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Introduction. Let T = (¢,,,) be a regular matrix, and C; be its bounded convergence field.
Necessary and sufficient conditions for Cr to contain the space of almost convergent sequences
are well known. (See, e.g., [7, p. 62]). G. M. Petersen has suggested as a problem for research
the discovery of necessary and sufficient conditions for the reverse inclusion: When is Cy
contained in the space of almost convergent sequences? [7, p. 137, research problem 9]. In
this paper we deal with this question in a more general context. First we need some notation.

Letting T be as above, let C*(N) be the bounded real valued functions on the positive
integers. We define m; as the set of * T-invariant means 7, i.e. the set of positive linear
functionals ¢ on C*(N) such that ¢(e) =1 (where e is the unit function), ¢oT = ¢, and
¢(f) =0 whenever lim f(n)=0. We define Vi = {feC*N):d,(f) = ¢,(f) for all ¢,,

n=*oo

¢,emq}, and write my(f) for this common value. It follows easily from our assumptions
on my that Cy < Vy consistently, in the sense that m(f) = T-lim (f) for each fe C;. Notice
that V¥, is the usual space of almost convergent functions when T is the shift matrix
transformation Tf(n) = f(n+1).

Now let T=(¢,,) and S =(s,,) be non-negative regular matrices, and consider the
following possible relations.

(I) Vi c Cs consistently,
(II) V; = Vs consistently,
(II) C; < V; consistently.

Since C; = V3 and Cg < Vg, these three relations are in decreasing order of strength,
i.e. (I) implies (II), and (IT) implies (III). If S is the shift matrix, then (IIT) is related to Petersen’s
problem.

In Section 2, we give necessary and sufficient conditions for (I) and (II). Actually this has
already been done for a certain class of permutation matrices by Raimi [8] and Dean and
Raimi {4}, and the proofs in the general case are largely adaptations of their proofs. An
interesting side result is obtained (2.3 below), namely that, for sequences of linear operators
induced on C(BN\N) by regular matrix operators on C *(N), convergence in norm is equivalent
to convergence in the strong operator topology [3, p. 34].

In Section 3 we give a condition sufficient for (III). In Section 4 we show that, if T is
suitably restricted, then this condition is also necessary.

1. Preliminaries. In this section we introduce some notations and lemmas needed in the
sequel.

1.1. NotaTiON. If fe C*(N), let f” be its extension to N, and f*= f’ | BN\N. If A <= N,
let A' be its closure in BN and A* = A'nBN\N. Then N* = BN\N, and C(N *) is the space
of continuous real functions on N *.
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If T = (t,,) is non-negative regular and C, the elements of C *(N) with limit zero, then
T(Cy) = Cy. Hence T induces a positive linear operator T, on C(N*) defined by
T,(f*) = (Tf)*. The norm of this operator on C *(N) is given by || T} || = limsup} t,, = 1

m—o k

(cf. [1] or [2]). The regularity of T means that T, e = e, where ¢ is the unit in C(N *).
T =(t,,) and S = (s,,,) are called equivalent if 1im Y, |t —5u|=0.

m—-w k

If T is regular, then T is equivalent to a truncated matrix S, i.e. one such that there exists
m(l) <m(2) <... and n(l) <n(2) < ... such that, if me[m(k), m(k+1)), then s,, =0 for
n¢[n(k), n(k+2)) [7, p. 82]. There is no loss in generality in assuming that our matrices have
truncated form, for if S and T are equivalent, then for each fe C *(N), lim (Tf-Sf)(m) = 0,

and hence T, = S, on C(N*), C; =Cs, Vi = Vg, and my = mg. Note that the sum and
product of truncated matrices are truncated. Note also that (SeT), = S,0T, for Sand T
regular.

If ne N, ¢, is the functional on C *(N) defined by ¢,(f) = f(n); andif we N *, g, is defined
on C(N*) by e,(f) =f(w). Then g,oT(f) = Tf(n), etc.

