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Recent progress in the understanding of how externally driven magnetic reconnection
evolves is organized in terms of parameter space diagrams. These diagrams are
constructed using four pivotal dimensionless parameters: the Lundquist number S, the
magnetic Prandtl number Pm, the amplitude of the boundary perturbation Ψ̂0, and
the perturbation wave number k̂. This new representation highlights the parameter
regions of a given system in which the magnetic reconnection process is expected
to be distinguished by a specific evolution. Contrary to previously proposed phase
diagrams, the diagrams introduced here take into account the dynamical evolution of
the reconnection process and are able to predict slow or fast reconnection regimes
for the same values of S and Pm, depending on the parameters that characterize the
external drive, which have not been considered until now. These features are crucial
to understanding the onset and evolution of magnetic reconnection in diverse physical
systems.

1. Introduction
Magnetic reconnection is a process whereby the magnetic field line connectivity

(Newcomb 1958; Pegoraro 2012; Asenjo & Comisso 2015) is modified due to the
presence of a localized diffusion region. This gives rise to a change in magnetic
field line topology and a release of magnetic energy into kinetic and thermal
energy. Reconnection of magnetic field lines is ubiquitous in laboratory, space and
astrophysical plasmas, where it is believed to play a key role in many of the most
striking and energetic phenomena. The most notable examples of such phenomena
include sawtooth crashes (Yamada et al. 1994; Nicolas et al. 2012) and major
disruptions in tokamak experiments (Waddell et al. 1978; Boozer 2012), solar and
stellar flares (Masuda et al. 1994; Su et al. 2013), coronal mass ejections (Lin &
Forbes 2000; Murphy et al. 2012), magnetospheric substorms (Øieroset et al. 2001;
Eastwood et al. 2007), coronal heating (Priest et al. 1998; Cassak et al. 2008), and
high-energy emissions in pulsar wind nebulae, gamma-ray bursts and jets from active
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galactic nuclei (Guo et al. 2015; Kagan et al. 2015; Sironi et al. 2015). An exhaustive
understanding of how magnetic reconnection proceeds in various regimes is therefore
essential in order to shed light on these phenomena.

In recent years, for the purpose of organizing the current knowledge of the
reconnection dynamics that is expected in a system with given plasma parameters,
a particular type of phase diagrams has been developed (Huang et al. 2011; Ji &
Daughton 2011; Daughton & Roytershteyn 2012; Cassak & Drake 2013; Huang &
Bhattacharjee 2013; Karimabadi & Lazarian 2013). These diagrams classify what
‘phase’ of magnetic reconnection should occur in a particular system, which is
identified by two dimensionless plasma parameters, the Lundquist number

SLs ≡
LsvA,u

Dη

, (1.1)

and the macroscopic system size

Λ≡ Ls

lk
. (1.2)

Here, Ls indicates the system size in the direction of the reconnecting current sheet,
vA,u is the Alfvén speed based on the reconnecting component of the magnetic field
upstream of the diffusion region, Dη = ηc2/4π is the magnetic diffusivity, and lk is
the relevant kinetic length scale. This length scale corresponds to (see e.g. Simakov
& Chacón 2008; Comisso et al. 2013)

lk =
{

di = c/ωpi for antiparallel reconnection,
ρτ = cs/ωci for guide-field reconnection. (1.3)

Of course, ωpi is the ion plasma frequency, ωci is the ion cyclotron frequency, c is
the speed of light, and cs is the sound speed based on both the electron and ion
temperatures.

