
3 

The reggeized gluon 

A particle of mass M and spin J is said to 'reggeize' if the ampli­
tude, A, for a process involving the exchange in the t-channel of 
the quantum numbers of that particle behaves asymptotically in 
s as 

A ex sa(t) 

where a(t) is the trajectory and a(M2) = J, so that the particle 
itself lies on the trajectory. 

The idea that particles should reggeize has a long history. It was 
first proposed by Gell-Mann et al. (1962, 1964a,b) and by Polk­
inghorne (1964). Mandelstam (1965) gave general conditions for 
reggeization to occur and this was developed by several authors 
(Abers & Teplitz (1967), Abers et al. (1970), Dicus & Teplitz 
(1971), Grisaru, Schnitzer, & Tsao (1973)). Calculations in Quan­
tum Electrodynamics (QED) were carried out by Frolov, Gribov 
& Lipatov (1970, 1971) and by Cheng & Wu (1965, 1969a-c, 
1970a,b), who showed that the photon had a fixed cut singular­
ity (as opposed to a Regge pole). On the other hand McCoy & 
Wu (1976a-f) established that the fermion does indeed reggeize in 
QED. This was extended to non-abelian gauge theories by Mason 
(1976a,b) and Sen (1983). The demonstration of reggeization of 
the gluon was first shown to two-loop order by Tyburski (1976), 
Frankfurt & Sherman (1976), and Lipatov (1976) and to three 
loops by Cheng & Lo (1976). The reggeization to all orders in 
perturbation theory has been established by several authors using 
somewhat different techniques. Mason (1977) worked in Coulomb 
gauge and used time ordered perturbation theory to establish that 
the amplitude factorized in such a way that the reggeization must 
follow. Cheng & Lo (1977) developed a recursion relation for going 
to higher orders in perturbation theory. 

The method that we shall follow in this chapter is that of Fadin, 
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The reggeized gluon 49 

(a) (b) 

Fig. 3.1. Section of uncrossed and crossed gluon ladder diagrams. 

Kuraev & Lipatov (1976), who used dispersive techniques devel­
oped in the preceding chapter. We feel that this is the most trans­
parent derivation of reggeization and lends itself most easily to 
the discussion of the Pomeron in the next chapter. 

In the preceding chapter we showed that in a <jJ3 theory the 
amplitude for elastic scattering of scalar 'quarks' was dominated 
in the leading In s approximation by uncrossed ladder diagrams. 
In particular, it was shown that a crossed rung gives rise to a 
hard denominator and is suppressed by '" Pi! Pi-I. In QeD this 
does not work. A section of a ladder shown in Fig. 3.1(a) does 
not dominate over the crossed-rung section shown in Fig. 3.1(b). 
The reason for this is that the triple gluon vertices carry the mo­
menta of the gluons in the numerators and in Fig. 3.1 (b ) the scalar 
product of these momenta between the top left and bottom right 
(or vice versa) vertices produces a term which is enhanced com­
pared with the corresponding scalar product in Fig. 3.1(a). This 
enhancement compensates for the denominator suppression due 
to the hard propagator in the crossed-rung diagram. 

Nevertheless we shall show that it is possible to organize high 
energy scattering amplitudes into 'effective' ladder-type diagrams. 
The vertices will not be the usual triple gluon vertices, but, rather, 
a non-local effective vertex, which we shall discuss below. Also the 
vertical lines of the ladder are not bare gluons whose propagators 
are given (in Feynman gauge) by 

D ( 2) __ .g/-Ll/ 
/-Ll/q - Z2 

q 
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50 The reggeized gluon 

but, rather, they are 'reggeized' gluons whose propagator (in Feyn­
man gauge) is 

(3.1) 

where vrs is the centre-of-mass energy of the particles between 
which the 'reggeized' gluon is exchanged and ctG(q2) = 1 + EG(q2) 
is the Regge trajectory of the gluon. t 

