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1. Introduction. The present paper incorporates a preliminary study of a new generaliza-
tion of several known polynomial systems belonging to (or providing extensions of) the
families of the classical Jacobi, Hermite and Laguerre polynomials. It is shown how suitable
specializations will yield a number of known or new results in the theory of the special functions
considered.

In the usual notation, put

r ( A + n ) = f 1, if n = 0,
V'vn TV1\ 1 1/1 i n /1 , _. A jf I r. o \ '

and let A(/w; A) denote the set of m parameters

A/m, (A + l)/m, ...,(A + m-l)/m (m ̂  1),

it being understood that the set A(0; A) is empty.
Also let

G\A = f Vn2" (y0 * 0), (2)
n = 0

and in terms of this power series, define a class of polynomials {gc
n(x, r, s) \n = 0, 1, 2, ...}

generated by

(1 - 0-cG[xf/(l - 0r] = f 9cn(x, r, s)f, (3)
n = 0

where c is an arbitrary parameter, r is any integer, positive or negative, and s= 1,2,3,....
From (2) and (3), we observe that

gc
n(x,r,s)= X —-( n l — (» = 0,1,2,...), (4)

it = o (n — sk)!

which would lead fairly readily to the following generating function for gc
n~"(x, r, s):

£ gc
n-

tt(x,r,s)f = (l + ty-iG[xf(l + trs]. (5)
n = 0

Evidently, this last generating function (5) is not contained in the defining relation (3).
The definitions (2) and (3) are motivated by the earlier work of E. D. Rainville [6, p. 137,

Theorem 48], who considers a special case of (3) when r = 2 and s= \, and also by the recent
papers by R. C. Singh Chandel ([2], [3]), who discusses the special cases of (2) and (3) when

t This work was carried out at the University of Victoria while the author was on study leave from
Ravenshaw College, Cuttack-3, India.
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yk = ( — rr)kjk\ (k = 0, 1, 2, . . . ) and s = 1. Thus it would seem worthwhile to carry out a
systematic study of the polynomials gc

n{x, r, s), which indeed unify several hitherto con-
sidered polynomial systems belonging to (or providing extensions of) the families of the
classical Jacobi, Hermite and Laguerre polynomials.

2. Hypergeometric forms. For convenience, we shall abbreviate the set of p parameter
pairs

( a ^ a O , . . . , ( a p , ap)

by ((ap) ap)), with similar interpretations for ({bq, /?,)), etc. We shall also let (ap) denote the
set of p parameters au ..., ap, and so on. Thus, if we put

(fc = 0 ,1 ,2 , . . . ) , (6)

the polynomials gc
n{x, r, s) will assume a hypergeometric form given by

\c)n
= — P + 2 x , + 1

,r-s), ((ap, ap));
(-iyx (7)

(c,r),((bq,Pq));

where r>s^l; Xj>0 (j - I, ...,p); Pj>0 (j — \, ...,q), and J¥q denotes Wright's
generalized hypergeometric function.

If s > r, where r is a negative integer, then (7) may be rewritten in the form

( - n, s), (1 - c , - r), ((ap, ap));
,, PJ);

being a positive integer.
In particular, if a,- = 1 (/ = ! , . . .,p) and pi = 1 (j = 1 , . . . , q), (7) yields

(8)

(c).

A(s; - n), A(r - s; c + «), (ap)

, (9)

where r > 5 ̂  1, the case r = s being given by

~7TP

A(s; - n ) , ( a p ) ;

and similarly for other possible choices of r and s.

(10)
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These last polynomials in (10) are essentially the same as the Brafman polynomials
defined in [1, p. 186] by

A(s; -n), (ap);

01)

it being understood, as before, that the a} and bj parameters are independent of n. Indeed,
in the notations of (9) and (10), we have

rt!
Bs

n[(ap); (bq); x] = —fnc;^q[(ap), A(s; c); (bq); ( -
\c)n

(12)

Next we recall the Gould-Hopper generalization of the classical Hermite polynomials
{//„(*) | n = 0, 1, 2 , . . .} defined in [4, p. 58] by

g*n(x, X) =
= ok'\n— sk)\

Xkx'-Sk = xVo[A(s; - n ) ; - ; A(-s/ (13)

which evidently are contained in the Brafman polynomials in (11) with p = q = 0. As a
matter of fact, it is readily seen that

REMARK 1. Certain obvious special cases or trivial variations of the Gould-Hopper
polynomials (and hence also of the Brafman polynomials) have appeared and are still appearing
in papers by several subsequent writers too numerous to mention here.

Finally, we turn to a generalization of the Jacobi, Laguerre, Rice, Bessel, and several
other polynomials considered recently by R. N. Jain [5], who defines the hypergeometric
polynomials

-n, A(fc-L; c + n), (a );
(k-lf-'x (« ^ 0), (15)

where k is a positive integer.
A comparison (9) and (15) yields the relationship

; x] =/n?*;,1[(ap); {bqy, - (16)

which exhibits the fact that results involving any of the known polynomial systems, occurring
in Jain's paper [5, p. 177-8], can be deduced as special cases of those involving the polynomials
gc

n(x, r, s) defined by (3).

3. Recurrence relations. If we put

(17)
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then it is easily verified that
80 SO

x[sHrs)f]—-t(l-t)—=-cl<l>. (18)

Making use of (18) in conjunction with the fact that

* = £ gfo, r, s)f, (19)
n = 0

we are led to the following differential recurrence relations for gc
n{x, r, s):

sxDx{gc
n(x, r, s)} - ngc

n(x, r, s)

-l)gc
n_,{x, r, s)-(r-s)xDx{gc

n_i(x, r, s)}, (20)
n - l n - 1

sxDx{gc
n{x, r, s)}-ngc

n(x, r,s)= -c £ gc
k{x, r, s)-rx £ Dx{gc

k{x, r, s)} (21)
k = 0 k = 0

and

sxDx{gc
n(x, r, s)}-ng*(x, r,s)=-"fl\c + kr/s)( l-r /s)-*"^fcc, r, s), (22)

k = 0

where D , = d\dx, and n = 1, 2, 3,

REMARK 2. The recurrence relations (20) through (22), when r = 2 and 5 = 1 , are
substantially the same as those given by Theorem 48 of [6, p. 137]. Several other special cases
of these results are scattered throughout the literature.
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