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ABSTRACT

We consider a risk model in which the claim inter-arrivals and amounts depend
on a markovian environment process. Semi-Markov risk models are so introduced

“in a quite natural way, We derive some quantities of interest for the risk process
and obtain a necessary and sufficient condition for the fairness of the risk (positive
asymptotic non-ruin probabilities). These probabilities are explicitly calculated
in a particular case (two possible states for the environment, exponential claim
amounts distributions).
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1. INTRODUCTION

Several authors have used the semi-Markov processes in Queuing Theory and
in Risk Theory [e.g., CINLAR (1967), NEUTS (1966}, NEUTS and SHUN-ZER
CHEN (1972), PURDUE (1974), JANSSEN (1980), REINHARD (1981)]. Besides,
some duality results lead to nice connections betweer the two theories [FELLER
(1971), JansseN and REINHARD (1982)].

Semi-Markov risk models may be defined as follows. Consider a risk model
in continuous time; let B, (n € No)* and U, (n € No) denote respectively the
amount and the arrival time of the nth claim. Put Ay =By = U, =0 and define
A, =U,—-U,_; (n€eNy). We suppose that the A, and B,, are random variables
defined on a complete probability space ({2, &, P); the variables A, (n € Np) are
a.s. positive. Let now J, (n € N) be random variables defined on (Q, &, P) and
taking their values in J={1,...,m} (meN,). Suppose finally that
{(Ju, As, B,); n € N} is a Markov chain with transition probabilities defined by a
bivariate semi-Markov kernel:

)P[]n+1 =j’An+1St, Bn+1$x|Jk1Ak9 Bk; k =0’ cees n]':QI,‘j(x’ t) a.s.

(jeJ, t=0, x€R, neN)
where Qy(x,-) and Q;(-,f) are right continuous nondecreasing functions

(11

satisfying:
Qii(x9 t)?O, Qii(wyo)_—-o (l)]EJ;tBO)
_g:l Q(0,00)=1 (iel)
i=
Qi](—w1 w)=0 (i,jEJ).

*No={1,2,3,.. 3 N={0,1,2,3,...}.
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Such processes, called (J-Y-X) processes, were studied by JANSSEN and REIN-
HARD (1982) and REINHARD (1982). In the particular case where

(1-2) Qii(X, t)=(1_e‘M)Qij(x)’ A>0,

the processes {A,} and {(J,,, B,)} being independent, JANSSEN (1980) interpreted
the variables J, as the types of the successive claims. The next section will show
that another subclass of semi-Markov kernels appears if we assume that the risk
depends on an environment process.

2. RISK PROCESSES IN A MARKOVIAN ENVIRONMENT

Suppose that the claim frequency and amounts depend on the external environ-
ment (economic situation . . .) and that the external environment may be charac-
terized at any time by one of the m states 1,...,m (m € Ny). Let I, denote the
state of the environment at time t =0 and let I,, n =1, ..., be the state of the
environment after its nth transition. Put 7, =0 and let T,, (n € Ny) be the time
at which occurs the nth transition of the environment process. We suppose that
I, and T, (n € N) are random variables defined on ({2, &, P) and taking their
values in J and R " respectively. Define now Y, = T, — T,_; (n € Ny), Yo =0 and
assume that

(2'1) P[I"+1 =j’ Y'H'l stl(Ika Yk)’ k= 0’ cees N In = l] = hi]'(l _evxit)
(i,jeJ; t=0; neN)
where the A; are strictly positive real numbers and H = (k;) is a transition matrix:
h,’f?O, Z h,’k=1 (i,jEJ).
k=1
{I,,n e N} is then a Markov chain with a matrix of transition probabilities
H= (hi,'):
(2.2) hi=P[L,.1=j|I. =i).

Define N.{¢t)=sup{n: T, <t} and I(t) = Inq (t =0). The process {I(¢), t =0} is
a finite-state Markov process; it is known that the number of transitions of the
environment process {I(¢)} in any finite interval (s, t], i.e., N.(t) —N.(s), is a.s.

finite.

Denote now by J, the state of the environment process at the arrival of the
nth claim:
(2.3) J.=1(U,) {(neN).

We will suppose that the following assumptions are satisfied:

(H1) The sequences of random variables (A,) and (B,) are conditionally
independent given the variables J,..

(H2) The distribution of a claim depends uniquely on the state of the environ-
ment at the time of arrival of that claim. Let

2.4) Fi(x)=P[B,<x|J, =1i] (ieJ, neN, x€R)
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(H3) Let N(¢) be the number of claims occurring in (0, ¢]. If I(u) =1 for all
u in some interval (¢, t + & ], then the number of claims occurring in that interval,
i.., N(t+h)—N(t), has a Poisson distribution with parameter a; (a; >0); we
assume further that given the process {I(¢)} the process {N(¢)} has independent
increments. So

(2.5) PIN@t+h)=n+1|N@t)=nI(u)=i for t<u=<t+h]l=ah +o(h).

