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1. Introduction

This paper is concerned with certain aspects of the theory and application of
the probability generating functional (p.g.fl) of a point process on the real line.
Interest in point processes has increased rapidly during the last decade and a
number of different approaches to the subject have been expounded (see for
example [6], [11], [15], [17], [20], [25], [27], [28]). It is hoped that the present
development using the p.g.fl will clarify and unite some of these viewpoints and
provide a useful tool for the solution of particular problems.

Because of the variety of papers on the theory of point processes (indeed, the
whole subject has a very scattered literature) we find it necessary to collect the
relevant parts of the several approaches in a preparatory section on point processes.
Then follows the definition of the p.g.fl, with some examples and properties. Most
of these are known in the case of population processes (Moyal [20] and Harris
[6]) but are new in this generality, though the extension is usually not difficult.
Section 4 deals with a characterisation of the p.g.fl among one class of functionals
and gives an example. In Section 5 we develop a Taylor expansion of the p.g.fl
in terms of moment measures of the associated point process and show how it
may facilitate the proofs of limit theorems. Section 6 establishes a characterisation
of mixing and ergodic point processes in terms of their p.g.fls, in analogy with
some results of Leonov [14], followed by several examples of such processes.
We conclude with a few additional remarks.

2. Point processes

In this section we mention some basic results for point processes (or random
streams) which will be needed subsequently.

Let Q be the set of all countable sequences of real numbers {t,} without
limit points and let N(A) be the cardinality of the set {t; € A} for all Borel sets 4 on
the real line. Then N(-) is a counting measure i.e. a non-negative integer valued
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set function countably additive on the Borel sets. Since {t;} has no limit points
N(-) is obviously finite on bounded sets. It is known (Moyal [20]) that there is a
one-to-one correspondence between Q and the set of all o-finite counting measures
N(-), which we therefore also denote by Q.

Consider now a set of functions p(4,, -, Ag; ry, -+, 1) Where k,r,---,r, are
non-negative integers and A,,---, A, are Borel sets. In order that they be the
finite-dimensional distributions of a point process they must satisfy the following
consistency conditions:

1 p(Ay, -, A "b"‘ﬂ'k)=P(Ai1,"‘,Aik§ Fists Ty for any permutation
(ils"'iik) of (1""9k);

p(Al"“’Ak; rl,""rk);o and 2 p(Al"“9Ak,A; rl""9rk,r)

(2) r=0
= p(AI,“',Ak; rl:”"rk);

) pA V- VUA; D=2, o in=eP(Ay, -, A 71,0, 1) When the A, are

disjoint;

(4) 1If a sequence of bounded sets 4,] ¢, the null set, as k — oo then

lim p(4,; 0) = 1.

k=

The fundamental result is

TueoreM 1. (Moyal [20], Harris [6] p. 55, Nawrotzki [22]). Corresponding
to a set of functions p(Ay,--, Ag; ry,---, 1) satisfying (1)-(4) there is a unique
probability measure & defined on the o-algebra & generated by the cylinder
sets {N(+); N(Ay) = ry,---,N(4,) = r,} for which

g{N(AO =7y, N4y = rk} = p(Ay, 5 A Ti00s 1)

A point process is specified by the triple (2, #, £). Since the Borel sets on the
real line can be generated by half-open intervals we may consider the p(-;-) of
Theorem 1 only for disjoint half-open intervals. This is sometimes convenient.
Notationally we will write N( - ) for an arbitrary point process on the real line (for
generalisations see [20]), assuming always it is finite on bounded Borel sets.

For an alternative approach to the definition of a point process we refer to
Ryll-Nardzewski [25] and Matthes [15], who take # as the smallest o-algebra for
which N(A) is a random variable for all Borel sets A. The equivalence of the two
outlooks is proved in [15] or [20].

A point process N( ) is stationary if

p(TtAl’ ""TtAk; rl""’rk) = p(Al,'”9Ak; Ty ""rk)’
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where the translation operator T is defined by T'A = {x: x + t€ A}. We see that
if N(-) is stationary, N(— co,c0) =0 or oo with probability one.

A stationary point process is ergodic if all events invariant under translation
have probability zero or one. A necessary and suflicient condition for ergodicity is
(c.f. Rosenblatt [23] p. 110)

t
6)) lim ¢! J PANT "Bydt = P(A)PB) for all A,BeF,
t2 o0 0
The process is mixing if
2 lim Z(A N T7'B) = P(A)#(B) for all 4,Be #,
t— oo

and is weakly mixing if

t

3) lim ¢=1 j Ig’(A NT *B) — W(A)W(B)[ dt=0 for all A,Be#%.
t— o0 0

Obviously mixing = weak mixing = ergodic (Matthes [15]).