In order to show that gluons reggeize in this way (and to deter­
mine the Regge trajectory) we need to calculate to all orders in the 
perturbation series but keeping only the leading In s terms at each 
order. We need to select those diagrams in which the exchanged 
quantum numbers (in the t-channel) are those of the gluon, i.e. 
spin-1 and colour octet. As discussed in Chapter 1, the ampli­
tude in which a single particle of spin J is exchanged has a large 
s behaviour proportional to sJ, so we are interested in the con­
tributions to the amplitude which at order ct~ are proportional 
to s ct~ Inn-Is and we shall drop sub-leading logarithm terms. 
We shall begin by discussing the first three orders of perturbation 
theory and then generalize to all orders. 

3.1 Leading order calculation 

The QCD process we consider is the scattering of two quarks with 
different flavours due to colour octet exchange and within the 
Regge limit (s ::p -t). We neglect the masses of the quarks and 
assume that their incoming momenta PI and P2 lie along the z-axis, 
i.e. 

PI 

P2 

The tree diagram contribution to this amplitude is shown in Fig. 
3.2.::: It is very important to realize that all the components of the 
momentum of the exchanged gluon, qll-, are much smaller than VS. 
This is true because we are interested in the region Iq21 = It I ~ s 

t As in the preceding chapter k 2 represents a typical transverse momentum. 
We use the Feynman rules for QeD given in the appendix at the end of the 
book. 
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3.1 Leading order calculation 51 

Fig. 3.2. Tree level amplitude. 

and because the outgoing quarks are on mass-shell (i.e. (PI - q)2 = 
o and (P2 + q)2 = 0). 

3.1.1 The eikonal approximation 

The eikonal approximation is an extremely important ingredient 
in building the 'reggeized' gluon and subsequently the QeD Pom­
eron. 

The upper line of the diagram in Fig. 3.2 gives the factor 

-igU(.A~,Pl - q}'yIlU(.Al,PI h'j 
(where .Al'.A~ are the helicities of the incoming and outgoing 
quarks respectively and the T a are the generators of the colour 
group in the fundamental representation). Since all the compo­
nents of qll are small we may replace this by 

-igu(.A~, PI }'yIlU(.Al, PI )Ti'j· 

For spinors normalized such that ut(.A~,pl)U(.Al,pl) = 2Ep15A~Al 
we have 

-igu(.A~,pd,IlU(.Al'Plh'j = -2igpIj'8A~ Al Ti'j· 

This is called the eikonal approximation and it is valid when­
ever the gauge particle exchanged is 'soft' (i.e. all its components 
are small compared with the momentum of the emitting quark). 

Remarkably, the eikonal approximation works not only for spin­
~ quarks but for particles with any spin. If we had a scalar particle 
instead of a quark in Fig. 3.2 the upper vertex would be 

-ig(2pl - q)llTi'j, 
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52 The reggeized gluon 

v p 
PI 

q 

Fig. 3.3. Soft gluon emitted from a hard gluon. 

which we approximate by -2igpiTtj. More importantly it may be 
a gluon itself, in which case the triple gluon vertex (see Fig. 3.3) 
IS 

(Tb~ = -ifabc, where the fabc are the structure constants of the 
gauge group, which we shall leave as SU(N) so that the colour fac­
tor can be easily identified). Now neglecting qJ1. and noting further 
that the incoming and outgoing gluons are on shell and therefore 
transverse (so that we may drop terms proportional to Pl and 
(PI - q )P) we once again end up with 

Thus, at lowest order, the amplitude for quark-quark scattering 
due to octet exchange is given by 

A(8) 2 J1. gJ1.V v 1: 1: G(8) S 1: C G(8) 
o = g 2PI-2 2P2 u ).., )..l U )..')..2 0 = 811"a s -u).., )..l U )..')..2 0 , q 1 2 t 1 2 

(3.2) 

where as = g2 f 411" and G~8) is the colour factor for colour octet 
exchange, Tt;Tkl' which we shall subsequently write as Ta is) Ta • 

We find it convenient to work in Feynman gauge although the 
amplitude is gauge invariant (the reader who tries to check this 
should remember that it will only work up to corrections of order 
tf s, since we have assumed that we may use the eikonal approxi­
mation). 
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~=:X=a: 
(a) (b) 

Fig. 3.4. Box and crossed box graphs. 