The process {N{(t);t=0} appears thus as a Poisson process with parameter
modified by the transitions of the environment process.

Under the above assumptions it may be shown that {(J,, A,, B,;),n€N}is a
(J-Y-X) process with semi-Markov kernel 2 defined by (1.1). {(J,,, A,),n e N}
is a Markov renewal process [see PYKE (1961)]; we denote its kernel by
V= (Vy(-):

(2~6) ‘/l](t) =P[Jn+1 =]'a An st{(jk, Ak)’ k = 0’ sy n;"n = i]

(i,jeJ, neN, t=0).
Moreover it follows from the assumptions that

(2.7) Qy(x,t)=V,;(OF;(x)  (,jeJ, t=0, xeR).
{J., n € N} is a Markov chain with matrix P of transition probabilities defined by
(28) PEj=P[Jn+1 =]|Jn=l]=ou(wr w)z‘/i](w) (19]€J)

In the next section it will be shown how the semi-Markov kernel 2 (or
equivalently 7°) can be deduced from the instantaneous rates a; the transition
matrix H, the constants A; and the distributions F;(-).

3. COMPUTATION OF THE KERNEL

Let us first introduce some notations: for any mass function (i.e., right continuous
and non-decreasing) G (¢t) defined on R ™" let

@

G~(s)=J. e G (1) dt, g(s)=J.-e_s'dG(t)

0
provided the above integrals converge.
The following system of integral equations may be easily deduced from the
hypothesis

t

hik J e MY (e —u) du
0

Qa;
a,-+/\,-

(B.1) Vi) =8, (1—e @42, ¥
k=

1
G,jet;, t=0).

The first term in the right side of (3.1) corresponds to the case where a claim
occurs before the environment changes, the second term to the case where the
environment changes before a claim occurs.

For s =0, define now the following matrices:

L(s) = (hyAi/(a; +5 +A:)), E(s)=(8ya:i/(a; +5 +4:)).
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By taking the Laplace transforms of both sides in (3.1) we obtain

i A i ~
= Y haVii(s)

~.. = N +
(3.2) Vii(s) 6”s(a,~+)\,-+s) a;+A+5 21

(i,jeJ; §>0),
or, in matrix notation,
(3.3) [I~L($)IV(s)=(1/)E(s) (s>0)

(we will always use the same symbol for a matrix and its elements whenever
this causes no ambiguity). As for any s =0

m A
Li(s) —]Z.l Ly(s)= m< 1,

I —L(s) is regular for s =0 and consequently (3.3) has as unique solution
(3.4) V)= -L&IE(s)  (s>0),

or equivalently

3.5) v(s)=[I-L)I'E(s)  (s>0).

As py; = V;(00) = lim, 0 v;i(s), the matrix P of the transition probabilities of the
chain {/,,} can be directly deduced from (3.5):

(3.6) P=[I-L(0)]E(0).

Notice that the semi-Markov kernel ¥ is solution of a first order linear
differential system: by deriving (3.1) with respect to ¢ we obtain

(3.7 Vit)y=ad;+ 'f. [Aihic = (i + A8 J Vi (1) (i,jeJ; t=0).
k=1

4. SOME RESULTS ABOUT QUANTITIES RELATED TO THE RISK PROCESS

In this section we derive some explicit expressions or equations related to the
semi-Markov risk-process defined in the preceding sections.

4.1. Stationary Probabilities of the Chain {I,,}

From now on we suppose that the chain {/,,} is irreducible. As m is finite there
exists a unique probability distribution 7 = (11, . . . , 7 ) such that

4.1) >0  (iel),

ik = 7; (Jjel).

IISeE
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We have then:

THEOREM 1

The Markov chain {J,,; n € N}isirreducible and aperiodic (thus ergodic as m <00),
Its stationary probabilities are given by
-1

(4.2) m =S 54U ),
i = J

Proof

Let i,j €J. As the chain {I,,} is irreducible, there exists n € N such that hf}‘) >0.
It may be easily seen that this implies (L"(0)); >0. Now we obtain from (3.6):
4.3 i = "(0))i—1—.
@.3) = X L Ol r
The probabilities p; are thus strictly positive for all i, j e J.

It remains to show that #P = 7. Define the diagonal matrices

A _ a;
4.4) D= <8""a,- + A,-)’ A= (5.,)“).