The superposition of n independent point processes N (-),---,N,(*) is
simply the aggregation of all their points, written X", N/(-),and has finite-
dimensjonal distributions derived by convolution as usual.

A sequence {N,( )} of point processes converges in distribution to a point
process N( - ), in symbols N, ( - ) % N( -), if all the finite-dimensional distributions
converge in the usual sense. For a stronger concept see Jitina [8].

We can define integrals with respect to a point process by

@ f f@®AN@ = X f(1),

where | always means [, for such functions f as ensure existence. Obviously
the class of functions which vanish outside some bounded interval make the
integral finite and other criteria are considered later.

The moment structure of a point process is determined by a set of moment
measures, namely expectations of product counting measures on Q x --- X Q,
The first moment measure M(-) = E{N(-)} is always assumed to be a Borel
measure (Halmos [5] p. 223). Thus M(A4) < oo for any bounded set A which
implies N(4) < oo with probability one, an assumption already made. Clearly for
a stationary process M(A) = m| A I, where ] A| is the Lebesgue measure of 4 and
m = E{N[0,1)} is the intensity of N(-).

For higher moment measures like M) (4 x B) = E{N(A)N(B)} we find
concentrations on subsets of lower dimension. Consequently we prefer to employ
the factorial moment measures M, () defined by analogy with the factorial
moments (see Moyal [20], Vere-Jones [28], though their notation is reversed
here). For example
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My(4 x B) = E{N(AN(B)} — E{N(4 N B)},

which equals M,)(+) if ANB=¢J and the usual factorial moment if 4 = B.
Under reasonable conditions the diagonal concentrations now disappear.

We can also define factorial cumulant measures C,( +) by the usual moment-
cumulant formulae. If these measures are absolutely continuous we may speak of
factorial moment and cumulant densities m,( - ) and c,( - ), which are the product
densities of Bartlett [2] pp. 83, 122.

Fubini’s theorem now shows that for integrals (4)

»

E{ Jf(t) AN} = | Foran

if ] f(t), M(dt) < o0, in which case the integral exists. Similar considerations
apply to higher moments and when fis an indicator function we get the moments
of N[0,?) in terms of moment measures (Vere-Jones [28], [29]; Cox and Lewis
[3] Ch. 4).

The most important point process is of course the Poisson process, whose
fundamental property is having independent increments (Khintchine [11] §3).
In general its parameter is a measure A( - ), when we speak of a Poisson (A(-))
process, but under further assumptions this becomes a function A(¥) o even a
constant A([11], §§3, 5, 8). We are particularly interested in the case of a random
parameter, which when constant gives a mixed Poisson process and when a
function of ¢ produces a doubly stochastic Poisson process (Cox and Lewis [3]
p- 179). An important special case is a linear mean process, when we get the linear
stochastic Poisson process of Westcott [30].

Also of interest are the infinitely divisible point processes introduced by
Matthes [16] and Lee [ 12] and studied in Kerstan and Matthes [9], [10], Lee [13].
There are a number of equivalent definitions of such processes, for which see [ 16].
One consequence of them is that all the finite-dimensional distributions are
infinitely divisible in the usual sense and hence are compound Poisson with
probability generating functions (p.g.fs) of the form exp (Z,a(m)z™). In fact we
have

LemMma 1 ([9], [12]). To each infinitely divisible point process (Q,F,P)
there corresponds exactly one measure P (-) on & with the properties

(i) QN’{N(II) =ry, NI)=nr}=a(ry, 1 Iy, 1) for all integers k,
ri,eo, 1 and intervals 1, I;;

(i) 2{}=0;

(iiiy {N(I) # 0} < oo for all bounded intervals I.
The KLM (Kerstan-Lee-Matthes) measure P is stationary if and only if P is.

We may now define regular and singular infinitely divisible point processes
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(Matthes [16]), corresponding to 2 concentrated on members of Q having finitely
and infinitely many points respectively. For examples of KLM measures see
Lee [13].

3. The probability generating functional

We consider throughout a point process N( - ) whose expectation measure is
a Borel measure. It may or may not be almost surely finite.

DEerINITION. The probability generating functional (p.g.fl) of N( ) is defined

by

) G[&] = E{exp J log () AN(D)}
for a suitable class of functions £. Equivalently

©) 6L = E {[1 40 5

where the {t;} are the positions of the points; {t;} €Q.

In this generality the definitions are due to Vere-Jones [28]. For the special
case of almost surely finite numbers of points see Moyal [20].

It is clear that heuristically the p.g.fl is an extension of the multivariate p.g.f.
to the ‘generating function’ of an infinite set of ‘random variables’ dN(t). We
expect then that its properties will be similar to those of the p.g.f. and later we
shall see this is generally true.