All the proposed phase diagrams (Huang et al. 2011; Ji & Daughton 2011;
Daughton & Roytershteyn 2012; Cassak & Drake 2013; Huang & Bhattacharjee
2013; Karimabadi & Lazarian 2013) exhibit strong similarity and only a few minor
differences. They are useful for summarizing some of the current knowledge of the
magnetic reconnection dynamics, but they lack fundamental aspects that can greatly
affect the reconnection process (some caveats in the use of these diagrams have been
discussed by Cassak & Drake 2013). For example, they do not take into account
the dependence of the reconnection process on the external drive or on the magnetic
free energy available in the system. An attempt to include these effects has been
discussed by Ji & Daughton (2011), who proposed incorporating them by adjusting
the definition of the Lundquist number (1.1), but this solution should be viewed
only as a rough way to circumnavigate the problem. A further issue is that these
diagrams do not consider the evolution of the reconnection process, and predict
reconnection rates which are always fast (the estimated reconnection inflow is always
a significant fraction of vA,u). This, however, is not what is commonly observed in
laboratory, space, and astrophysical plasmas, where magnetic reconnection exhibits
disparate time scales and is often characterized by an impulsive behaviour, i.e. a
sudden increase in the time derivative of the reconnection rate (see e.g. Bhattacharjee
2004; Yamada 2011).
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Here we propose a different point of view in which we include explicitly the
effects of the external drive and the plasma viscosity (neglected in all previous
diagrams) on the magnetic reconnection process by considering a four-dimensional
parameter space. Then, in this four-dimensional diagram we identify specific domains
of parameters where the reconnection process exhibits distinct dynamical evolutions.
In other words, in each of these domains the reconnection process goes through
diverse phases characterized by different reconnection rates. This analysis leads us to
evaluate in greater detail the dynamical evolution of a forced magnetic reconnection
process, while collisionless effects have not been taken into account in the present
work. We introduce the considered model of forced magnetic reconnection in § 2,
whereas § 3 is devoted to the presentation of the possible evolutions of the system
and the conditions under which these different evolutions occur. In § 4 we construct
the parameter space diagrams that show which reconnection evolution is expected
in a system with given characteristic parameters. Finally, open issues are discussed
in § 5.

2. Forced magnetic reconnection in Taylor’s model
Magnetic reconnection in a given system is conventionally categorized as sponta-

neous or forced. Spontaneous magnetic reconnection refers to the case in which the
reconnection arises by some internal instability of the system or loss of equilibrium,
with the most typical example being the tearing mode. Forced magnetic reconnection
instead refers to the cases in which the reconnection is driven by some externally
imposed flow or magnetic perturbation. In this case, one of the most important
paradigms is the so-called ‘Taylor problem’, which consists in the study of the
evolution of the magnetic reconnection process in a tearing-stable slab plasma
equilibrium which is subject to a small amplitude boundary perturbation. This
situation is depicted in figure 1, where the shared equilibrium magnetic field has
the form

B= Bzez + (x/L)B0ey, (2.1)

with Bz, B0 and L as constants, and the perfectly conducting walls which bound the
plasma are located at x=±L. Magnetic reconnection is driven at the resonant surface
x= 0 by a deformation of the conducting walls such that

xw→±L∓Ξ0 cos(ky), (2.2)

where k = 2π/Ly is the perturbation wave number and Ξ0 is a small (�L)
displacement amplitude. The boundary perturbation is assumed to be set up in a
time scale that is long compared to the Alfvén time τA = L/vA, with vA = B0/

√
4πρ,

but short compared to any characteristic reconnection time scale. Hence, the plasma
can be considered in magnetostatic equilibrium everywhere except near the resonant
surface at x= 0.

The first and probably most important contribution to unveiling the behaviour of
forced magnetic reconnection in Taylor’s model is due to Hahm & Kulsrud (1985),
who showed that very small amplitude boundary perturbations cause an initial linear
phase in which a current sheet builds up at the resonant surface, and successive phases
in which the reconnection process evolves according to a linear resistive regime and
a nonlinear Rutherford regime (Rutherford 1973). The scenario discussed by Hahm &
Kulsrud (1985), which is characterized by a very slow evolution of the reconnection
process, was complemented some years later by Wang & Bhattacharjee (1992a),
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FIGURE 1. Geometry of the Taylor model. The equilibrium magnetic field component By
is sheared in the x direction, being null at x = 0. The plasma is bounded by perfectly
conducting walls at x=±L, while it is periodic in the y direction. Magnetic reconnection
is driven at x= 0 by the perturbation Ξ0 cos(ky) at the perfectly conducting walls.