We have then L(0) =DH, E(0)=I — D, 7 = KiA (where K is the norming factor
in the right side of (4.2)), AD =I —D; (3.6) may be written as follows:

4.5) P=1-D+DHP.
Now
#P =7 —#D +#DHP =# —K[5(I —D)—-7(I —D)HP].
As nH =7, we obtain
4.6) #P =7 —-Ki[({ -D)— (I —-DH)P]=,

the last equality resulting from (4.5).

Note that (4.2) has an immediate intuitive interpretation: n; is the asymptotic
probability of finding the chain {I,;n € N} in state i; (A;)”" is the mean time
spent by the process {I(t); =0} in state { before its next transition; a; is the
mean number of claims occurring per time unit when the process {I(¢); ¢t =0}
sojourns in state i; m; appears thus well as the asymptotic average number of
claims occurring in environment .

4.2. Number of Claims Occurring in (0, t)

The equations obtained here could be derived from the general theory of
semi-Markov processes. It is, however, interesting to restate them directly as
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the semi-Markov kernel 7 is itself expressed as the solution of the differential
system (3.7)
Define

N(@)
1= if N(t)>0,
(4.7) Ivi(t)= kgl [Jic=/] ) ( )

0 if N(t)=0,

where as previously N (¢) is the number of claims occurring in (0, ). N;(¢) is
clearly the number of claims occurring in environment j before ¢. Let

M;(6) = EIN;(t)|Jo=1]

and

M,-(t)=E[N(t)|Jo=i]=‘Z1 M;(t) (t=0).
iz

The following system of integral equations is easily obtained:

t

Mii(t) = 6,‘,’ e“'\"a,-t +J

0

Ai e'A‘“[csi,a,-u +z hikMk,'(t - u)] du
k

or

~At

t

+ Y A | e MMy(t—u)du  (£20).
k=1 (1}

4.8) M;(t) =6,

i

Taking the derivatives of both sides with respect to ¢ we obtain

4.9) M (t) = aiby; — AM;(t) + A, kgl hiuM;(t) (t=0),
and after summation over j

(4.10) Mi(t)=a;—AM;(t)+A X haMi(t)  (£=0).
k=1
(4.9) with the boundary condition M;;(0) =0 (7, j € J) has a unique solution.

4.3. Further Properties of the Claim Arrival Process

We extend first to the (J-Y-X') processes a well known property of Markov
chains and (J-X') processes.

THEOREM 2

Let {(J,, A,, B,); ne N} be a (J-Y-X) process with state space J X R*X R and
kernel 2 defined by (1.1). Suppose that the Markov chain {/,} is irreducible (and
thus positive recurrent as m is finite). Let Z;(x, t), i, j € J, be real measurable
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functions defined on R X R ™ such that the integrals

j j \Z(x, DQy(dx, dr) (i, jed)
—o0 Y0
are finite. Let

2=3 [ | Zux0Qudx, i) =E@s, s, B ADV= ).
—o00 J0

j=1

Define then n;0=0, n;x =inf{n >n;;_1: J, =i} for k € Ny (recurrence indices of
state i) and let

fi,r=E( l'f Zlk_llk(Bk: Ak)) (ieJ, reN).

k=n; +1

The random variables ;,, r=1,2,..., are i.i.d. and we have

(4.11) EQ)=="7% mz; (ieJ, reNo

1
Tij=1
where the m; are the stationary probabilities of the chain {J,.}.

Proof
Define

PP =P, =jJc#ifork=1,...,n—1|Jo=i] (,jeJ; neNy).
We have then

Eln=%Y ¥ ipg;c‘)zk"'zi (iedJ, reNy).

k#in=1

(4.11) follows since we know from Markov chain theory that ¥, ;pi® = m¢/m:.

Mean Recurrence Time of Claims Occurring in a Given Environment

We return now to the risk model. Define
(4.12) Gi(t) =P[N;()>0lJo=i1  (,jel; t=0).

G;;(+) is the distribution function of the first time at which a claim occurs in
environment j given that the initial environment is i. Let

(4.13) vi=[ 146,00 Giel.