To ensure that the p.g.fl. is nontrivial the exponent in (5) must be finite with
probability one. This motivates the next

DerINITION. If £ is measurable and 0 < £(f) < 1 for all real ¢ then {e Vif {
vanishes outside a bounded interval and £ e L(N) if | | log&(t) |M (dt) < oo, where
M(-)=E{N()}

These are the classes introduced by Vere-Jones [28]. We must further decide
what happens in (5) at zeros of £(¢). If £(¢) = O over some set A the exponential in
(5) is taken as zero, unless N(A4) =0 when it equals one. Now since M(-) is a
Borel measure we have ([28])

LemMa 2. G[&] is non-trivial if
(1) N(-)is almost surely finite
or(il) 1-¢eV
or (iii) £ e L(N); in this case [[1 — &(t)]M(dt) < oo also.
If in future we use a p.g.fl without specific reference to ¢ we are assuming
that it belongs to either of the above classes.

The next lemma shows the fundamental role that the p.g.fl plays in the
theory of point processes.
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LemmA 3. ([20], [28]). The p.g.fl is uniquely determined by N(-) and,
conversely, knowledge of the p.g.fl completely determines the probability
structure of N(*)

An important consequence is that the p.g.fs of the finite-dimensional dis-
tributions of N(-) are derived from the p.g.fl by setting ¢ equal to a simple
function.

In view of Lemma 3 the p.g.fl is obviously a powerful aid in the study of point
processes, containing, as it does, information about all aspects of the process.
Its disadvantage however is that it is rarely obtainable in closed form unless the
point process involved is related to the Poisson process. Some examples of this
appear below. Nevertheless it is a valuable tool in a variety of theoretical problems
such as characterisations of ergodic and mixing point processes (Section 6), the
theory of cluster processes and limit theorems for point processes.

For a Poisson (A(-)) process the completely random property easily gives

@ GLE] = exp{— |[1 — E&WIAWD};

c.f. Ryll-Nardzewski [24], Moyal [20], Shiryaev [26]. In particular, for the
stationary Poisson (1) process

®) G[¢] =exp{— 1|1 — &@®)]dz}.

The p.g.fl of a doubly stochastic Poisson process with a stationary mean
process A(f) is readily obtained from (7); first, however, we need the

DeriNiTION. The Laplace functional of a non-negative stochastic process
Y(®) is

©) L}'[f] = E{e__fy(f)C(dt)}’
where £( - ) is a totally finite measure on the Borel sets of the real line.

This definition is based on Shiryaev [26]; for a related idea see Jifina [8].
Clearly, a sufficient condition for (9) to be nontrivial is that Y(f) be stationary
with finite mean, in which case a conditional argument due to Bartlett [1] gives
the desired p.g.fl as

(10) Gl =L | f -] au).

When A(t) is linear, producing a linear stochastic Poisson process, (10) may be
evaluated more explicitly as in Westcott [30].
We now develop further properties of the p.g.fl. Obviously
(@) 0=5G[¢]=1 and
(b) G is monotonic i.e. &; <&, = G[¢,] S G[&,].
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(c) We might assume that the p.g.fl is always continuous, in the sense that
£,(D) — &(p) pointwise as n — oo implies G[£,] — G[£]. To see this is in general
false consider &,(t) =1 — (1 — z)y;,.n+1)(t), Where x, is the indicator function
of a set A, so that G[¢,] = E{z"""*V}. Clearly &,(t) - 1 pointwise as n — oo
yet G[£,} need not tend to 1 (take N( - ) stationary for example). However we do
have

THEOREM 2. The p.g.fl is continuous if one of the following holds:

(1) N(-) is almost surely finite,

(ii) thel — &, e Vand have a common interval outside which they all vanish,
(iii) &,() 2 &) and Ee L(N),

@) J] &) ~ &0 M@~ 0 as n — co,

(v) &eL(N) and given ¢ > 0 there is T(g) such that for all n

J |log&,(H)| M(dt) < & or J [1—&,@OIM3EY <.
ltl>1 |t]>T

Proor. In each case we prove that

flog £,(HAN(t) - J log (1) dN(?)

in some sense, as then the bounded convergence theorem ensures continuity.
(i) is obvious (see [6] p. 58). The assumptions in (ii) effectively reduce it to (i) and
(iii) follows directly from dominated convergence. To prove (iv) we use the
simple identity, due to Moyal [21],

I;Il {@) — Hl n() = _21 [L(t) — () In(t) - (i ) Lt ) L (20)
valid for n=1,2,--- and any functions {, 5. With { =¢,, n =¢ we see from
(4) and (6) that

|G[&.1 - G[¢]| < E{flén(t) ~ &] AN}

ﬁ &0 — é(t)l M(df) »0 as n— 0.