If T'is a matrix, let T, = (1/n) Y. T* where T* is the kth iterate of 7. If T is regular, so
k=1
is T,.
Finally we define
Zp = {feC*N):mi(f) =0},
K(T) = {fe Cy: T-lim(f) = 0}

= {feCy:T, f* =0},

The following lemmas are mainly slight modifications of those which occur in [4] and
[8]. The main difference is that we assume an extra property for our T-invariant means my,
namely that ni,(f) = 0 for all fe C,, and hence ¢(f) = ¢(g) for all ¢ e my, whenever f—ge C,.
This leads to our substituting the norm of f* on N* for that of f on N, and that of T, on
C(N *) for that of T on C *(N).

1.2. LEMMA. mq is the weak-* closed convex hull (in the dual C*(NY) of C*(N)) of the
collection of all functionals of the form

¢ =Ilim{e, 0T, acAd},
p(a) © L n(a)

where A is a directed set, and
lim {p(a):ae A} = lim {n(a):ac A} = co.

Proof. On page 471 of [4] it is noted that {T,:ne N} is a *“ net of averages converging
to T-invariance ”, where the natural order is taken for N. Hence the result is just a restatement
of Theorem 2.1 of [4], except for the assumption that lim {p(a):ae 4} = co. But this is an
easy consequence of our assumption that m(f) = 0 for all fe C;. (Using this fact it is easy
to check that in the first and second lemmas in the proof of Theorem 2.1 of [4], the expression
“limsup(p’, S.f) ”” may be replaced by * limlimsup(p’, S,f)”.)

a peX a p=
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1.3. LemMA. (a) Cy < V5,
(b) Vi =2Z; & {ke:kscalar},
(c) Cr=K(T)® {ke:kscalar}.

Proof. (a)if hm (Tf)(n) = k, then by regularity of T, hm (T(f—ke))(n) = 0, whence for

each ¢gemy, ¢( f—ke) ¢ o T(f—ke), or ¢(f) = ¢p(ke) = k (b) This follows since ¢(e) = 1
for all ¢ emy. (c) This follows by regularity of T.

1.4. LeMMA (cf. Theorem 3.2 of [4]). If fe C*(N), the following are equivalent:

(a)feZy,
(b) lim (T;),f* =0, where (T,), is the operator on C(N *) induced by T,,

n— o

(c) f* belongs to the norm closed linear hull of {T, g*— g*:ge C *(N)}.

Proof. (a) implies (b). If (b) fails, then there exists ¢ > 0 and n(1) < n(2) < ... such that
(Toa) f* > e

Hence there exist p(1) <p(2) <... such that | g,y T ()| = | T/ (PK)) | > & Let
deC*(N) be a weak-* cluster point of the set {e,yo Tnuy:k=1,2,...}. By 1.2, pemy,

and clearly |¢(f)| = &; so f¢ Zr.
(b) implies (c). Suppose that lim (7;);f*=0. Thenf* = hm (f*=(T).f™ uniformly,
and it suffices to show that for all n,
f*=(T,),f*elinear hull of {T g*—g*:ge C*(N)}.

But, as in Lemma 3.1 of [4],
S*=(Tnf* =f*—(1/n)k2 Tif*=(ln) 3 (f*~Tif"),
=1 k=1
and each term may be written

f lef# Z T"f* Tj+lf*

Z (gj T, g j
where g} = T{f*.
(c) implies (a). If ¢ emy, then ¢(Tg—g) =0 for all ge C *(N). If (c) holds, then given
& > 0, there exists ge C *(N) with || f*— (T, g*— g% | <e.

