ANZAI AND FURSTENBERG TRANSFORMATIONS ON THE 2-TORUS AND TOPOLOGICALLY QUASI-DISCRETE SPECTRUM

KAZUNORI KODAKA

ABSTRACT. Let ϕ_0 be an Anzai transformation on the 2-torus \mathbf{T}^2 defined by $\phi_0(x, y) = (e^{2\pi i\theta}x, xy)$ and ϕ_f a Furstenberg transformation on \mathbf{T}^2 defined by $\phi_f(x, y) = (e^{2\pi i\theta}x, e^{2\pi i f(x)}xy)$ where θ is an irrational number and f is a real valued continuous function on the 1-torus \mathbf{T} . In the present note we will show that ϕ_f has topologically quasi-discrete spectrum if and only if ϕ_f is topologically conjugate to ϕ_0 . Furthermore we will show that for any irrational number θ there is a real valued continuous function f on \mathbf{T} such that ϕ_f does not have topologically quasi-discrete spectrum but is uniquely ergodic.

1. Introduction. Let ϕ be a homeomorphism on a compact topological space X. We say that ϕ is *minimal* if for any $x \in X$ the orbit $\{\phi^n(x)\}_{n \in \mathbb{Z}}$ is dense in X. Hence it follows that if $f: X \to \mathbb{C}$ is a continuous function and X is connected and if $f \circ \phi = f$, then f is constant. Two homeomorphisms ϕ_1 and ϕ_2 on X are said to be *topologically conjugate* if there is a homeomorphism ψ on X such that $\psi \circ \phi_1 = \phi_2 \circ \psi$.

Let C(X) be the C^* -algebra of all complex valued continuous functions on X. For each homeomorphism ϕ on X we consider the following sets:

$$G_0(\phi) = \{\lambda \in \mathbf{C} : \lambda \text{ is an eigenvalue of } \phi \text{ and } |\lambda| = 1\},$$

$$G_1(\phi) = \{f \in C(X) : f \circ \phi = \lambda f \text{ for some } \lambda \in G_0(\phi) \text{ and } |f| = 1\},$$

$$\vdots$$

$$G_j(\phi) = \{g \in C(X) : g \circ \phi = fg \text{ for some } f \in G_{j-1}(\phi) \text{ and } |g| = 1\},$$

for $j \ge 1$.

Their union $\bigcup_{j\geq 0} G_j(\phi)$ is known as the set of quasi-eigenfunctions of ϕ . The homeomorphism ϕ is said to *have topologically quasi-discrete spectrum* if the *C*^{*}-algebra generated by its quasi-eigenfunctions is *C*(*X*). It is easy to see that the property of having a topologically quasi-discrete spectrum is invariant under topological conjugation.

Let θ be an irrational number in (0, 1) and f a real valued continuous function on the 1-torus **T**. Let ϕ_0 be an Anzai transformation on the 2-torus **T**² defined by

$$\phi_0(x, y) = (e^{2\pi i\theta} x, xy)$$

Received by the editors May 17, 1993.

AMS subject classification: Primary: 46L80; secondary: 46L40.

[©] Canadian Mathematical Society 1995.

for any $x, y \in \mathbf{T}$. And let ϕ_f be a Furstenberg transformation on \mathbf{T}^2 defined by

$$\phi_f(x, y) = (e^{2\pi i\theta}x, e^{2\pi i f(x)}xy)$$

for any $x, y \in \mathbf{T}$. By Rouhani [10] ϕ_0 and ϕ_f are minimal and ϕ_0 has a topologically quasi-discrete spectrum.

In [10] Rouhani proposed the following question: For any j = 1, 2 let ϕ_j be a Furstenberg transformation on \mathbf{T}^2 and $A(\phi_j)$ the associated crossed product C^* -algebra $C(\mathbf{T}^2) \times_{\phi_j}$ **Z**. If $A(\phi_1)$ is isomorphic to $A(\phi_2)$ and if ϕ_1 has topologically quasi-discrete spectrum, does it necessarily follow that ϕ_2 has topologically quasi-discrete spectrum?