3.2 Order as corrections 

As explained in the preceding chapter, in leading In s approxi­
mation we do not get contributions from one-loop graphs which 
contain corrections to propagators or to vertices, but only from 
the 'box' and 'crossed box' diagrams shown in Fig. 3.4 in which 
the loop integral depends on the centre-of-mass energy Vs' t 

Once again the contribution from Fig. 3.4(b) can be obtained 
from the contribution to Fig. 3.4( a) by crossing. However, in this 
case we not only have to interchange s and u (which introduces a 
minus sign since, in the Regge limit, u ~ -s) but also take into 
account a different colour factor. The colour factor for Fig. 3.4(a) 
is given by 

Ga = (rarb) Q9 (rarb), 

whereas the colour factor from Fig. 3.4(b) is 

Gb = (rarb) Q9 (rbra). 

Because crossing introduces a minus sign the total colour factor 
for octet exchange at the one-loop level is the difference between 
these two, i.e. 

Ga - Gb (rar b)Q9 [ra,rb] 

./abc [a b] p, c zT r ,r 'CJ r 

ifabcifabd r d Q9 r C __ N dB) (3.3) 
2 - 2 0' 

t This argument only works in a covar,iant gauge. In Coulomb or axial gauge 
in which an external vector is introduced, it is possible that vertex or self­
energy corrections on upper (momentum pI) lines can give rise to terms 
proportional to 8 through scalar products with the external vector which 
can have a component proportional to P2. We confine ourselves to covariant 
gauges in this book. 
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54 The reggeized gluon 

where we have used the relation fabc!abd = N6cd for SU(N), and 

G~8) is the colour factor for the tree diagram. 
As in the preceding chapter, only Fig. 3.4( a) has an imaginary 

part so the imaginary part of the octet exchange amplitude at the 
one-loop level can be obtained using the Cutkosky rules and the 
tree level amplitude calculated in the preceding section (Eq.(3.2)), 
i.e. 

':" (8) _ 647r2a~ J 2 (S) ( S ) ~m.A3.4a - 2 d(P.S.) k2 (k _ q)2 6),P\16),~),2Ga. 

In terms of the Sudakov variables p, A, k of the momentum kl-' the 
two-body phase-space integration element may be written 

d(p.S.2) = ~2dp dA d2k 6( -AS - k 2 ) 6(ps - k 2), (3.4) 
87r 

where we have already made use of the inequalities p, IAI ~ 1. In 
this approximation for which -PAS ~ k 2 we have 

k 2 ~ _k2 

and similarly 

(3.5) 

U sing In ( -s) = In s - i7r, this means that the real part is given by 

iReA~8la = -87ras~b),'),16),'),2In(s/k2)Ga a S2 Jd2k _q2 2. 
. t 1 2 27r k2(k _ q) 

(3.6) 
Similarly the amplitude from Fig. 3.4(b) is 

'\ A(8) u ( / 2) as J 2 _q2 iRe 34b = -87ras -b>.'),l b),'),2 In -u k Gb-2 d k 2 
. t 1 2 27r k2(k _ q) 

(3.7) 
(note that it is only the sum of these two which is actually octet 
exchange). Using u ~ -s when It I ~ s and Eq.(3.3) we find that 
the complete one-loop amplitude in leading In s approximation is 
given by 

(3.8) 
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where 

() Nas J d2k t 
EG t = 47r2 k2(k _ q)2 (3.9) 