Hence there exists ng such that n 2 n, implies that | f(n)—(Tg— g)(n)| < ge(n), where e
is the unit function; whence, by positivity of each ¢ e my, we have

[N = 60N~ d(Tg-9)|
= | 6((N)—(Tg—9))|
S edle) =
Since ¢ > 0 is arbitrary, we have ¢(f) = 0 for all pemy; so feZ;.
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2. The conditions (I) and ().
2.1. THEOREM (cf. Theorems 23 and 24 of [8]). The following are equivalent:

(a) V¢ = Cs consistently,
(b) " SloTl_Sl “ = 0, i.e. SIOTI = Sl on C(N*).

Proof. (b) implies (a). By (b) and (c) of Lemma 1.3, it is enough to show that Z; < X(S).
If k = Tf—f for some fe C *(N), then (b) implies that Ske C,; whence ke K(S). By Lemma
1.4, if ge Vi and & > 0, then there exists a function 4 which is a finite linear combination of
functions of the form Tf—f, and such that || g*—A*| <& Hence there exists n, such that
n 2 ng implies that | g(n)—h(n)| <e. Since he K(S),

lim | Sg(n)| < lim | S(g~h)(n)|+1lim | Sh(n)| <e.
Since ¢ > 0 is arbitrary, it follows that ge K(S).
(a) implies (b). If Vi< Cs consistently, then Z; < K(S). Hence if fe C*(N), then

Tf-feZy < K(S); 50 (SeT—S)YSf) = S(If—f)eC,. It follows that the matrices So T and
S are equivalent; whence || S;oT,—S, || =0.

2.2. THEOREM (cf. Theorem 3.3 of [4]). The following are equivalent:

(a) Vi < Vs consistently,

(b) :Lnl " (Sw)1o Ty —(S) " =0.

Proof. (b) implies (a). From 1.3(b) it follows that Vy = V; consistently iff Z; c Zs.
Now condition (b) implies that lim ((S,), o Ty =(S.))(f*) = 0 for each fe C*(N). If geVr
and g = Th—h for some A, then :JZ have immediately that lim [|(S,),9* [ = 0; so geV;, by

nw

1.4. In general, if feV; and ¢ > 0, then by 1.4 there is a ge V; which is a finite linear
combination of elements of the form Th—h, and such that || f*—g*| <e Clearly,
lim | (S.);9* | =0, and so there exists n, such that n = n, implies (since | (S,), || =1 for

all z) that
1S * | S IS F*—g) | +] (S g* || < 2.

Hence lim ||(S,),f*|| = 0; sofeVs, by 1.4.
n— o

(a) implies (b). If Vy < Vg consistently, then Z; c Zg, or, equivalently, mgc my. We
show that this implies that

lim ()1 Ti=(S)0f* | =0

for each fe C*(N). The desired conclusion then follows from Lemma 2.3 below.
We suppose, to obtain a contradiction, that there exist feC*(N), ¢>0, and
n(l) < n(2) < ... such that

" ((Sn(k))l ° Tl—(Sn(k))l)f‘ " > & k=12,...).
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Then there exist p(1) < p(2) <..., with |S,,(k)(Tf—f)(p(k))| >g k=1,2,.... ByLemma
1.2, if ¢ is a weak-* cluster point in C *(N)' of the functionals {e,y° Spuy:k =1, 2,...}, then
$ems, and clearly | §(Tf—f)| 2 &. This implies that ¢ ¢ my, contradicting our assumption
that mg < my.

2.3. LeMMA. Let Ay, A,, ... be operators on C(N *) induced by matrix operators. Then
lim | 4, | = 0iff lim | A,f | = O for each fe C(N*).
n-*o n-o

Proof. Sufficiency is obvious. For necessity, suppose that || 4, | +>0 as n — co. Taking
subsequences if need be, we may assume that, for somee >0, | 4,|| 2 ¢ forall n. Let T"be a
matrix operator inducing A4,, which we assume to be in truncated form, and let 7, be the mth
row of T", considered as a linear functional (with finite support, because of truncation) on
C*(N).