As the conditions (i)-(iv) all ensure that & satisfies Lemma 2 we can consistently
write G[£] for the limit. If now we assume ¢ € L(N) then, taking f|,|<T + f|,|>r
and recalling M( -) is a Borel measure, (i) and (iv) can be used to establish (v).
(d) As we might expect, superposition of independent streams is equivalent to
multiplication of p.g.fls. Thus if N,( ), -, Ni( - ) are independent point processes
with p.gfls G,[&], -, G,[¢] the p.g.fl of Tf_  Ny(-) is

k
() 6lel=I1 Gle)
This is immediately apparent from (5) or (6).
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(e) A useful property of the p.g.f is that it provides necessary and sufficient
conditions for the convergence of discrete probability measures. The analogous
result for point processes is given by the following minor extension of Vere-Jones

[28].

LEMMA 4. A sequence of point processes {N,( )} converges in distribution
to a point process N(-) if and only if the associated p.g.fls converge i.e.
G,[E]— G[&] as n— oo for every 1 — &€V

Proor. The sufficiency of the condition is obvious. To prove necessity, we
note that for any £, 1 — £ eV, there are upper and lower sequences of simple
functions &, &,, approximating £. By (b)

G,[&n] = G,[E] = G,[4n]

for all m and n, and as n — o

G[¢,] < lim inf G,[€] < lim sup G,[¢] < G[&,]
from the definition of convergence in distribution. Then as m — oo the outer
terms converge to G[&] by Theorem 2(ii) i.e.
lim G,[£] = G[¢].

We note that a stronger assertion, corresponding to weak convergence of
measures, is given for Laplace functionals by Jifina [8]. Also, Lemma 4 can be
generalised slightly if we assume only that the G,[£] converge to some functional
G[&]. Specifically we have

THEOREM 3. A sequence of point processes {N,( )} converges in distribu-
tion to a point process N(-) if and only if the p.g.fls G,[£] converge to a
Sunctional G[&] which is continuous for sequences &, satisfying Theorem 2(ii)
and such that £,(t) > 1 pointwise. Then G[&] is the p.g.fl of N(-).

Proor. The ‘only if” part follows as before. For the sufficiency, take a simple
function {()=1-— ?:1 (1 — z)xa,(t), when G,[C]=P,(zy,",2,; Ay, 4y)
becomes the p.g.f of some joint distribution of N,( - ) and converges to a function
G[¢] =P(zq, -, 245 Ay, -+, Ap) that is continuous as (z,-+,z)—(1,---,1). So
by a standard result G[£] is also a p.g.f and therefore all the joint p.g.fs of N,(*)
converge to a set of p.g.fs. We now prove that they are consistent, in the sense of
satisfying (1)-(4). It is easy to see that

P(zy,255 Ay, Ay) = lim P(zy,2,5 Ay, 4;) = lim P(z5,24; 45, 4))

(1)’ n—ow n—=cw

= P(z3,z1; A3, A4y)
and so on, as the P, satisfy (1).
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(2)’ Pn(zlszz; AlaAZ) _)P(ZI’ZZ; AI,AZ) by hypOtheSiS
and Pn(zhl;AlsAZ):Pn(zl;Al) by (2),
ie. P(z,,1; A;,A;) =P(z,; Ay) and so on.

(3)’ Pn(ZUZZ’ 23, AI’AZ’AI UAZ)—)P(213221Z3; AI’AZ’AI UAZ)’AI nAZ = Q
and Pn(zhzZ’ 23; AlaAZaAl U AZ) = Pn(ZIZS’ Z323; AI’AZ) by (3)
— P(z,24,2,23; Ay, A,) and so on.

(4) Take a sequence of bounded sets 4,,} & and define £,,(f) = 1 — (L —2)y4(2).
Then ¢&,(f)—> 1 pointwise as m —» oo and so G[¢,]— G[1]=1. But G[¢,]
= P(z; A,).

So the limit distributions form a consistent set and by Theorem 1 there is a
unique point process N( - ) having them as its finite-dimensional distributions. If
N(-) has p.gfl G*[£] then the ‘only if’ part gives G,[¢]— G*[&] whereas
G,[&] — G[£] by hypothesis. Thus G[£] is the p.g.fl of N(-).

4. A characterisation result for the p.g.fl.

Our next problem is to characterise the functionals over V' which are p.g.fls.
In the almost surely finite case Harris [6] p. 58 gives a result involving those
functionals whose arguments are simple functions and Moyal [20] characterises
p.g.fls in terms of restrictions to finite subsets of the population space. Our
theorem is not essentially new and draws on this previous work.

The basic technique is due to Harris ([6] p. 53), namely that a set of functions
po(Ay, s Ag; 1y, -+, 1) satisfying (1)-(4) for disjoint sets A; (with slight changes
in (3)) can be uniquely extended to functions p(A;,---, Ay; ry, -, ;) satisfying
(1)-(4) and agreeing with the po(;-) whenever the A4; are disjoint.