In this note we attempt to shed some light on this question.

2. Topological conjugation. Let f and ϕ_0 , ϕ_f be as in Section 1.

LEMMA 1. We suppose that there is a real valued continuous function g on \mathbf{T} such that

$$g(x) - g(e^{2\pi i\theta}x) = f(x) - \int_{\mathbf{T}} f(z) \, dz$$

for any $x \in \mathbf{T}$. Then ϕ_f is topologically conjugate to ϕ_0 .

PROOF. Let ψ be a homeomorphism on \mathbf{T}^2 defined by

$$\psi(x, y) = (e^{2\pi i \eta} x, e^{2\pi i g(x)} y)$$

for any $x, y \in \mathbf{T}$ where $\eta = \int_{\mathbf{T}} f(z) dz$. Then by an easy computation we see that $\phi_0 \circ \psi = \psi \circ \phi_f$.

LEMMA 2. We suppose that ϕ_f is topologically conjugate to ϕ_0 . Then there is a real valued continuous function g on **T** such that

$$g(x) - g(e^{2\pi i\theta}x) = f(x) - \int_{\mathbf{T}} f(z) \, dz$$

for any $x \in \mathbf{T}$.

PROOF. Since ϕ_f is topologically conjugate to ϕ_0 , there is a homeomorphism ψ on \mathbf{T}^2 such that $\phi_0 \circ \psi = \psi \circ \phi_f$. By the Homotopy Lifting Theorem we can write ψ as

$$\psi(x, y) = (x^{m_1} y^{n_1} e^{2\pi i F_1(x, y)}, x^{m_2} y^{n_2} e^{2\pi i F_2(x, y)})$$

for any $x, y \in \mathbf{T}$ where m_j, n_j (j = 1, 2) are integers and F_j (j = 1, 2) are real valued continuous functions on \mathbf{T}^2 . By a routine computation

$$\begin{aligned} (\phi_0 \circ \psi)(x, y) &= \phi_0(x^{m_1} y^{n_1} e^{2\pi i F_1(x, y)}, x^{m_2} y^{n_2} e^{2\pi i F_2(x, y)}) \\ &= (e^{2\pi i \theta} x^{m_1} y^{n_1} e^{2\pi i F_1(x, y)}, x^{m_1 + m_2} y^{n_1 + n_2} e^{2\pi i \{F_1(x, y) + F_2(x, y)\}}), \\ (\psi \circ \phi_f)(x, y) &= \psi(e^{2\pi i \theta} x, e^{2\pi i f(x)} x y) \\ &= (x^{m_1 + m_2} y^{n_1} e^{2\pi i \{m_1 \theta + n_1 f(x) + F_1(\phi_f(x, y))\}}, x^{m_2 + n_2} y^{n_2} e^{2\pi i \{m_2 \theta + n_2 f(x) + F_2(\phi_f(x, y))\}}). \end{aligned}$$

Since $\phi_0 \circ \psi = \psi \circ \phi_f$, we obtain

(1)
$$x^{m_1}y^{n_1}e^{2\pi i\{\theta+F_1(x,y)\}} = x^{m_1+n_1}y^{n_1}e^{2\pi i\{m_1\theta+n_1f(x)+F_1(\phi_f(x,y))\}},$$

(1) $x y e^{2\pi i \{F_1(x,y)+F_2(x,y)\}} = x^{m_2+n_2} y^{n_2} e^{2\pi i \{m_2\theta+n_2f(x)+F_2(\phi_f(x,y))\}}.$ (2) $x^{m_1+m_2} y^{n_1+n_2} e^{2\pi i \{F_1(x,y)+F_2(x,y)\}} = x^{m_2+n_2} y^{n_2} e^{2\pi i \{m_2\theta+n_2f(x)+F_2(\phi_f(x,y))\}}.$