The reader should notice that the integral on the right hand side 
of Eq.(3.9) is infra-red divergent. In the original work by Fadin, 
Kuraev & Lipatov (1976, 1977) and by Cheng & Lo (1976), great 
care was taken to regularize this divergence by breaking the gauge 
group spontaneously and including contributions from graphs in 
which there are Higgs bosons. For our purposes such rigour is not 
necessary. The infra-red divergence arises because the external 
quarks are on mass-shell. In the 'real world' this is not the case: 
the quarks are bound inside hadrons and off shell typically by an 
amount of the order of their average transverse momenta. Such an 
off-shellness provides a cut-off for the infra-red divergent integrals. 
Furthermore, it will turn out that the integral equation for the 
perturbative Pomeron is free from infra-red divergences. Therefore 
it is sufficient for us to leave EG in the form of Eq.(3.9), and it is 
to be understood that the infra-red divergence is to be regularized 
in some convenient way, introducing a scale which is expected to 
be of order AQCD. 

3.3 Order a; corrections 

The two-loop corrections were performed independently by Ty­
burski (1976), Frankfurt & Sherman (1976) and by Lipatov (1976). 
We follow Lipatov's calculation closely. 

As explained in the preceding chapter we do not get any con­
tributions proportional to a;ln 2 s from graphs which consist of 
vertex or self-energy insertions on the one-loop graphs considered 
in the last section. In order to obtain the imaginary part of the 
contribution in this order (in the leading In s approximation) we 
need to consider the amplitude for a quark with momentum PI 
and a quark with momentum P2 to scatter into a quark with mo­
mentum PI - kI' a quark with momentum P2 + k2 and a gluon 
with momentum kI - k2 • Using Sudakov variables to parametrize 
the momenta kI and k2 : 

kf = PiP't + )..iP~ + kf1- (i = 1,2), 
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PI 

kl 

k2 

P2 
(a) 

Pl----~~--~--+---

k2 

P2 P2 
(b) (c) 

PI PI 

kl 

P2 ____ ~~~-1--+_--
(d) 

Fig. 3.5. Diagrams for the process qq -> qq+g. 

the leading logarithm contribution again comes from the region 

1 ::?> PI ::?> P2 

1 ::?> 1),21 ::?> 1),11 

and the on-shell condition for the outgoing gluon becomes (in this 
approximation) 

so that ki ~ kL. = -ki and k~ ~ k~l. = -ki. Once again the 
transverse momenta are both of the same magnitude (ki, ki are 
both of order k 2 ). The graphs for this process are shown in Fig. 
3.5. We need these amplitudes in order to compute the 25 (two­
loop) diagrams using the s-channel cutting rules. 

The contribution from Fig. 3.5(a) (in Feynman gauge) in the 
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Pl--~~--~----~------

P2--~~--~----~------

Fig. 3.6. The effective non-local vertex. 

relevant kinematic regime is 

• 3 [ (T .A (T (k k)(T] 8 A~ A1 8 A~ A2 -I a b 
-'tg 2s PIPI + 2P2 - 1 + 2 1.. k 2k 2 JabeT ®T. 

1 2 

The contributions from Fig. 3.5(b) and (c) in this regime are 

1 [~~ ~~ 1 _g32Sk~ 2pr (PI _ kl + k2 )2 + (Pl - k2 )2 ® Tb8A;A18A~A2' 

Now (Pl-k1+k2)2 ~ s.A2 (s::?> k2)andsimilarly(pl-k2)2 ~ -S.A2' 
so this contribution becomes 

3 2p'[ [b e] b. • 
- g 2s k 2 \ T, T ® T V A' A1 V A' A2 

2"'2 S 1 2 

. 3 2p'[ -I a b. • 
-'tg 2s k2 \ JabeT ®T VA'A1VA'A2' 