We could obtain a system of integral equations for the distributions G;(+) and
derive from it after passage to the Laplace~Stieltjes transforms a linear system

https://doi.org/10.1017/50515036100004785 Published online by Cambridge University Press


https://doi.org/10.1017/S0515036100004785

30 JEAN-MARIE REINHARD

for the v;. We may, however, proceed more directly as follows:
(414) Vi = O'ijJ‘ e_(“‘“")'[agt +A; Z hi (¢ + 'ij)] dt
0 k=1
+ (1 —6,',') J‘ e—(“‘ﬂ")t[ai(t + Yij) +Ai E h,'k(t + ‘Yk,')] dt;
0 k=1

we thus get a linear system:

(4.15)

A+ 8 1 Ay & ..
i = hi . s € .

a.-+)t,~ Yi a,-+)t.- a,-+)t,- ké] iYki (l I J)

The diagonal elements y; (mean recurrence time of claims occurring in state i)

may be explicitly expressed by using Theorem 2. Define Z;(x, t) =t; then z; =

E(A,|Jo=1i). We have

Z; =J- e_(a““‘)‘[a,-t+A,- 'z": hij(t+2j)] dt (l EJ)-
o .

i=1
Hence

1 Aom .
i= + iZi ,
z a;+A; a;+A; i:;lh i (iel)

g = — -1 -1
or,if Z=(zy,...,zm) and y=(a1,...,am)’,

z=(I-L(0))'E(0)y = Py;

we have thus

- | .
(4.16) zi=E(A|Jo=i)=Y pj— (iel)
=t @
and consequently
m m 1
4.17) Y mzi=E.(A)=Y m—.
i=1 i=1 aj
Using finally theorem 2 we have:
THEOREM 3
ForanyieJ:
1™ 1
(4.18) Yi=— ) i
Tij=1 @

Renewal Theorem—Stationary Probabilities

Given that J, =1, the times at which claims occur in environment j form a pure
renewal process if i =j and a delayed renewal process if i #j. We have the
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classical renewal equations:
(4.19) M, ()= Lt[1+1w,-,-(t—u)]d'cﬁ(u) G,jel; 1=0).
As the distribution functions Gj;(-) are clearly not arithmetic, the expected

number of claims occurring in environment j within (¢, 1 +h) tends to h(y;)™"
when ¢ » 00 whatever the initial environment i, i.e.,

4.20) }gg [M,-(t+h)-—1\l,-,(t)]=-% (i,jed; h=0).
[see FELLER (1971), Chapt. XI]. From (4.20) it follows that
4.21) }LTOML(-Q=-1— (i, jeld).

Define now '

4.22) Fy(1)=(py) " Vi(®)

R}tic) (u, )=PlIney=F Ino+1=k, Unpyr1 <t +u Ifo =i];

the last quantity is thus the probability, given that Jo=1, that the last claim
before t occurred in environment j and that the next claim will occur in environ-
ment k before time ¢ +u. We deduce immediately from Theorem 7.1 of PYKE
(1961b) that

. i 1 ("
4.23) lim RS ) =pu— [ [1-Fa(y)]dy,
e i 70
which limit is independent of i; we denote it by R (). Let now
V?; (u)= 'Yiizi_le'(u)
and define a chain {(J,, A,, B,); n € N} as follows:
Ao=By=0 as.
P(J,=j,Ai<u,Bi<x|Ao, Bo; Jo=i]= V¥ (w)F;(x)
P, =jA,<u,B,<x|A,Bi, o (k=0,...,n—1);J._;
=i]= Vij(u)Fj(x)
(,jeJ; ueR", xeR, n=2).
where z; is defined by (4.16).
We define for that chain the same quantities and adopt the same notations as
for the chain {(J., A, B,); n € N}. The risk processes associated with the two
chains are identical except that for the second one the time of occurrence of the

first claim is distributed according to the semi-Markov kernel (V (+)) instead
of (V;(-)). Suppose now that

(4.24)

(4.25) a=P[lo=il=2 (el
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Then [see PYKE (1961b)]:
(4.26) PlTrw =i Troa =k Ugww <t+ul=Rj(u).

5. PREMIUM INCOME—RUIN PROBABILITIES

We assume that the company managing the risk receives premiums at a constant
rate ¢; >0 during any time interval the environment process remains in state i
The premium income process is thus characterized by a vector (¢y, . .., ¢,,) with
positive entries. Denote by A°(f) the aggregate premium received during (0, 7):

N,

(5.1) Ac(t) = kzl clk‘l(Tk —Ti-1) +C1N‘m(t— TN‘(,))

and by B(¢) the aggregate amount of the claims occurring in (0, ¢):
N

(5.2) B(t)= Y By (t=0).
k=0

Assume now that the initial amount of free assets of the company is u = 0. The
amount of free assets at time ¢ is then

(5.3) Z,(t)=u+5(t)
where

(5.4 S(t)=A(t)-B(r).
Define then

(5.5 Ri(u,t)=P[Z,(v)=0 for O<v =<t|Jy=i] (ieJ; u,t=0),
(5.6) Ri(u) =R(u,0)=P[Z,(v)=0forall v=0|Jo=i] (ieJ, u=0).