who showed that larger perturbations may foster reconnection to proceed through
the nonlinear regime according to a Sweet–Parker-like evolution (Waelbroeck 1989),
which gives way to a Rutherford evolution only on the long time scale of resistive
diffusion. The scenario outlined by Wang & Bhattacharjee (1992a) is characterized
by a reconnection evolution faster than that presented by Hahm & Kulsrud (1985),
but it could still be slow for very small values of plasma resistivity, since in both
the Sweet–Parker-like (Waelbroeck 1989) and Rutherford (Rutherford 1973) regimes,
the reconnection rate is strongly dependent on the resistivity, which is known to be
extremely small in many laboratory fusion plasmas and space/astrophysical plasmas.
However, recent works (Comisso et al. 2014, 2015) have shown that relatively large
boundary perturbations lead to a different reconnection evolution in plasmas with
small resistivity and viscosity. In these cases, after a linear inertial phase and an
initial nonlinear regime characterized by a gradually evolving current sheet, the
reconnection suddenly enters into a fast reconnection regime distinguished by the
disruption of the current sheet due to the development of secondary magnetic islands
(usually called plasmoids: see Biskamp 2000 or Loureiro et al. 2007).

In addition to the works discussed above, which adopt a magnetohydrodynamic
(MHD) description of the plasma, we emphasize that many other efforts have been
devoted to investigating the Taylor problem assuming MHD, two-fluid and kinetic
descriptions (see Wang & Bhattacharjee 1992b; Ma et al. 1996; Avinash et al. 1998;
Rem & Schep 1998; Valori et al. 2000; Fitzpatrick 2003; Fitzpatrick 2004a,b, 2008;
Fitzpatrick et al. 2003; Cole & Fitzpatrick 2004; Bian & Vekstein 2005; Birn et al.
2005; Vekstein & Bian 2006; Birn & Hesse 2007; Hosseinpour & Vekstein 2008;
Gordovskyy et al. 2010a,b; Lazzaro & Comisso 2011; Dewar et al. 2013; Hosseinpour
2013). Indeed, the Taylor problem has important applications besides being interesting
from the point of view of basic physics. For instance, in laboratory fusion plasmas the
Taylor model represents a convenient way to study magnetic reconnection processes
driven by resonant magnetic perturbations, while in astrophysical plasmas this model
can be adopted to the study of magnetic reconnection forced by the motions of
photospheric flux tubes.
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3. Evolution of the reconnection process in Taylor’s model
In this section we review the present understanding of the forced magnetic

reconnection dynamics in Taylor’s model focusing on a visco-resistive plasma with
Pm greater than 1. As shown by Hahm & Kulsrud (1985), this dynamics always
starts with a linear inertial phase in which a current sheet builds up at the resonant
surface and shrinks inversely in time. Concurrently, the current density at the X-point
increases linearly in time. The reconnection rate during this phase can be evaluated
by recalling that the current density is proportional to the out-of-plane electric field
at the X-point, which is equal to

∂tψ |X =
2
π
∆′skL2B0Ξ0

t
τAτη

(3.1)

for t � τ 1/3
ν (τA/kL)2/3 (Fitzpatrick 2003; Comisso et al. 2015). Here, ψ stands for

the magnetic flux function of the perturbed magnetic field in the reconnection plane
(δB⊥ = ∇ψ × ez), τν = L2/ν and τη = L2/Dη indicate the characteristic time for
viscous and resistive diffusion, respectively, while ∆′s = 2k/sinh (kL) parametrizes
the contribution of the external source perturbation to the gradient discontinuity
of the magnetic flux function at the resonant surface. It is important to point out
that this phase is characterized by a non-constant-ψ behaviour of the magnetic flux
function across the island. Depending on whether or not this property persists until
the beginning of the nonlinear regime, different scenarios may occur.