2"'2 S 1 2 

Similarly the contributions from Fig. 3.5(d) and (e) are given 
by 

. 32 2P2 -I a ~ b. • 
-zg S-2 -JabeT CY TVA' A1 vA' A2' 

k1PlS 1 2 

Although the contributions from Fig. 3.5(b) and (c) do not 
contain the denominator ki and likewise the contributions from 
Fig. 3.5( d) and (e) do not contain the denominator k~, it is conve­
nient to write all these contributions as though they all contained 
both of these denominators (multiplying by ki or k~ where nec­
essary) so that they may combined into an effective (left half of 
a) ladder, shown in Fig. 3.6. 
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58 The reggeized gluon 

The complete amplitude is 
2· 32 I-' v 

A (8)a- _ 'tg P1P25 5 -I' a fV\ bra- (k k) (3 10) 
2--+3 - - k 2 k 2 >"~>"I >"~>"2JabcT 'CJ T I-'v 1, 2 , • 

1 2 
where r~v(kl' k2) is an effective (non-local) vertex given by 

r~v(kbk2) = 2P21-'Plv [(PI + 2ki) pf + ('\2 + 2k~) p~ S '\2S PIS 

- (kl + k2)'lj. (3.11) 

This vertex is said to be 'non-local' since it encodes the denomina­
tors of the propagators of Fig. 3.5(b-e). The dark blob in Fig. 3.6 
represents the effective vertex. 

We have been working in the Feynman gauge. Nevertheless the 
effective vertex r~v(kl' k2) is gauge invariant. It can easily be 
shown to obey the Ward identity t 

(kl - k2)a-r~v(kb k2) = O. 

Individual graphs in Fig. 3.5 are gauge dependent, but the sum is 
gauge invariant. 

It is fun to notice (and will be useful later when we consider 
higher order graphs) that we can exploit the gauge invariance in 
such a way that only the genuine ladder-type graph (Fig. 3.5(a)) 
contributes in leading logarithm order. If we remove the lower 
quark line from the graphs in Fig. 3.5 and write the amplitude as 
/V/~ (k 1 , k2 ) (see Fig. 3.7), then since all but the bottom gluon are 
on mass-shell we have the Ward identity 

k;M~(kb k2) = O. (3.12) 

N ow since the component of momenta proportional to P; In 

jvt~(kl' k2) is small we can neglect it and rewrite Eq.(3.12) as 

'\2p;M~(kl' k2) + k;~M~(kl' k2) = O. 

In the eikonal approximation we have (reinstating the lower quark 
line) for the contributions from Fig. 3.5(a),(b) and (c) 

A~!~a- = 2p;M~(kb k2) 

t Actually the Ward identity is only exact when the vertical gluon lines are 
on mass-shell. In fact these lines are off-shell by kl and k2. However, since 
these (squared) transverse momenta are small compared with ).2 s or PI S 

the identity is obeyed at the order to which we are working. 
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PI PI--~--~--__ ---

T 

PI ---~x:+--..-------

+ 

Fig. 3.7 

(where we have dropped the colour factor and the coupling con­
stant). This may be rewritten as 

A (8) = -2k2.L MO"(k k) 
abc A2 T b 2· (3.13) 

Since, in the eikonal approximation, MTO" has no transverse com­
ponents from Fig. 3.5(b) and (c), it follows that Fig. 3.5(a) domi­
nates. 

We can of course play the same game by removing the up­
per quark line and write the corresponding Green function as 
N::(kI' k2 ). The amplitude for the graphs of Fig. 3.5(a),(d) and 
(e) can now be written 

A(8)0" = -2kI.LNO"(k k) 
ade T b2 

PI 
(3.14) 

and once again it is only Fig. 3.5( a) that contributes at the leading 
logarithm level. 

N ow if we replace the eikonal insertion P2' on the lower line by 
- k2'.L I A2 and replace the eikonal insertion pi on the upper line by 
-k't.LI PI and consider only the dominant diagram, Fig. 3.5(a), we 
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arrive at an alternative expression for A~~~, Le. 