We will refer to the probabilities (5.5) as to the finite time non-ruin probabilities
and to the probabilities (5.6) as to the asymptotic non-ruin probabilities.

5.1. Random Walk of the Free Assets

Denote by A, the premium received between the occurrences of the (n —1)th
and nth claims (n = 1). Define then

(57) Xk =Az'—Bk (k = 1, 2, . .); X0=0 a.s.,
(5.8) S.=73Y X. (neN).
k=0
Clearly the chain {(Jx, Xi); k €N} is a (J~X) process, {S,} is a random walk

defined on the finite Markov chain {J,} [see JANSSEN (1970); MILLER (1962);
NewBOULD (1973)]. The amount of free assets just after the occurrence of the
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nth claim is given by
Z Ao+ +A)=u+S,

and clearly

(5.9 R,-(u)=P[ir:fSk2—u|JO=i].
From now on we assume that the d.f. F;(-) has a finite expectation u; (i €J).
We get then
(5.10) b =E[Bk|fk—1=i]=§1 Dijtt;
and

z§=E[Ai|Jk_1=i]=J e““*“"‘[a,.cim)«,- ¥ h,-,-(c,~t+zf)] dt
0 =1

1

so that, concluding as to obtain (4.16),
(5.11) 2i=3Y prl  (ied).
j=1 &

If the premium rates are constant whatever the state of the environment, i.e.,
ifé=(c,...,c), weobtain naturally z; = cz;. We conclude from (5.10) and (5.11)

that
(5.12) L=E[Xi|Jio1=il= % pii(ﬁ_l"i)-
i=1 a;
Notice that we would obtain the same result for a semi-Markov risk model with
kernel 2* defined by
(5.13) 5, 1) =py(1—e ") F(x).
Define now
ri|“k-4-1
Di,,= Z Xk (iEJ, TGN())
k=ni,+1

where the n;, are the recurrence indices of claims occurring in environment i as
defined in section 4.3; for i fixed the variables D;, (r=1,2,...) are i.i.d.; D;,
is clearly the variation of the free assets between the rth and (r + 1)th claims
occurring in environment i. We obtain from theorem 2

(5.14) ED)=— 5 m(L-w) el reno.

ij=1

As the variables A are absolutely continuous and conditionally (given the J;)
independent of the variables By, the process {(J,, S.); n € N} is not degenerate
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[see NEwBoULD (1973)], i.e., there exist no constants wy, ..., w, such that
P[X, =w;—w;|J,-1=1i,J, =j]=1, or equivalently there exists no i such that
D,, =0 a.s. (NEwWBOULD (1973), lemma 2). Using Proposition 3A of JANSSEN
(1970) we obtain then

THEOREM 4

Let

i=1

(5.15) =3 w,-(aij—p.,.).

Then (i) If d >0, the random walk {S,} drifts to +00, i.e. lim, .0 S, =0 a.s.;
Ri(u)>0, Vu=0, iel. (ii) If d <0, the random walk {S,} drifts to —co, i.e.
lim,.0 S, =~ a.s.: R;i(u)=0, Vu=0, i el (iii) If d =0, the random walk {S,}
is oscillating, i.e. lim sup $, = +o a.s. and lim inf §,, = —o© a.s.; Ri(u) = 0, Vu =0,
iel.

Notice that when m = 1 theorem 4 reduces evidently to the classical result for
the Poisson model.

5.2. Distribution of the Aggregate Net Pay-out in (0, t)
From now on we suppose that the claim amounts are a.s. positive:
(5.16) F.(0-)=0, F(0)<1 Viel.

Recall that A°(¢) and B(¢) denote respectively the aggregate premium received
and the aggregate amount of claims occurred during (0, ¢). Then denote by C(r)
the net pay-out of the company in (0, ¢):

Cit)=B@t)-A“(t)=-S(t) (t=0)
Let then

(5.17) Wix, ) =P[Ct)=x, I(t)=f|I(0)=i] (i,jeJ; t=0).

Define now

co=max{c;;ielt}, Jo={ieJ:ci=co}.

It is easy to prove the following

LEMMA

(i) Wix,t)=0fori,jeJ and x <—cot;
(i) Wi(x,t)>0fori,jeJ and x > —cot;
(iit) Wi(—cot, t)>0ifi, j e Joandeitheri = or there existr e Noand iy, ..., i, €Jp
such that h; b, ... hi;>0; Wi(—cot, t) =0 otherwise.
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Let now

Waf(s,t>=j Wy, dx; W, 0=(Wyls,0)  (s>0),
w.~,~(s,t>=j e AWy (x, ) =sWy(s, 1) wis)=(wy(s, 1)  (s>0),

¢i(s)=I_e_"dE(x) (s=0).