THEOREM 4. Suppose we have a functional G[£] defined whenever 1 —&cV
and continuous for sequences &, satisfying Theorem 2(ii). Further, if 1 — (%)
=2, (- 2)x4(f) where the Borel sets A; are disjoint, suppose G[{]
=P(zy, ", 245 Ay, Ay) is the p.g.f. of an n-dimensional discrete random
variable. Then G[&] is the p.g.fl of a point process.

Proor. Let the distribution associated with P(z,,:-,z; 4;,-+,A,) be
DPo(Ay, -+, A ry,+--, 1) for disjoint A4;. In the consistency conditions
(1) holds because po(- ;- ) is certainly a probability distribution,
(2) holds by the obvious relation P(z,-+,2y,1; Ay, Ay At y)
=P(zy,5 2 A5 Ad)s
(3) holds as clearly P(z,z; A,,A,) = P(z; A; U A,) and this can be extended to
the disjoint collections {4;;} making up the 4; (for explanation see [6]),
(4) holds by the continuity of G for functions of the form £,(f) =1 — (1 —2)x, (D),
bounded A4,| &, for which &, — 1 pointwise.
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So we may extend the py( - ;-) uniquely to a consistent set of functions
which by Theorem 1 are the finite-dimensional distributions of a unique point
process N(-). Its p.gfi G*[£], 1 — &€V, must agree with G[£] over simple
functions &. But arbitrary 1 — £€ V can be uniformly approximated by an in-
creasing sequence of simple functions and G, G* are continuous for such sequences
by hypothesis and Theorem 2(ii) respectively. Therefore they agree for all &,
1-¢eV.

To illustrate the application of this theorem we determine the canonical

form for the p.g.fl of an infinitely divisible point process with KLM measure 2.
Consider the functional

-~

(12) G[f] = exp J [e j‘logC(r)dN(r)_ l]é(dN)}
¢}

Q-{
for 1 — £ e V. For simple functions £ Lemma 1 shows that G[¢] becomes the p.g.f.
of a compound Poisson distribution. Now suppose we have a sequence 1 — &, ¢V,
all vanishing outside a common interval I, with ¢, — & pointwise as n — co. By (iii)
of Lemma 1 .@{N(I) # 0} < oo and as always N(I) is almost surely finite. Since
the integrand in (12) vanishes for all N(-) in Q with N(I) =0 it is a simple
consequence of dominated convergence that G[&,]— G[&] as n— 0. So by

Theorem 4 G[£] is a p.g.fl, in fact the p.g.fl of the infinitely divisible point process,
which proves

THEOREM 5. The p.g.fl of an infinitely divisible point process with KLM

measure P is given by (12). Conversely, if P has the properties of a KLM
measure (12) is the p.g.fl of an infinitely divisible point process.

In cases where the p.g.fl is expressible in closed form, (12) gives the associated
KLM measure directly (e.g. [13]). We now introduce the class of singular Poisson
processes E, y representing the n-fold superposition of point processes inde-
pendently and identically distributed as N( - ) where n is itself a random variable
with a Poisson (1) distribution.

COROLLARY. An infinitely divisible point process has the form E, y if and
only if?7 is totally finite. Then A =§’(Q) and N(-) has probability measure
ATI().

This result is implicit in Kerstan and Matthes [9]. We note here that the
‘curiosity’ of Lee ([13] §4) has a totally finite KLM measure and so must be a
singular Poisson process. It is in fact a special case of the doubly stochastic
Poisson process and (10) shows that doubly stochastic Poisson processes are

infinitely divisible if their mean processes have this property. In particular, linear
stochastic Poisson processes are all infinitely divisible (Westcott [30]).
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5. Expansions of the p.g.fl.

We saw in Section 2 that the most convenient moment measures to use are
the factorial moment measures and it turns out they are intimately related to the
p.g.fl. Formally, the relationship is simple. If all relevant moment measures exist
then on expanding the logarithm and exponential of (6) in their power series we
have ([20], [28])

1)" i

13 G1-¢=1+ El & jé(tl) St Mi(dty, -+, dty)

and

© 1)k fd
09 H{1-e = togli—81 = T [ et 20 oty i

To put these relations on a rigorous footing we establish a Taylor-type
expansion of the p.g.fl to a finite number of terms, in analogy with results for
characteristic functions. This requires

Lemma 5. If &,,---, &y are real numbers, 0<&é,<1,i=1,--- N, where N
is an arbitrary positive integer, and we take

=Tl -8)=1- 2 &+ T X &+ (D't
(15) i=1 i1=1 ix>iy

=1—g;+4q,— +(— Dy

where
= X z & &i and
1<i1<..<ixsN
(16) SO =1 gyt gy — (= Vg m=1,0 N,

so that S is the mth partial sum in (15), then
S§v2m—1) < QN < ngZn)

Sor all N and m,n=1,2,---,[N /2] ([x] is the greatest integer less than or
equal to x).