4 · 3 k/l. kll (8)0- 'tg LL 2.L ./ a b 
A2-+3 = - k 2 k 2 A 6 AP'l 6 A~ A2 J abc T ® T 

1 2 P1 2 

[-g/l.lI(k1 + k2r + g~(2k2 - k1)/l. + g~(2k1 - k2)1I] , (3.15) 

where we have just used the ordinary triple gluon vertex. Writing 
ki and k~ in terms of their Sudakov variables and making use of 
the inequalities P2 ~ P1 and IA11 ~ IA21, this may be written as 

A (8)0- _ 2ig3 1 a b 
2-+3 - k2k2 ~6A~A16A~A2fabcT ® T 

1 2 PV\2 

{[(k1 - k2)2 - 2ki] P1pf + [(k1 - k2)2 - 2ki] A2P2 

-(kl - k2)2(k1 + k2)1. 
+(ki - ki)((P1 - P2)pf + (A1 - A2)P2 + (k1 - k2)1.)}. (3.16) 

At first sight it does not appear that this works (Le. we do 
not appear to be consistent with Eq.(3.11)). However, we note 
that the terms in the last line of Eq.(3.16) are proportional to 
(k l - k2)0-. Since the outgoing gluon is on mass-shell it is trans­
verse, and so terms proportional to (k1 - k2t vanish when con­
tracted with its polarization vector. These terms may therefore 
be dropped. Finally, using the on-shell condition for the outgoing 
gluon (kl - k2)2 = -PlA2S, we recover precisely Eq.(3.10).t 

Returning now to the imaginary part of the octet exchange 
amplitude to order a~, this is given by 

~mA~8) = -~o-T J d(p.S.3)A~~~(kb k2)A~~r(kl - q, k2 - q) 

+ extra piece, (3.17) 

where the prefactor -go-T arises from the sum over polarizations 
of the intermediate gluon and the 'extra piece' will be explained 
later in this section. We can take the components of q/l. to be trans­
verse (more precisely the longitudinal components are negligible 
compared with Pl VS, A2VS)· 

t This is not a gauge choice (we are still working in Feynman gauge), but it 
is a trick which exploits the gauge invariance to reduce the effective ladder 
(Fig. 3.6) to the genuine ladder graph Fig. 3.5(a). It will be very useful in 
the next section. 
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We deal first with the colour factor which is 

- fabcfdec(TaT d ) ® (TbTe ). 

Anticipating that we shall be adding a contribution from the 
u-channel which will be equal and opposite to the s-channel con­
tribution, but with Tb and T e interchanged, we antisymmetrize in 
Tb and T e . In other words we are 'sharing' the octet colour fac­
tor between the s-channel and u-channel contributions. We thus 
obtain 

-tUabcfdec - faecfcdb)(TaTd) ® (TbTe ). 

Making use of the Jacobi identity 

fabcfdec + faecfbdc + fadcfebc = 0, (3.18) 

this becomes 

-tfadcfcbe(TaTd ) ® (TbTe ). 

The structure constants are antisymmetric in a, d and b, e, so we 
may replace the products of the colour matrices by commutators 
and obtain 

1.f' .f' f .f' f 9 _ N 2 a a 8 JadcJadf cbeJgbe T ® T - 8 T ® T . (3.19) 

The phase-space integrand can now be written: 

1 (8)0" . t(8) -"2 A2 --+3(kt, k2)A2--+30"(kl - q, k2 - q) 

g6 N 2 a 16p!1-pVp!1-' pVI 
_ --T T a 8 8 1 2 1 2 

16 >'P'l >'~>'2 kik~(kl _ q)2(k2 _ q)2 

X g0"7.r~v(kl' k2)r~lvl( -(kl - q), -(k2 - q)) (3.20) 
(recall that Hermitian conjugation requires the reversal of the di­
rection of momentum in the right hand effective vertex). After a 
little algebra the right hand side of Eq.(3.20) becomes 