By (1) we see that $n_1 = 0$ and that

$$\theta + F_1(x, y) = m_1\theta + F_1(\phi_f(x, y)) + k_1(x, y)$$

where k_1 is a Z-valued continuous function on T^2 . But since T^2 is connected, k_1 is a constant number. Hence we obtain that

$$\theta + F_1(x, y) = m_1\theta + F_1(\phi_f(x, y)) + k_1.$$

Furthermore since ϕ_f is measure-preserving,

$$\int_{\mathbf{T}^2} F_1(x, y) \, dy \, dx = \int_{\mathbf{T}^2} F_1\left(\phi_f(x, y)\right) \, dy \, dx.$$

Hence $\theta = m_1 \theta + k_1$. Since θ is irrational, $k_1 = 0$ and $m_1 = 1$. Thus we obtain that

$$F_1(x, y) = F_1(\phi_f(x, y))$$

for any $x, y \in \mathbf{T}$. Since ϕ_f is minimal and F_1 is continuous, $F_1 = c$, a real constant number. Since $m_1 = 1$, $n_1 = 0$ and $F_1 = c$, by (2) we see that $n_2 = m_1 = 1$ and that

(3)
$$c + F_2(x, y) = m_2\theta + f(x) + F_2(\phi_f(x, y)) + k_2$$

where k_2 is a constant integer. Since ϕ_f is measure-preserving,

$$\int_{\mathbf{T}^2} F_2(x, y) \, dy \, dx = \int_{\mathbf{T}^2} F_2\left(\phi_f(x, y)\right) \, dx \, dy.$$

Thus

$$c = m_2\theta + \int_{\mathbf{T}} f(x) \, dx + k_2 = m_2\theta + \eta + k_2$$

where $\eta = \int_{\mathbf{T}} f(x) dx$. Let $g(x) = \int_{\mathbf{T}} F_2(x, y) dy$. Then g is a real valued continuous function on **T**, and

$$\int_{\mathbf{T}} F_2(\phi_f(x, y)) dy = \int_{\mathbf{T}} F_2(e^{2\pi i\theta} x, e^{2\pi i f(x)} xy) dy$$
$$= \int_{\mathbf{T}} F_2(e^{2\pi i \theta} x, y) dy = g(e^{2\pi i \theta} x)$$

since $d(e^{2\pi i f(x)}xy) = dy$. Therefore by (3) we obtain that

$$c + g(x) = m_2\theta + f(x) + g(e^{2\pi i\theta}x) + k_2.$$

Furthermore since $c = m_2\theta + \eta + k_2$, we see that

$$\eta + g(x) = f(x) + g(e^{2\pi i\theta}x).$$

Thus

$$g(x) - g(e^{2\pi i\theta}x) = f(x) - \eta$$

for any $x \in \mathbf{T}$.

Combining Lemmas 1 and 2 we obtain the following theorem;

THEOREM 3. Let f and ϕ_0 , ϕ_f be as above. Then ϕ_f is topologically conjugate to ϕ_0 if and only if there is a real valued continuous function g on **T** such that

$$g(x) - g(e^{2\pi i\theta}x) = f(x) - \int_{\mathbf{T}} f(z) \, dz$$

for any $x \in \mathbf{T}$.

3. Topologically quasi-discrete spectrum. In this section we will show that ϕ_f has topologically quasi-discrete spectrum if and only if ϕ_f is topologically conjugate to ϕ_0 .

LEMMA 4. Let ϕ_f and ϕ_0 be homeomorphisms on \mathbf{T}^2 defined in Section 1. We suppose that ϕ_f is not topologically conjugate to ϕ_0 . Then ϕ_f does not have topologically quasidiscrete spectrum.

PROOF. By the proof of Rouhani [10, Theorem 2.1],

$$G_1(\phi_f) = \{au^k : k \in \mathbb{Z} |a| = 1\}$$

where u(x, y) = x for any $x, y \in \mathbf{T}$.