ProoOF. A simple direct proof by induction is possible. However the lemma
is a special case of Bonferroni’s inequalities (Moran [19] §1.18) if we interpret
the ¢; as the probabilities of a set of independent events A4;. Putting m =1 in
Theorem 1.5 of [19], 1 — P, becomes equal to Qy because of the assumed in-
dependence and the lemma follows directly.

COROLLARY. (i) 0= Qy — S¥" V< ¢y 2m <N
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(i) 0= Qy = S§" V= dam—1 2Zm—-1=N
(iii) 0= SY™ — On = domet 2Zm+ 1SN
(iv) 0= SF™ — Qn = qsm 2m< N

THEOREM 6. For a point process N( ) with p.g. fl G[&] whose mth factorial
moment measure is a Borel measure,
— 1)"
k!

an6ft-pi) =1+ E G0t [0 caMitt, ) + o)

where eVand O < p < 1.
Proor. Consider the function
nit k
Tute, ) ===+ [T] [1=pi] —1 = = (-1 %J ---f&(tl)'--
i =1 .

ty #F o F by

s E(RIAN(t)) - AN(t)

For a realisation {t,} of N( - ) we rewrite the integrals as sums so that if N = N(I),
I the support of ¢,
(18) Tu(p, &) = p~"(~ 1)"'“{[]’(1 —p8) —1+pg—p*qp + - = (— l)mp“qm},

where £; = &(¢t;) and the sums are zero for m > N.

Since & e V, N is finite with probability one. Because the mth factorial moment
measure is a Borel measure, (18) and the Corollary to Lemma 5 show that
I".(p, &) is positive, bounded by a random variable with finite expectation, namely

(1/m!)J f ¢(ty) -+ E(tm) dN(ty) -+ AN(1,),
t1#* Fly
and — 0 almost surely as p— 0. So by dominated convergence E{T,(p,£)} >0
as p -0 for £ e V, which proves the theorem.

CoOROLLARY 1. If the (m + 1)st moment measure is also a Borel measure the
error term o(p™) is dominated by

pm+1 " j‘é(tl) C(tm+1)Mm+1(dtla "'5dtm+1)'

This follows from (i) and (iii) of the Corollary to Lemma 5. It shows that
there is a simple estimate for the remainder term in (17) if we assume the existence
of higher-order moment measures.

COROLLARY 2. Under the conditions of the theorem

m — 1Y qk
HO-pe]= T - f fe:(n)-‘-«:(tk)ck(dn,---,dtk)+o(p'").
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Corollary 2 follows from the well-known expression

2 m

log(l—x)=—{x+_xz_+...+ %1—}+0(x"').

We remark that here the remainder o(p™) is not estimable in the simple manner of
Corollary 1.

A result for characteristic functionals similar to Theorem 6 is given by
Shiryaev [26], although he assumes M, () to exist and has remainder
O(p™+1). If we have 1 — & € L(N) rather than ¢ € V the proof is still valid provided

we also assume f fé(tl) o E(t M (dty, -+, dt,) < oo, which holds automatically
when £ eV and M,,(-) is a Borel measure.

Equation (17) or a direct approach shows that the p.g.fl uniquely determines
all existing factorial moment (and cumulant) measures. The method given by
Moyal [20] for calculating them directly from the p.g.fl is easily adapted to cover
our general situation and we omit the details.

Some limijt theorems for point processes are readily established by use of
Theorem 6. For example, consider the superposition of n independently and
identically distributed stationary orderly point processes N;(-),---,N,(-) with
common p.g.fl G[£], intensity 4 and Borel second factorial moment measure
M,( ). If we dilate the time scale by a factor n (this is the format of Vere-Jones
[28]), the p.g.fl of the superposition is

(19 G[1-E) =Gl ~&l = (1 ~@m| e + REN &V
by (17), where by Corollary 1 above
0< R,[E]=4M,(n T x n™']).
Here I is the support of . But by a theorem of Milne [18] we have
nMy(n~I x =)0 as n— oo for all I,
so (19) gives .
G1-8]={1-@ /n)J E(H)dt + o(n~1))"

—exp{ — AJ E(ndt} as n— oo,

Lemma 4 and (8) now establish that X"_, N,(-) converges to a Poisson (1)
process, as is of course well known. There are much weaker forms of this result
available (e.g. Grigelionis [4]) but it does illustrate how Theorem 6 provides
simple proofs when higher order moments are assumed finite.

6. Mixing and ergodicity in point processes

Leonov [14] has given, without proof, a series of theorems characterising
ergodicity and mixing in a stationary process in terms of relations involving its
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characteristic functional. We now derive analogous results for point processes
and their p.g.fls and give some examples. Similar ideas occur throughout general
ergodic theory (e.g. Jacobs [7]).