4 N2s A(8) 2 [ q2 
-g -4- 0 q kik~(kl _ q)2(k2 _ q)2 

- 2 12 2 - 2 ; 2] (3.21) 
k1(k1 - k 2) (k2 - q) k2(kl - q) (kl - k 2) 

(the factor (k1 - k2)2 in the denominators of the last two terms 
comes from replacing PIA2S by -(kl - k 2)2). The three-body 
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(3.22) 

Some important cancellations have taken place to obtain the 
above expression. For example the terms in the product of the 
two effective vertices which give ki, k~, (kl - q)2 or (k2 - q)2 in 
the numerator have cancelled. Had this not happened there would 
be integrals over the transverse momenta of the form 

J d2kld2k2 
ki (kl _ q)2k~' (3.23) 

which is ultra-violet divergent. Of course the upper limit of the 
transverse momentum integrals is of orderjS, so such integrals 
would not really diverge but would introduce a further factor of 
In s (as well as the one we obtain from the integration over PI). 
This would give an imaginary part proportional to In 2 S and a 
real part proportional to In 3 s. Calculation of individual diagrams 
contributing to the order a~ correction to the tree amplitude do 
indeed contain terms proportional to a~(Ins)2n-I but they cancel 
between graphs. In the case of QED this cancellation has been 
verified by explicit calculation up to four loops by McCoy & Wu 
(1976a-f). 

The first term of Eq.(3.22) is encouraging since the integration 
over the transverse momenta factorizes and together with the log­
arithm from the integration over PI we obtain 

- ~1l"Eb( t )In (s /k2)A~8), 
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Fig. 3.8. Three gluon exchange graphs. 

but the other two terms are not so nice. However, we have forgot­
ten a contribution ('extra piece') coming from the diagrams shown 
in Fig. 3.8, which also contribute in leading In s. Note that in these 
graphs the cut only goes through the quark lines. The contribution 
which arises when the cut also goes through the middle gluon line 
of Fig. 3.8{ a) has been accounted for already in the interference 
between Fig. 3.5{c) and (d). There are two relevant contributions 
- one where there is one gluon exchanged on the right of the cut 
(shown in Fig. 3.8) and the other where there is one gluon ex­
changed on the left of the cut. Each of these gives a contribution 
to the imaginary part of A~8) of 

where we have made use of the result Eq.{3.8) for the amplitude 
on the left of the cut. 

The colour factor, N /4, is obtained in the same way as in 
the preceding section (projecting the colour octet exchange part). 
Now, from Eq.(3.9) 

E (k 2 ) - _ Na s Jd2k ki 
G 2 - 471'2 1 (k2 _ k1)2ki ' 

and integrating over Ab Pl using the two-body phase-space ex-
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(3.24) 

Together with the contribution from the graphs with one gluon 
to the left of the cut this exactly cancels the 'unwanted' parts of 
Eq.(3.22) and we are left with an imaginary part: 

'SmA~8) = -~E~(t)7rln(s/k2)A~8). (3.25) 
2 

The corresponding real part is 

ReA~8) = ~E~(t)ln 2(s/k2)A~8). 
4 

(3.26) 

We obtain a similar contribution from the crossed diagrams 
with s replaced by u (and a further sign from the colour factor). 
Thus up to order a; we have a colour octet amplitude given in 
leading In s approximation by 

A~8) (1 + EG(t)ln (s/k2) + ~E~(t)ln 2(s/k2) + ... ) . (3.27) 

It is tempting to speculate that these are the first three terms 
in the expansion of A~8) s€G(t). Cheng & Lo (1976) showed that 
this trend continues up to three loops. ill the following section we 
shall show that it continues to work to all orders of perturbation 
theory. It is worth emphasizing at this point that the remarkable 
cancellation between the 'extra piece' from graphs in which three 
gluons are exchanged between the quarks and the unwanted con­
tribution from the graphs in which three lines are cut depends 
crucially on the colour factors working out just right. Whereas it 
works for colour octet exchange, it fails for other channels, partic­
ularly for the colour singlet exchange channel which we shall need 
in order to study the Pomeron. 