Since the C*-algebra generated by u is not all of $C(\mathbf{T}^2)$, to show ϕ_f does not have topologically quasi-discrete spectrum it will suffice to check that there is no $h \in C(\mathbf{T}^2)$ with |h| = 1 satisfying that $h \circ \phi_f = au^k h$, where |a| = 1 and k is a non-zero integer. (If k = 0, then h is just an eigenfunction.)

So we assume that for some $k \neq 0$ there is a solution $h \in C(\mathbf{T}^2)$ such that $h \circ \phi_f = au^k h$ and |h| = 1. By the Homotopy Lifting Theorem we can write h as

$$h(x, y) = x^m y^n e^{2\pi i S(x, y)}$$

where *m*, *n* are integers and *S* is a real valued continuous function on \mathbf{T}^2 . Then since $h \circ \phi_f = au^k h$, we see that n = k and that

$$e^{2\pi i \{S(\phi_f(x,y)) - S(x,y) + kf(x)\}} = a e^{-2\pi i m \theta}$$

Since the right hand side is constant, we obtain that

.

$$S(\phi_f(x, y)) - S(x, y) + kf(x) = c$$

where c is a real constant number. In the same way as in the proof of Lemma 2, we see that

$$\int_{\mathbf{T}} f(x) \, dx = \frac{c}{k}$$

Furthermore for any $x \in \mathbf{T}$ let

$$g(x) = \frac{1}{k} \int_{\mathbf{T}} S(x, y) \, dy.$$

Then g is a real valued continuous function and

$$g(e^{2\pi i\theta}x) - g(x) + f(x) = \frac{c}{k}.$$

Since $\frac{c}{k} = \int_{\mathbf{T}} f(z) dz$, we obtain that

$$g(x) - g(e^{2\pi i\theta}x) = f(x) - \int_{\mathbf{T}} f(z) \, dz.$$

By Theorem 3 ϕ_f is topologically conjugate to ϕ_0 . This is a contradiction. Therefore ϕ_f does not have topologically quasi-discrete spectrum.

COROLLARY 5. Let f and ϕ_f , ϕ_0 be as above. Then ϕ_f has topologically quasidiscrete spectrum if and only if ϕ_f is topologically conjugate to ϕ_0 .

PROOF. This is immediate by Lemma 4.

For j = 1, 2 let ϕ_j and $A(\phi_j)$ be as in Section 1. If ϕ_1 and ϕ_2 have topologically quasidiscrete spectrum, $A(\phi_1) \cong A(\phi_2)$ by Corollary 5.

It is natural that we consider the following question: Let ϕ_0 and ϕ_f be as in Section 1. Let $A(\phi_0) = C(\mathbf{T}^2) \times_{\phi_0} \mathbf{Z}$ and $A(\phi_f) = C(\mathbf{T}^2) \times_{\phi_f} \mathbf{Z}$ be the associated crossed product C^* -algebras. Is there a Furstenberg transformation ϕ_f satisfying that $A(\phi_f)$ is not isomorphic to $A(\phi_0)$?

In the next section we will see that many Furstenberg transformations are not conjugate to Anzai transformations.

4. Furstenberg transformations without quasi-discrete spectrum. In [10] Rouhani constructed a Furstenberg transformation which does not have topologically quasidiscrete spectrum but is uniquely ergodic for a Liouville number θ .

In this section we will construct a Furstenberg transformation ϕ_f which does not have topologically quasi-discrete spectrum but is uniquely ergodic for any irrational number θ .