Now for each n there exists f,e C(N*) with || £, [| < 1 and sup {| 4, /(W) |:weN*} > .
Let g, be an extension of f, to all BN such that || g, 1. Now choose n(l) such that
| T4y 91 | > & with, say, support (Tiy,) < [0, N(1)); choose n(2) with | T.25,9. | > &, and sup-
port (T,32)) = [N(1), N(2)); choosen(3) with | T i3, g, | > ¢, and support (T3, < [N(2), N(3));
choose n(4) with |T2, g,]>¢, and support (T;Zs) = [N(3), N(4)); choose n(5) with
| T3s)93] > ¢, and support (T;3s)) < [N(4), N(5)); and so on in the pattern 1-2, 1-2-3,
1-2-3-4, etc.

Define ge C *(N) so that g agrees with g, on [0, N(1)), with g, on [N(1), N(2)), with g,
on [N(2), N(3)), with g, on [N(3), N(4)), with g, on [N(4), N(5)), and so on. Then clearly
limsup| Thg| 2 ¢ for each »; hence, if f denotes the extension of g to BN\N, then || 4,/ | 2 ¢

for each n, so that lim || 4,/ | = 0 fails. This completes the proof.

3. Sufficiency for (III).

3.1. NOTATION. As a linear function, ¢,0 T is the same as the nth row of T. If T =(t,,)
and S = (s,,,) are non-negative regular (and assumed to be in truncated form), we write

d(g,eS, g,0T) = Zkzls,,,,‘—t,,,‘l.

We write S, ,=(1/n) ) e,0S*, where S* is the kth iterate of S. If L < C*(N), then L is
k=1
the weak-* closed convex hull of L in C*(N)'".

ReMARK. In this section we deal with the inclusion C; < Vi consistently. The following
lemma gives some convenient restatements of this inclusion.

3.2. LEMMA.

(@) Cy < Vs consistently iff K(T) c Z;.
(b) K(T) c Zs iff K(T)* =(Zs)* (whereK(T)* = {f*: fe K(T)}, etc.),
(c) K(T)* = (Zs)* iff mg is contained in the closed linear hullin C*(N)' of {¢,o T,:pe N *}.
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Proof. (a) Immediate from (b) and (c) of 1.3. (b) Immediate from the definitions.

(c) If ¢ emy, and ¢’ is the Borel measure on SN representing ¢, then since ¢(f) = 0 for
all fec,, ¢’ is supported by N *. Since K(T)* = {f*:T,f* =0}, where T, is the operator
on C(N*) induced by T, we have f*e K(T)* iff g, T,(f*) =0 forall pe N *; and f*e(Zs)*
iff ¢'(f*) =0 forall gemyr. By [3, p. 20, (8)] the following are equivalent: (i) g,o T;(f*) =0
for all pe N * implies that ¢’(f*) = O for all ¢ emy; (ii) {¢’': § e ms} is contained in the weak-*
closed linear hull of {e,o T,:pe N *}. This completes the proof of the lemma.

It is part (¢} of the lemma that suggests the form of Theorems 3.4 and 4.3 below. Our
problem is to translate (c) into a condition involving the rows of the matrices S and T.

3.3. LEMMA.
{e,oTy:peN*} . = N W,,
n=1

where W, = {g,eT:m=n,n+1,...}..

Proof. According to Theorem 2 in Jerison’s paper [6], if K, is a sequence of compact
convex sets in a locally convex space E, with K,,, < K, and A, is the set of extreme points of
K,, then

N K,= closed convex hull of N 4,.

Let B, = {e,oT:m 2 n}u{e,oTy:peN*}. It follows easily from a theorem of Milman
(Theorem 1 of [6]) that B, is the set of extreme points of W,. (Milman’s theorem says that,
if C is compact and convex and S < C, then the closure of S contains all the extreme points
of C iff sup {f(x):xeC}=sup{f(x):xeS} for each continuous linear functional f)
Jerison’s theorem yields [} W, = ([} B,).. But it is easy to see that | B, = {g,o T,:pe N *}.