3.1. Hahm–Kulsrud scenario
If the boundary perturbation is such that (Fitzpatrick 2003; Comisso et al. 2015)

Ψ0 = B0Ξ0�
(
τντη

)−1/6
( τA

kL

)1/3 B0

∆′s
≡ΨW, (3.2)

after the inertial phase the reconnection process evolves through a visco-resistive
phase, which is a linear regime characterized by a constant-ψ behaviour, i.e. the
perturbed magnetic flux function can be treated as a constant in x over the width of
the reconnection layer. During this phase the reconnection rate is given by

∂tψ |X = B0Ξ0
∆′sL
τ∗

e∆
′
0Lt/τ∗, (3.3)

where ∆′0 = 2k/tanh (kL) is the standard tearing stability parameter and τ∗ is a
characteristic time defined as (Fitzpatrick 2003; Comisso et al. 2015)

τ∗ ≡π62/3Γ
(

5
6

)
Γ
(

1
6

) τ 5/6
η

τ
1/6
ν

( τA

kL

)1/3
, (3.4)

with Γ indicating the Gamma function. Equation (3.3) is valid for t � τ−1/3
ν τ 2/3

η

(τA/kL)2/3 (Fitzpatrick 2003; Comisso et al. 2015) and a magnetic island width much
smaller than the linear layer width, i.e. w� δνη∼ (τντη)−1/6(τA/kL)1/3L (Porcelli 1987;
Fitzpatrick 1993). If the perturbation is sufficient to drive the magnetic island into
the nonlinear regime (w & δνη), the visco-resistive phase ends up in a Rutherford
evolution, whose island width growth is governed by the Rutherford equation

I
τη

L2

dw
dt
=∆′0 +∆′s

Ψ0

ψ |X
, (3.5)
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where I=0.823 (Rutherford 1973; Fitzpatrick 1993). This is a very slow reconnection
evolution in which the reconnection rate can be evaluated analytically in the two limits
(Hahm & Kulsrud 1985; Comisso et al. 2015)

∂tψ |X =
2∆′sΨ0

(−∆′0)τNL

(
3t
τNL

)−1/3

for t� τNL, (3.6)

∂tψ |X =
2∆′sΨ0

(−∆′0)τNL
tanh

(
t
τNL

)
cosh−2

(
t
τNL

)
for t� τNL, (3.7)

where

τNL = 4I
(−∆′0)L

(
∆′s

(−∆′0)
Ξ0

L

)1/2

τη. (3.8)

3.2. Wang–Bhattacharjee scenario
If the boundary perturbation is such that (Fitzpatrick 2003; Comisso et al. 2015)

Ψ0 &ΨW, (3.9)

the non-constant-ψ behaviour characteristic of the inertial phase lingers until the
nonlinear regime is entered. Therefore, since in this case the magnetic island grows
faster than the current can diffuse out of the reconnecting layer, the evolution of
the reconnection process is distinguished by a strong current sheet at the resonant
surface (Waelbroeck 1989). The reconnecting current sheet turns out to be stable if
the boundary perturbation is such that (Comisso et al. 2015)

Ψ0 = B0Ξ0 <CB0L
k
∆′s

τA

τη

(
1+ τη

τν

)1/2

≡Ψc, (3.10)

where the multiplicative constant C ∼ 2ε−2
c depends on the critical inverse aspect

ratio of the reconnecting current sheet (specified later). In this case, the reconnection
process follows a Sweet–Parker evolution (modified by plasma viscosity: Park et al.
1984), whose reconnection rate in Taylor’s model is (Comisso et al. 2015)

∂tψ |X ≈
1
3

B0L
(
∆′sΞ0

)3/2
(

kL
τAτη

)1/2(
1+ τη

τν

)−1/4

. (3.11)

Finally, the Sweet–Parker type of evolution gives way to a Rutherford evolution on
the time scale of resistive diffusion.

3.3. Our scenario
If the boundary perturbation satisfies (Fitzpatrick 2003; Comisso et al. 2015)

Ψ0 &
(
τντη

)−1/6
( τA

kL

)1/3 B0

∆′s
≡ΨW (3.12)

and also the condition (Comisso et al. 2015)

Ψ0 >CB0L
k
∆′s

τA

τη

(
1+ τη

τν

)1/2

≡Ψc, (3.13)

the reconnection process does not reach a stable Sweet–Parker regime, but a different
situation occurs. A gradually thinning current sheet evolves until its aspect ratio
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reaches the limit that allows the plasmoid instability to develop. The growth
of the plasmoids leads to the disruption of the current sheet, and therefore to
a dramatic increase in the reconnection rate. The reconnection rate during this
plasmoid-dominated phase has been evaluated in a statistical steady state as (Comisso
et al. 2015)