The following theorem gives an explicit expression for the transform matrix
Wis,t).

THEOREM 5

Fors>0and =0,

(5.18) Wi(s, t)=1/s exp {~T(s)t}
where

(5.19) T;i(s) =8 + A —awpi(s) — cis) — Ashyj.
Proof

For x = —ct, t 2 0 and h > 0 we obtain easily
(5.20) Wix, t+h)=(1—(a: +A)h)Wy(x +cih, 1)

x+cl.h +cot
+ah j Wi(x +cih ~y, 1) dFi(y)

o_
+Aih Z h.-ka,-(x +C,'h, t)+0(h).
k=1
Dividing (5.20) by & and letting & tend to 0, we get
i) ad
(5.21) 5“’:7(15, f)—Cis;“‘Vij(X, t)=—(a; +A;)Wylx, t)

x+egt
+a.-j Wi(x =y, 1) dFi(y)

+Ai Y haWix, )
1

k=

(x =—cot, t =0).
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S.

We multiply now each term in (5.21) by ¢ ™™ and integrate from —cof to 00, We

obtain so
(5.22) %‘i/ﬁ(& 1)+ ¥ [SulaitA; “aiwi(s)—CiS)—Aihik]ij(S, t)
K=1

=(co—¢:) e ' Wy(—cot, t) (s>0,t=0).

According to the above lemma the right side of (5.22) is always zero. In matrix
notation, the solution of (5.22) is then easily seen to be

(5.23) Wis, t)=exp{~T(s)1}K
where
K=W(,0=01/s)w(s,0=01/s)  (s>0).

The proof is complete.
Notice that when m =1 (5.18) reduces to the known result for the classical
Poisson model.

5.3. Seal’s Integral Equation for the Finite Time non-ruin Probabilities

We show in this subsection that the SEAL’s integral equation (1974) may be
extended to the here considered semi-Markov model. We still assume that the
claim amounts are a.s. positive.

Define for u,t=0and i,jeJ

(5.24) R;(u,t)=P[Z,(v)=0for O0<sv =<t I(t)=j|I(0)=i];

we have clearly

RwO=73 Ry, 1) (el ut=0).
j=1

iz
Define further for s >0 and ¢t =0

«©

zéi,-(s,t>=j e Ry, ) du;  Ris, 1) =(Bys, 1),

0
ri(s, u)= I e “dR;(ut)= sﬁ,-,-(s, 1); r(s, t) = (r;(s, 1)).

We obtain easily for u,t=0and A >0

(525) Ri,-(u, t+h)=[1—(a,-+)(,-)h]R.~,-(u +C,'h, t)
u+ch

+a,~hI R,-,-(u +C,'h—y, t) dE(y)
0

+Aih Z hikRk,-(u +Cih, t)+0(h).
k=1
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Dividing (5.25) by & and letting 4 tend to 0, we find

J d
(5.26) 5;Rij(us t) ‘Cigl:Ri;(u, t)=—(a; +A)R;(u, t)

tay L Ry(u—y, 1) dFi(y)

+ A ,}il haRii(u, t) (u, t=0).
Taking the Laplace transform of each term ir (5.26), we obtain
(527)  =Rys,0+ £ [+ A= —a(s) ~ M JRig s, 1)
+ciR;(0,6)=0 (>0, t=0).

The solution of the differential system (5.27) is easily seen to be

t

(5.28) R(s,t)=exp {-T(s)t}K —j exp {—T(s)(t —u)}CR(0, u) du

0
(s>0, t=0)

where C = (8ic;); the constant matrix K is determined by the boundary condition
r(s,0)=sR (s, 0)=sI. Thus K =s'I. Using finally (5.18), (5.28) may be written
as follows

m t -

(5.29) Ri(s, t)= Wy(s, ) —=s T | Wuls,t—u)ciRi;0,u)du  (s>0, t=0).
k=140

Suppose now that the distributions F;(-) are absolutely continuous and denote

their densities by f;( ). The mass functions W;(-, ¢) are then absolutely continuous

too; we denote their densities by W (-, ¢) (t=0). Taking the inverse Laplace
transforms in (5.29) we obtain then

(5.30) Ry(x,t)=W(x,t)— § ckj Wi (x, )Ry (0,t —u)du  (x,t=0).
k=1 0

The unknown constants (with respect to x) Ry;(0, u) are solutions of the Volterra
type integral system obtained by putting x =0 in (5.30):

(5.31) R;(0, t) = W;(0, t)—kf ckj Wi (0, )R, t—u)du  (t=0).
=1 o

Define now

Si(x, ) =P[B0)=<x,I()=j|I(0)=i] (x,£=0)

and denote the corresponding densities by S;(x, ¢). In the particular case where
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¢; =c (i eJ)wehaveclearly W(x, 1) = §;(x +ct, t); (5.30) and (5.31) become then

m ot
(5.32) Ri(x,t)=8S;{x +ct,t)—c ¥ I Siklx+cu, )R (0, t—u)du (x,t=0),
k=140

(5.33) R;(0,t)=S;(ct,t)—c § J Si(cu, u)Ry;(0,t —u) du (t=0).
k=1Jo

When m =1 (5.32) and (5.33) reduce exactly to Seal’s system.