DEFNITION. R, is the norm closed convex hull of {¢,0 T:n=m, m+1, ...} (cf. Remark
4.2).

3.4. THEOREM. If for each m, lim 4(S,

n,p—

p» Rm) =0, then Cy < V consistently.

Proof. Since R, = W,, the condition of the theorem implies that lim d(S, ,, W,) =0

np- o
for each m. We shall show that this implies that Cy = V.
As noted in 3.2, we must show that msc {¢,oT:pN*}, or, by Lemma 3.3, that
mg < ) W,. Since mg is the weak-* closed convex hull of functionals of the form

¢ = lim {€,5)0 Spo):a€ 4} = im {8, ,): A€ A},

with lim {p(a):ae 4} = lim {n(a):ae A} = o, it suffices to show that each such ¢ belongs to
N W,. By hypothesis, and since n(a) - oo, p(a) - o, we have lim (d(Sy),pa)p Wm):a€4) =0

for each m. Fix m and choose ¢,& W,, such that im {|| S,.) p0)— . ||:a€4} = 0. Since W,
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is weak-* compact, there exist ¢, € W,, and a subnet {¢,:be B} such that ¢, = lim {¢,:be B}.
Now if fe C*(N), then
| () —¢.(f) | = lim {| Sn(b).p(b)f—¢bf| :be B}
< lim {[| S,),p00— 95 | :0€ B} | £ = 0.
Hence ¢ = ¢, € W, for arbitrary m.

4. Necessity for (III). In this section we prove, under a restriction on 7, a converse to
3.4. The author does not know to what degree the restriction can be weakened. First we
need a technical lemma.

4.1. LemMA. For each m, lim d(S,,, R,) =0iff lim d(S,

n,p—* o n,p—wo

W,) = 0.

»P?

Proof. Sufficiency has already been noted. For necessity, assume thatiim d(S,,;, W) = 0.

np—w
We show that for fixed m, n and p, if d(S, ,, W,) <« <}, then d(S, ,, R,,) < 4a. The desired
result follows easily from this.

Write y = §, ,. Since our matrices are assumed truncated,
support ({) = [0, N] for some N.

Now there is a ¢pe W, with d(¢, ) <«. For some net, ¢ = weak-* lim(ae A)P,, where
@a =Y. 14,i Tpa,iy» and the combination is convex. Write
i

Ga=Xt  Tpuiy+ X't i Tpaiy = b1,0+ P2,

where Z" is summation over those terms such that the support of T, ; is disjoint from
[0, N], and T’ is summation over the rest of the terms. Let g be the characteristic function
of [N+1, ). Then {/(g) =0, so that

|6(9)| = | $()-v(@)| | 6-v]] 9] <

Hence, for some a,€ 4, a = a, implies (since T = 0) that

k(@) =2"t,;=|$29)| S | dul9)| < .

Let n, = Z't, (1 -k(a)) ™' Tp,.s, a convex combination of rows of T, each of whose supports
meet [0, N]. Now it follows from the truncated form of T that, since the support of each
Tp(a,iy involved in the sum meets [0, V], there exists fixed M = N such that

P

support T, < [0, M].
Hence

support () < [0, M] for aZ a,.

Let n be a weak-* cluster point of the n,, and n, a subnet of 5, which converges to 7.
Then

support (n) < [0, M ].
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For each b,
[no—dsll = [ (A=Kk®) " ¢1 = b1.6— b2
S((A=kB)~'-1) " d1p " + " @2, ”
< k(b)(1 —k(b))™ ' +k(b)
< 3k(b) < 3a,
since « < 4. Hence |n—¢ | < 30, and | n—y | < 4¢. But
support n < [0, M] and supportn, < [0, M].