∂tψp ≈ εcB0L
(
∆′sΞ0

)2
τ−1

A

(
1+ τη

τν

)−1/2

, (3.14)

where εc = δc/Lc is the critical inverse aspect ratio of the reconnecting current sheet.
This quantity, whose value has been found to lie in the range 1/100–1/200 by means
of numerical simulations (Bhattacharjee et al. 2009; Cassak et al. 2009; Samtaney
et al. 2009; Huang & Bhattacharjee 2010; Skender & Lapenta 2010), represents
the threshold below which the reconnecting current sheet becomes unstable to the
plasmoid instability (Loureiro et al. 2007). This threshold condition as a function of
the Lundquist and magnetic Prandtl numbers has been recently discussed by Loureiro
et al. (2013), Comisso et al. (2015) and Tenerani et al. (2015). In particular, it
has been shown (Comisso et al. 2015) that a reconnecting current sheet becomes
unstable when the Lundquist number based on its length exceeds the critical value
Sc ≈ ε−2

c

(
1+ τν/τη

)1/2.

4. Phase diagrams
In this section we illustrate the domain of existence of the three different scenarios

described above, with the help of appropriate parameter space maps. For the sake of
clarity we restate the three types of reconnection evolutions we are referring to:

(1) the Hahm–Kulsrud scenario (Hahm & Kulsrud 1985; Fitzpatrick 2003);
(2) the Wang–Bhattacharjee scenario (Wang & Bhattacharjee 1992a; Fitzpatrick

2003);
(3) our scenario (Comisso et al. 2015).

Since each of these scenarios includes different phases/regimes of reconnection, the
concept of ‘phase diagrams’ is intended here in a broader sense. Due to this fact, they
could also be defined in a more general way as ‘scenario diagrams’. This type of
diagrams can be constructed from the conditions summarized in the previous section.
Therefore, the possible evolutions of the reconnection process may be organized in a
four-dimensional parameter space map with Ψ̂0 = Ψ0/B0L, k̂ = kL, S = LvA/Dη, and
Pm = ν/Dη on the four axes. However, due to the difficulty in visualizing such a
four-dimensional diagram, it is convenient to consider two-dimensional slices for fixed
values of two of the four parameters.

Let us first consider four two-dimensional slices with fixed values of the magnetic
Prandtl number and perturbation wave number. Assuming that the Hahm–Kulsrud
scenario (which occurs if Ψ0 � ΨW) holds until Ψ0 = ΨW/3, the corresponding
diagrams for (a) k̂ = 1/8, Pm = 5, (b) k̂ = 1/8, Pm = 500, (c) k̂ = 2, Pm = 5, and
(d) k̂= 2, Pm = 500 are shown in figure 2(a–d). From these plots it is clear that the
Wang–Bhattacharjee scenario is limited to a small range of values of the Lundquist
number and the source perturbation amplitude. Increasing values of the magnetic
Prandtl number and perturbation wave number extend the domain of existence of
this possible type of evolution of the system. However, after a threshold value of the
Lundquist number (identified by the intersection of the two black lines representing
Ψ̂0 = Ψ̂W/3 and Ψ̂0 = Ψ̂c), the Wang–Bhattacharjee scenario cannot occur because
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(a) (b)

(c) (d)

FIGURE 2. Two-dimensional slices of a phase/scenario diagram for forced magnetic
reconnection in the magnetohydrodynamical Taylor model. Fixed parameters are (a) k̂ =
1/8, Pm = 5, (b) k̂ = 1/8, Pm = 500, (c) k̂ = 2, Pm = 5, and (d) k̂ = 2, Pm = 500. The
numerical labels indicate (1) the Hahm–Kulsrud scenario, (2) the Wang–Bhattacharjee
scenario, and (3) our scenario. The boundaries between the different scenarios are
identified by the functions Ψ̂0 = Ψ̂W/3 and Ψ̂0 = Ψ̂c for Ψ̂c > Ψ̂W/3.

it is not possible to obtain a stable Sweet–Parker-type evolution. In these cases the
Hahm–Kulsrud scenario is facilitated by very small perturbation amplitudes, whereas
larger perturbations lead the system to a fast reconnection regime as described in § 3.3.
Note that while previously proposed phase diagrams always predict fast reconnection
(Huang et al. 2011; Ji & Daughton 2011; Daughton & Roytershteyn 2012; Cassak &
Drake 2013; Huang & Bhattacharjee 2013; Karimabadi & Lazarian 2013), in clear
contrast to what happens in nature, our diagrams show that reconnection proceeds
very slowly (region (1)) if the source perturbation is not sufficiently large.