5.4. Asymptotic Non-ruin Probabilities

We suppose here that the number d defined by (5.15) is strictly positive; then
for all ieJ and u =0, R;(u)>0 and R;(-) is a probability distribution. After
summation over j (5.26) gives for ¢ = co:

(5.34) c.-R:<u)=(ai+Ai)Ri(u)—aij_Ri(u—y)dﬂ(y)—m £ huRe@)

(ieJ;, u=0).

It can be shown that (5.34) has a unique solution such that R;(c0)=1, VieJ.
Integrating (5.34) from 0 to ¢ we get

(535) cR(O)=cRi(0)+a L Rit—y)[1-Fi(y)]dy

A Lt [R,-(u)—é1 hikRk(u)] du (ied, t=0).

For m =1 (5.35) is the well known defective renewal equation from which the
famous Cramer estimate may be derived (see FELLER, Chapter XI). For m >1,
(5.35) is unfortunately not more a renewal type equation. Letting ¢ tend to o
in (5.35) does not give an explicit value for the probabilities R;(0) as is the case
whenm =1:

(5.36) R/(0)=1 —%—ﬁj [R,-(u)— Y h.-kRk(u)] du.

Ci Ci Jo k=1
However, when the claim amounts distributions are exponential,
Fi(x)=1-e*  (x=0),

afurther differentiation of both sides of (5.34) shows that the asymptotic non-ruin
probabilities are solution of the differential system
a; + Ai _

630 Riw=(*TH-D)Riw-7 § mRiw+ 2R

i M ij=

A m ‘ .
_;EJEI hiR;u)  (el, u=0)
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with the boundary conditions

(538) R(@)=1; RIO=2"2R0)-%F RO (el

i Cij=1
6. EXAMPLE

Assume that

(6.1 m=2, hiz=hs=1, hi1=hayp=0;

there are thus two possible states for the environment, the sojourn times in each
state being exponentially distributed.
The solution of system (3.7} is then

al(a1+A2+r1) al(a2+A2+r2)

V“(t)= - (1—e"')+ (1—e'2'),
ri(ri—ry) ra(ri—ra)
Aja, e Aoy e
Vip(t)=————(1—-e")+————(1—-€"?),
12(f) ’1(’1—’2)( ) ’2(’1"2)( )
6.2) <
Vaalt) = _a2(011+)t1+71)~(1_eylz)+a2(dl+/\1+72) (1-e™"),
ri(ri—ra) ra(ri—rz)
Aray it Ara; ot
Vaut)=——(1-e")+———(1—-e" t=0),
\ 21(1) "1(’1"'2)( ") "2(’1"2)( e) ( )

where ry and r; are the solutions (always distinct and negative as a;, A; > 0) of

(63) (a1+A1+r)(a2+A2+r)=A1A2.
The stationary probabilities for the chain {J,,} are given by (4.2) which becomes
here
_ [+ 1A 2 _ a 2A 1
(64) 1—a1A2+a2A1’ T2 a1A2+a2)t1‘

Expectations of the number of claims occurring in environment { (i =1,2)
before ¢ are obtained by solving system (4.9) with the boundary conditions
M; 0)=0:

a;Az a1A1

6.5 M () = t+ 1—e ™ Mirh),
(6.5) nO = e )

agAl a2A1

My(t) =
12(6) AttAz (Ar1+A2)

5 (1 _e—(A1+A2)t).

M,,(t) and M,,(t) are obtained by replacing in the expressions of M,(¢) and
Mu(t) respectively a1(2) by a1) and A1(2) by Az(l).
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The mean recurrence time of claims occurring in environment i (i =1,2) is
given by (4.18):

Ar1+A A1+A
(6.6) yu="""2 yp=—"
a Az a2/\1
We obtain then from (4.15)
ar+A1+A ai+A1+A
(6.7) Yi2= _L_#’ Y21 = “i‘_l‘—z-

azA;

The characteristic number d defined by (5.15) takes the following form:

6.8) d=A2(C1“alul)+/\1(cz“azll~2)
) ai1Ar+azA '

From now on we assume that d > 0 and that the claim amount distributions F;(-)
are exponential, i.e.,

(6.9) Fx)=1—-¢™*  (x=0; i=12).