This implies that the convergence of n, to n is essentially finite-dimensional. But in this case
weak-* convergence is equivalent to norm convergence [3, p. 39]; so neR,, and d({, R,)) £
d(y, n) < 4a, where Y = S, .

4.2, Remark. It should be noted that each element of R, is a functional on C(8N)
whose support is contained in N, hence may be represented by a vector in /'. This is by no
means the case for W, and is the reason why R, is preferable to W,,.

4.3. THEOREM. Assume that the induced operator T, maps {fe C(N *): f 2 0} onto itself.

If Cy < Vi consistently, then lim d(S, ,, R,) =0 for all m.
n,p— o

Proof. First we show that, under our hypotheses on T, if ¢ C(N *)’ (the dual space
of C(N*), ¢(e)=1, ¢ 20 and ¢peweak-* closed linear hull of {e,oT,:weN*}, then
¢e{e,oT:weN*}. But our hypotheses imply readily that the range of T, is all of
C(N *); hence the range is closed, and it follows from [5, Theorem 2, p. 487] that the range of
the adjoint map T consists of those Y e C(N*)' for which T, f= 0 implies that y(f)=0.
Since our ¢ satisfies this latter condition, we have ¢ = Y o T, for some Yye C(N*). Now
since T,(e) = e, we have Y(e) = y(T,e)=P(e)=1. If f=0, then f= T, g for some g =0,
so that Y(f) = Y(T, g) = ¢(g) = 0. It follows that ¥ is the weak-* limit of functionals of the
form Y't,e,,, where w(I)e N* and the combination is convex. Since the adjoint Ty is
weak-* continuous, it follows that ¢ is the weak-* limit of functionals of the form Y t,&,,;,0 T},
so that ¢pe{e, o T :weN*},..

Suppose now that for some m, d(S, ,, R,) does not go to 0. Then, by Lemma 4.1,
neither does d(S, ,, W), so there exist ¢>0, n(l)<n(2)<... and p(1)<p(2)<...
with d(Syy,pey Wm) > € for all k. Let ¢ be a weak-* cluster point of the functionals
{Sacky.on}. Then ¢pemg by Lemma 1.2. Clearly, d(¢, W,,) 2 ¢, and since, by Lemma 3.3,
{e.oT:weN*} < W,, we have ¢ ¢ {c,oT:weN*}.. From the first part of the proof it
follows that ¢ does not belong to the weak-* closed linear hull of {¢, o T:weN*}; so by
Lemma 3.2 the inclusion Cy = ¥V consistently fails. This completes the proof.

np?

5. Examples.

5.1. For an example in which inclusion (I) fails but inclusion (II) holds, let S be the shift
matrix and let T= S2. Clearly, ¥V < Vg consistently, while the criterion of Theorem 2.1
shows that Vi < Cy consistently fails.
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5.2. Foran example in which (II) fails while (IIT) holds, let S and R be any pair of matrices
such that Cy < Vs consistently. From R we form a new matrix T by letting the odd rows of T
be all the rows of R, and choosing the even rows so as to cause the inclusion Vy < Vs to fail.
Then Cy = Ci < Vg, so that (III) continues to hold.

5.3. The extra hypothesis on T in Theorem 4.3 is actually fulfilled by a reasonably large
class of matrices. For instance, let T be a non-negative regular matrix whose rows have
disjoint support, i.e. if m # g, then 1, # 0 implies that ¢,, = 0. Let the support of the mth
row be contained in the interval {k(m), k(m+1)), where, for distinct m, the intervals are
disjoint. If {r,} is any bounded sequence of non-negative constants, define fe C *(N) by the
formula f(k) = r,, whenever ke [k(m), k(m+1)), and let f be 0 elsewhere. Then, assuming
each row sum of Tis 1, we have Tf(m) = r,, for all m. Thus T maps the space of non-negative
elements of C *(N) onto itself, and it is easy to see that T, does the same for C(N *).
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