Let us now examine the effect of the plasma viscosity by considering the domain
of existence of the different scenarios as a function of the parameters Ψ̂0 and Pm.
Figure 3(a) shows the functions Ψ̂0= Ψ̂W/3 and Ψ̂0= Ψ̂c for S= 108 and k̂= 0.5. For
Ψ̂c < Ψ̂W/3 the threshold for plasmoid formation coincides with that for the nonlinear
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(a) (b)

FIGURE 3. (a) Thresholds Ψ̂W/3 (red line) and Ψ̂c (blue line) as a function of the
magnetic Prandtl number Pm for S = 108, k̂ = 0.5 and C = 2(150)2. (b) Corresponding
two-dimensional slice of the phase/scenario diagram identifying (1) the Hahm–Kulsrud
scenario, (2) the Wang–Bhattacharjee scenario, and (3) our scenario.

FIGURE 4. Boundaries (identified by the functions Ψ̂0= Ψ̂W/3 and Ψ̂0= Ψ̂c for Ψ̂c>Ψ̂W/3)
of the different possible evolutions of the reconnection process for k̂ = 0.5 and various
values of the magnetic Prandtl number.

evolution characterized by a strong reconnecting current sheet. Therefore, for Ψ̂c <

Ψ̂W/3 an increase in the amplitude perturbation Ψ̂0 drives the system directly from
scenario (1) to scenario (3). This situation is depicted in figure 3(b), where it is clearly
shown that the increase of the magnetic Prandtl number has the effect of making
possible or extending the domain of existence of scenario (2), as recently pointed out
in Tenerani et al. (2015) and Comisso et al. (2015).

To clarify the effect of the plasma viscosity we also delineate the boundaries of the
diverse evolutions (1)–(3) in a parameter space map (Ψ̂0, S) (as in figure 2) for fixed
k̂ = 0.5 but different values of Pm. This is shown in figure 4 for Pm = 5 − 5 × 105.
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(a) (b)

FIGURE 5. (a) Thresholds Ψ̂W/3 (red line) and Ψ̂c (blue line) as a function of the
perturbation wave number k̂ for S = 108, Pm = 5 and C = 2(150)2. (b) Corresponding
two-dimensional slice of the phase/scenario diagram identifying (1) the Hahm–Kulsrud
scenario, (2) the Wang–Bhattacharjee scenario, and (3) our scenario.

FIGURE 6. Boundaries (identified by the functions Ψ̂0= Ψ̂W/3 and Ψ̂0= Ψ̂c for Ψ̂c>Ψ̂W/3)
of the different possible evolutions of the reconnection process for Pm = 5 and various
values of the perturbation wave number.

The increase of the magnetic Prandtl number extends the domain of existence of the
slow reconnection scenario (1) at the expense of the fast reconnection scenario (3).
The area of existence of scenario (2) remains almost unchanged, but shifted towards
higher values of the Lundquist number.

We now examine in more detail how the possible evolutions of the forced magnetic
reconnection process depend on the wave number of the boundary perturbation.
Figure 5(a) shows the thresholds Ψ̂0 = Ψ̂W/3 and Ψ̂0 = Ψ̂c as a function of k̂ for
fixed values of S = 108 and Pm = 5. Below a critical perturbation wave number k̂∗

(corresponding to k̂∗ ≈ 1 for the fixed parameters used in figure 5a), every time the
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non-constant-ψ magnetic island passes into the nonlinear regime, the evolution of
the system leads to the plasmoid-dominated phase predicted in scenario (3). The
domains of existence of the possible evolutions (1)–(3) are illustrated in figure 5(b).
The scenario discussed by Wang and Bhattacharjee happens only for a small range
of (Ψ̂0, k̂) parameters. Note also that scenario (3) is facilitated for k̂ . k̂∗, while
scenario (1) may occur for large amplitude boundary perturbations if k̂� k̂∗.