Since θ is irrational, we can choose a strictly increasing sequence $\{n_j\}_{j=1}^{\infty}$ of positive integers such that

$$|e^{2\pi i n_j \theta} - 1| < \frac{1}{j} \quad \text{for } j \ge 1.$$

Let $\{a_n\}_{n=-\infty}^{\infty}$ be the sequence defined by

$$a_n = \begin{cases} \frac{1}{j}(1 - e^{2\pi i n_j \theta}) & \text{if } n = n_j \\ \frac{1}{j}(1 - e^{-2\pi i n_j \theta}) & \text{if } n = -n_j \\ 0 & \text{elsewhere.} \end{cases}$$

For any $x \in \mathbf{T}$ let $f(x) = \sum_{n=-\infty}^{\infty} a_n x^n$. Then for $n = \pm n_j$.

$$|a_n| = \frac{1}{j}|1 - e^{2\pi i n_j \theta}| < \frac{1}{j^2}$$

Hence the series $\sum_{n=-\infty}^{\infty} a_n x^n$ converges uniformly and f is a real valued continuous function on **T**. We note that $\int_{\mathbf{T}} f(z) dz = 0$ since $a_0 = 0$.

LEMMA 6. Let $\{n_j\}_{j=1}^{\infty}$, $\{a_n\}_{n=-\infty}^{\infty}$ and f be as above. We consider the equation

$$g(x) - g(e^{2\pi i\theta}x) = f(x) \quad (x \in \mathbf{T}).$$

Then the above equation has a real valued $L^2(\mathbf{T})$ -solution g but no real valued $C(\mathbf{T})$ -solution.

PROOF. Let $\{b_n\}_{n=-\infty}^{\infty}$ be the sequence defined by

$$b_n = \begin{cases} \frac{1}{j} & \text{if } n = \pm n_j \\ 0 & \text{otherwise.} \end{cases}$$

KAZUNORI KODAKA

For any $x \in \mathbf{T}$ let $g(x) = \sum_{n=-\infty}^{\infty} b_n x^n$. Then the series $\sum_{n=-\infty}^{\infty} b_n x^n$ converges with respect to the L^2 -norm. Hence g is a real valued function in $L^2(\mathbf{T})$. And by a direct computation

$$g(x) - g(e^{2\pi i\theta}x) = f(x)$$
 (a.e. $x \in \mathbf{T}$).

Furthermore in the same way as in the proof of Rouhani [10, Lemma 2.3] the above equation has no real valued $C(\mathbf{T})$ -solution.

THEOREM 7. Let f be as in Lemma 6. Let ϕ_f be the homeomorphism on \mathbf{T}^2 defined by

$$\phi_f(x, y) = (e^{2\pi i\theta} x, e^{2\pi i f(x)} x y)$$

for any $x, y \in \mathbf{T}$. Then ϕ_f does not have topologically quasi-discrete spectrum but is uniquely ergodic.

PROOF. It is clear that ϕ_f is uniquely ergodic by Rouhani [10, Proposition 2.5] and Lemma 6. Moreover by Theorem 3, Corollary 5 and Lemma 6, we see that ϕ_f does not have topologically quasi-discrete spectrum. Therefore we obtain the conclusion.

REFERENCES

- 1. L. Baggett and K. Merrill, On the cohomological equivalence of a class of functions under an irrational rotation of bounded type, Proc. Amer. Math. Soc. 111(1991), 787–793.
- **2.** E. G. Effros and F. Hahn, *Locally compact transformation groups and C*-algebras*, Mem. Amer. Math. Soc. **75**(1967).
- 3. H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83(1961), 573-601.
- 4. W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 36(1955).
- 5. G. H. Hardy and E. M. Wright, *An Introduction to the Theory of Numbers*, Oxford at the Clarendon Press, 1979.
- **6.** K. Kodaka, *Diffeomorphisms of irrational roation C*-algebras by non-generic rotations II*, J. Operator Theory, to appear.
- 7. S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, 1966.
- 8. W. Parry, Topics in Ergodic Theory, Cambridge University Press, 1981.
- 9. G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, 1979.
- **10.** H. Rouhani, *A Furstenberg transformation of the 2-torus without quasi-discrete spectrum*, Canad. Math. Bull. **33**(1990), 316–322.
- 11. _____, Quasi-roation C*-algebras, Pacific J. Math. 148(1991), 131–151.

Department of Mathematics College of Science Ryukyu University Nishihara-cho, Okinawa 903-01 Japan