From (5.37) and (5.38) we obtain that the asymptotic non-ruin probabilities are
solution of the following differential system

c A A
¢, R(u) =(a1+)~1——‘)R;(u)+—‘R1<u>——1R2<u)—A1Ra(u>
23 M1 1

(6.10)
" ' A A ,
csz(u)=<a2+A2—C—2) R5(u)+=2 Ry(u)~=2 Ry(u)~A,R; (u)
M2 K2 M2

(u=0)
with the boundary conditions
R(0)=R3(0)=1
(6.11) ¢1R1(0)— (a1 +A )R 1(0)+ A R,(0) =c2R3(0)
—(a2+A2)R2(0)+A,R1(0)=0,
Define

(6.12) p=t % (i=12)
i Ci

and assume without restriction that p; =p,.
The condition d >0 is then equivalent to the following

Az gt !

Cap2 Ci1i1

(6.13)

p2>0.
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As p,=p,, then p, is clearly strictly positive. We obtain then that the general
solution of (6.10) takes the form

Riu)=Ao+A e +A e " + Az e"",
(6.14) Ry(u)=A,—D(k))A, e5“—D(k,)A, e*"
—D(k3)Aze"",
where

Cl#lkx'z +(c1—ayu1—A )k — Ay
Ak +A4

(6.15) D (k)=

_ Aok +As
Czl-lvzki2 +(c2—azpr—Asua)ki — A7

and where k, k,, k3 are the roots of the characteristic equation

(6.16) P(k)=k3+(p1+p2—il——%)k2
2

C1

Al Az /\2 Al /\IAZ
+ (Pl—— p2——}— - - k
C1 Cy Coib2 Cipy €102

A A
‘( : Pt - Pz)=0-
Cape2 Cilty

From (6.13) we see that k1k,k3>0. It is easily verified that

aiA azA
P(—p1)=712—1(pl—pz)>0; P(—pr)= czzz(pz—p1)<0;
1 2

P(0)<0.

From this we may deduce that P(k) has a negative root, say k,, between —p;
and —p,. As the product of the three roots is positive we deduce further that
the two other roots, k; and k3, are real (if £, and k; were complex conjugate
roots, their product would be positive; we would then have ki k,k;<0). As
P(+00) = +00 and P(—0) = —00, we conclude finally that when p; > p, one of the
roots, say ki, is strictly less than —p; and that the other, k3, is positive. When
p1=p2=p (we have then k, = —p), we obtain the same conclusions by verifying
that P'(—p) <0. We summarize this as follows:

ki<—p1<k;<min{0, —p,}, k3>0 if p1>p,,
6.17
( : ki<k,=-p<0<ks if pr=p2=p.

From the boundary conditions (6.11) we obtain that

(618) A0=1, A3=0
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and that A, and A, are the solutions of
[ciki—a1—A1—A1D(k)]A 1 +[c1k—ar1—A1—A 1D (k2)]A; = a,
[(—c2k1+az+A2)D(ky) +A2]A 1+ [(—c2ka+az +A)D (k) +A2]A2 = a3

or, which is equivalent in view of (6.15),

! + —_l
(' ) ;lk 1 Dkz
( 1) A t ( ) A2—'1.

paki+17 ok +1
We can obtain a lower bound for k,. Verify first that P(u7') <0 if u,<p, and
that P(u>"') <0 if uy < u;. We can then easily conclude that
(6.20) —min {u1, pa} <k

We summarize the above results in

THEOREM 6

If m=2, hiz=hy1=1,d >0 and if the claim amount distributions are exponen-
tial, the asymptotic non-ruin probabilities are given by

Riu)=1+A,e“" +A,e"",
Ry(u)=1-D(k))A; e"* —D(k)A, e (u=0),

where k; and k, are the two negative roots of (6.16), where the constants D (k;)
are given by (6.15) and where A, and A, are solutions of (6.19).

Whena;=a,=a, 1 =p2=#,c1=c2=c andif A; and A, are arbitrary positive
numbers, then k, = —p and k; is the negative root of

6.21) k2+(p~““2)k—““2=o.

c cu
When obtain then D (k) = —1, D (k1) = A2/A; and the solution of (6.19)is A, =0,
A, =—au/c. As expected the ruin probabilities R;(x) and R,(u) are in this case
identical and equal to the ruin probabilities obtained for the classical Poisson
model with exponentially distributed claim amounts:

(6.22) Ry(u)=R,u)=1 —9‘cﬁe—"“.
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