The concepts of ergodic and mixing point processes were introduced in
Section 2. We saw there that both are equivalent to expressions involving limits
of probabilities over sets in & and these are now translated into p.g.fl notation.

THEOREM 7. A stationary point process N(-) with p.g.fl G[£] is ergodic
if and only if

20) T f G2, §¢:)dx = G[£,16[&,]

t= oo 0
for 1 —¢,, 1 =& eV or &,,& e L(N), where SE(u) = E(u — 1)

ProoF. Suppose N(-) is ergodic so that (1) holds for any A, B % and so
certainly for the cylinder sets {N: N(I,) = ny,---, N(I,) = n,}, I, -+, I, any Borel
sets and k, n,,---, n, any non-negative integers.

Thus
t

lim t_lf '@{N(Il) = nla""N(Ik) =Ny, N('Il + t) =my, 9N(Jl + T)=ml}d‘r
0

{20

CD L NG =y, N = nd PNU ) = my, - N = my}

and it follows that the same relation holds for the corresponding p.g.fs, namely

t
lim ¢~! J P(Ila"',IkaJIa'“’Jl; Vi s Vi 21570052y ‘L')d'C
(22) t= o 0
= P(Iy, L yio 5 VP 1, I 24,00, 2))

Finally since any measurable £ can be uniformly approximated by an increasing
sequence of simple functions, for which (20) holds by (22), we see that (20) is true
for arbitrary £,,¢,.

Conversely, if (20) holds we deduce (22) on taking &,, &, as simple functions
and hence (21) from the continuity theorem for p.g.fs. So the ergodic relation (1)
is established for the cylinder sets of #. That it holds for any measurable sets is a
consequence of the following lemma, which is almost certainly known from

general ergodic theory. As no specific statement of it has been found we outline
the proof.

LEMMA 6. Let Z# be a ring, with generated c-ring F (%) and an associated
probability space (Q,%,%). Let T be a measure-preserving transformation of
Q into itself. Then if

lim #(4 N T~'B) = P(A)P(B)

t— o0

for all A, BeZ it holds for all A,Be F (#%).
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Proof. From Halmos [5] p. 56 we see that for ¢ > 0 and each set D in
F(Z) there is a set D, in Z with 2 (DAD,) < ¢. So given ¢ > 0 and arbitrary 4, B
in # (%) we find

(i) |PANT'B)—PA,NT'B)| < |P(ANT'B)— P(4,NT~'B)|
+ |24, NT~'B) - P(4,NT~'B,)]

lIA

P(AAA,) + P(T~'BAT-'B,)
< 2¢ for all ¢
because T is measure-preserving;
(ii) P(A) £ P(ANA) + P(ANA)
<e+P4A,),

and similarly for B so that

| 2(A)P(B) — P(A)P(B,)| <3¢ for all 1;
(i) |2(4. N T'B,) — P(A)P(B,)| < ¢ for sufficiently large ¢ by hypothesis.

Putting (i), (ii), (iii) together,

] PANT'B) - Q’(A).@(B)l < 6¢ for sufficiently large t which completes the
proof.

Now the cylinder sets in & form a semi-ring. Clearly (1) holds for the gene-
rated ring and, as an easy consequence of Lemma 6, it holds for the generated
o-ring also, that is for #. This establishes the converse proposition and proves
Theorem 7.

An exactly similar argument proves

THEOREM 8. A stationary point process N(-) with p.g.fl G[&] is mixing
if and only if

@3) lim G[¢,5%,] = G[£,]G[¢.]

Jor1 —¢,1—-¢eVor €&, &, e L(N).

Obviously a like result is true for weakly mixing point processes.

Because the mixing condition (2) or (23) is a form of asymptotic indepen-
dence of the numbers of points in widely separated intervals we look to these
processes for generalisations of the theory of processes with independent increments
(i.e. the Poisson process in our field of interest). Similar considerations for mixing
sequences of random variables have been studied intensively in recent years.

Since the stationary Poisson process has independent increments it is obviously

https://doi.org/10.1017/51446788700011095 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700011095

[16] The probability generating functional 463

mixing (and hence ergodic), and this can be verified on substituting (8) in (23).
Likewise, processes related to the Poisson process should be mixing and we
investigate a few examples.

THEOREM 9. A doubly stochastic Poisson process with stationary mean
process A(t) is mixing if A is mixing.

ProoF. We need a slight modification of Leonov’s characterisation of
mixing stochastic processes. Since A(f) is non-negative and stationary its Laplace
functional is well-defined and from [14] Theorem 1 we easily deduce that A is
mixing if and only if
(24) lim Ly[&, + §%,] = LA[&,]LA[E, ]

| 2mdce]
for all totally finite measures &,, &,.
Equation (23) is transformed into an expression involving L, by use of (10).

