/I E M, and since all rings in M are
semiprime, J o R . But (by Andrunakievic (1958) or Rjabuhin (1965)) UMk is
hereditary and since MCMk there must be some nonzero image
(R/I)/(J/I)=R/J<EMk. Also UMDMk=0, so R/J&UM and thus

£ l/M. Therefore UM is hereditary.
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COROLLARY 3. Let M be a hereditary class of (semi)prime rings. Then
UM is a hypernilpotent radical if and only if each essential extension of a ring
belonging to M is UM-semisimple.

Recalling that a radical is called hypernilpotent if it is hereditary and it
contains all nilpotent rings, this is only a restatement of the equivalence of the
conditions (1) and (2) in theorem 7, because the fact that the rings in M are
semiprime ensures that each nilpotent ring is c/M-radical.
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