To better evaluate the effects of k̂ on the possible evolutions of the reconnection
process, we plot in figure 6 the boundaries between scenarios (1)–(3) in a parameter
space map (Ψ̂0, S) (as in figures 2 and 4) for fixed Pm = 5 but different values of
k̂. The maximum area of existence of scenario (2) occurs for k̂∼ 1, while for k̂� 1
and k̂� 1, scenario (2) appears for a very limited range of (Ψ̂0, k̂) parameters. Note
also that scenario (1) is greatly facilitated in the case of very large perturbation
wave numbers (k̂� 1), while scenario (3) is facilitated by relatively large amplitude
perturbations with k̂ . 1.

5. Discussion
The introduction of a new type of phase/scenario diagram that explicitly includes

the effects of the external drive has allowed us to graphically organize in detail the
possible evolutions of forced magnetic reconnection processes in collisional plasmas.
In contrast to previous versions of the phase diagrams (Huang et al. 2011; Ji &
Daughton 2011; Daughton & Roytershteyn 2012; Cassak & Drake 2013; Huang &
Bhattacharjee 2013; Karimabadi & Lazarian 2013), this new representation highlights
regions of the parameter space (Ψ̂0, k̂, S, Pm) in which reconnection is a slow diffusive
process (§ 3.1), in addition to regions where reconnection can be fast (§§ 3.2 and
3.3). We recall that by fast we mean that the out-of-plane inductive electric field at
the X-point is a significant fraction of the one evaluated upstream of the reconnection
layer. We also emphasize that this type of diagram responds to the criticism made by
Cassak & Drake (2013), concerning the fact that the previously proposed diagrams
are not able to take into account the dynamical evolution of the reconnection process
from a slow to a fast regime inside a given region of the parameter space. Indeed,
scenarios (1)–(3) describe the forced magnetic reconnection process from the current
sheet formation all the way to their specific nonlinear evolution.

We would like to remark that while the proposed parameter space diagrams
represent a valid way to summarize the current knowledge of the forced magnetic
reconnection dynamics in a collisional plasma, there are a number of conditions that
may significantly affect the reconnection process but which have not been addressed
in this paper. For instance, two-fluid/kinetic effects should be considered if the length
scale associated with the width of the reconnecting current sheet becomes of the order
of, or smaller than, the characteristic length scales of these effects. In fact, effects
associated with finite electron inertia (Ottaviani & Porcelli 1993; Comisso & Asenjo
2014) are known to enhance the reconnection rate, as well as Hall effects (Birn et al.
2001; Simakov & Chacón 2008) in antiparallel reconnection (i.e. in the absence of a
guide magnetic field) and electron pressure (Kleva et al. 1995; Grasso et al. 1999)
and ion gyration effects (Comisso et al. 2013) in the case of reconnection with a
strong guide field. We would also like to remark that a common condition in many
physical systems is the presence of velocity flows, which are known to suppress the
reconnection (Fitzpatrick 1993; Waelbroeck et al. 2012) or to alter the reconnection
rate (Cassak 2011; Tassi et al. 2014). In this case our analysis should be extended
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by considering the effects of a plasma flow on the reconnection dynamics. Similarly,
the effects of turbulence should also be considered (Servidio et al. 2009; Karimabadi
& Lazarian 2013) in order to obtain a more complete description of the magnetic
reconnection dynamics.

Finally, it is important to recall that all the presented diagrams of magnetic
reconnection are based on two-dimensional models and simulations. At present, the
knowledge of how magnetic reconnection evolves in large three-dimensional systems
is still far behind our understanding of what happens in two-dimensional systems.
Therefore, despite the great progress achieved in recent years (Borgogno et al.
2005; Yin et al. 2008; Daughton et al. 2011; Wyper & Pontin 2014), other work
is needed in this direction before we can implement a phase diagram description of
three-dimensional magnetic reconnection.
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