Writing L[¢] for L[ (L &(u)du] we see
G[&,S'€,] = Ly[1 —&,58%,], G[&]=L\[1 -&] i=1,2
so that (23) is equivalent to

@5) lim L1 —¢&,8%,] = lim L[1 — &, + 1 — S%,].

o t—> o0
Put n;=1-¢;, so that n;eV i=1,2. Then 1 —¢,8%¢, =n, + &,S%, and
0= l_‘A[l - f1st52] - EA[’h + Sr’lz]

Iad

E{(exp { —Jz(u) [71 ) + &, @na(u — )] du)}.

(1 — exp { — | A@)n (wn,(u — 1) du})}

A

E{1 —exp [—Jl(u)'h(u)ﬂz(u — du]}

A

E{ | A, (wyn(u — 1)du)

E{A@)} | n1(wny(u — Hdu

since A is stationary with finite mean. But the #, are integrable so the last expression
tends to zero as ¢t — oo. This establishes (25) and the theorem now follows from
Theorem 8.

A corresponding result can be proved if A is only ergodic. Because linear
processes are all mixing (Rosenblatt [23] p. 12) we have
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COROLLARY. A linear stochastic Poisson process is mixing, and hence
ergodic.

From Theorem 7 it is easily shown that a mixed Poisson process is ergodic
if and only if its mixing distribution is concentrated at one point, an observation
which is clear independently (Theorem 9 does not apply because a process with
almost surely constant realisations is obviously not ergodic).

Kerstan and Matthes [10] give a number of results on the mixing and ergodi-
city of stationary infinitely divisible point processes. Many of them are easily
established by p.g.fl methods as follows.

THEOREM 10. A stationary infinitely divisible point process N(-) is
mixing if and only if for all bounded intervals 1,J

(26) P{N(I) # 0, N(J + 1) # 0} >0 as t— 0.
Proor. Taking logarithms in (23), mixing is equivalent to
Applying (12), the left side of (27) becomes
J {1 —exp flogfl(t)dN(t) — exp flog&z(t — 7)dN(?)
Q-{¢}

~

(28) + exp J log &,()E,(t — 1YAN(t)}P(dN)
= f {1 —exp J log (AN} {1 — exp J log &,(t — ©)AN()}P(dN).
Q—{o}

Suppose that I, J are the supports of 1 — &,, 1 — &, respectively. Then the
integrand is zero for the events {N(I) =0} and {N(J + 1) = 0} so they may be
removed from the range of integration. Otherwise, (28) is non-negative and

< 2{Q - ({NI)=0} U {N(J + 1) =0})}

P{NI)#0, N(J + 1) + 0} .

If this converges to zero as T — oo for any bounded I, J (27) is true and the process
is mixing. Conversely, if the process is mixing then by choosing &,, &, to be zero
over I, J respectively we see from (27) and (28) that (26) holds which completes
the proof.

CoroLLARY. Regular infinitely divisible point processes are all mixing.

This follows directly from the definition of such processes in Section 2.
In fact, as the regular processes are all Poisson cluster processes (Matthes [16])
the corollary is also a consequence of some general results on mixing in cluster
processes proved by Wescott [31].

https://doi.org/10.1017/51446788700011095 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700011095

[18] The probability generating functional 465

The method used to prove Theorem 10 is readily adapted to the proof of
other propositions of Kerstan and Matthes, such as that for stationary infinitely
divisible point processes weak mixing is equivalent to ergodicity.

7. Additional remarks

The pertinent question of why we choose to work with the p.g.fl rather than
the characteristic functional (Bartlett [2]) can now be answered. In the first
place we saw that the most useful moment measures for a point process are the
factorial moment measures, and these are generated by the p.g.fi. Secondly,
Lemma 4 suggests the possibility of constructing a general theory of limit theorems
for point processes in terms of convergence of some class of associated functionals.
Most such theorems assert convergence to the Poisson process and it is clear from
(7) or (8) that this is most naturally associated with the logarithm of the p.g.fl.
We remark however that such a theory has not yet eventuated, though several
specific problems have been successfully tackled, and this is certainly an area
worth further investigation. One approach would be to find a workable bound to
the error term in Corollary 2 of Theorem 6.

Another area in which the p.g.fl has proved useful is the study of cluster point
processes (e.g. [20], [29]), since the p.g.fl of such processes has a pleasantly
compact formulation. It is intended to publish applications of our approach to
questions of existence and mixing for cluster processes in the near future.

The author is grateful to Professor D. Vere-Jones for his continued guidance,
to Professor P. A. Moran for suggesting the proof of Lemma 5 and Dr M. Jifina
for assistance with the material of Section 6.

A comprehensive survery of the theory of point processes has been given by
Paley and Vere-Jones [32].
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