3.4 The 2 -+ (n + 2) amplitude at the tree level 

It was explained earlier in this chapter that the eikonal approxi­
mation is independent of the spin of the high energy particle which 
emits the soft gluon. We may therefore replace the quark lines in 
Fig. 3.5 by gluons themselves. The eikonal approximation is still 
valid because of the strong ordering of the momenta. The effective 
vertex (Eq.(3.11)) is the vertex obtained by adding a gluon with 
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+ + + + 

Fig. 3.9 

momentum (kl - k2)1-' to all the gluon lines in a gluon-gluon scat­
tering amplitude with colour octet exchange, as shown in Fig. 3.9. 

One might guess that adding more gluons generates more fac­
tors of the effective vertices (together with extra propagators for 
the vertical gluons), giving rise to (the left half of) an n-rung 
ladder with effective vertices, r, at each intersection, so that the 
amplitude for two quarks to scatter into two quarks and n gluons 
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Pl---~----

an 

Fig. 3.10. Tree amplitude for two quarks to two quarks plus n 
gluons. 

with octet colour exchange is shown in Fig. 3.10. It turns out that, 
in the kinematic regime that we are interested in, namely, where 
the ith emitted gluon has momentum (ki - ki+l)J.l with Sudakov 
variables for kf and kf+l obeying the inequalities 

1 ~ Pi ~ Pi+l 

1 ~ IAi+ll ~ IAil 

this guess is correct. Thus in this limit the amplitude for two 
quarks to scatter into two quarks and n gluons with colour octet 
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PI 

P2 

Fig. 3.11 

n 

C(8)(b b ) - II -I al f:A an+l n b' .. n - Jaia'+lb. T 'CJ T . (3.29) 
i=l 

A rather elegant derivation of Eq.(3.28) is given by Gribov, Levin 
& Ryskin (1983). We reproduce their derivation here. The reader 
who is prepared to accept Eq.(3.28) on trust may skip to the next 
section. 

Consider the amplitude for two quarks to scatter into two 
quarks plus n gluons. As described in the last section if we cut 
the ith vertical gluon, whose momentum is ki' the amplitude 
separates into an upper part MIL(Pl, kb · .. ki ) and a lower part 
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N v(P2,ki," ·kn ) (see Fig. 3.11). Since all but the cut gluon line 
are on shell, these Green functions obey the Ward identities 

kf MIL(pt, kt,· .. ki) = 0 (3.30) 

(3.31) 

The largest momentum in the amplitude MIL is PI and so the 
largest part of MIL will be proportional to pi. Likewise, the largest 
part of Nv will be proportional to P2' Therefore in leading loga­
rithm approximation we may rewrite Eqs.(3.30) and (3.31) as 

kf.LMIL(Pb kb .. ·ki) = -AiP~MIL(Pb kb .. ·ki ) 

ki.LNv(P2, ki,' .. kn ) = -PiPrNv(P2, ki,' .. kn ). 

This means that we may replace the numerator of the cut gluon 
propagator by 

2kf.L ki.L 

PiAi S 
(3.32) 

We can cut any of the intermediate vertical gluon lines and per­
form the same manipulations. Therefore, we end up with an am­
plitude which can be obtained from (the left half of) a genuine 
uncrossed ladder in which the numerator of the vertical gluon 
lines is replaced by the expression (3.32). We associate a factor of 
..)(21 S )kf.LI Ai with the vertex at the top of the ith vertical gluon 
and a factor of ..)(21 S )ki.L 1 Pi with the vertex at the bottom of the 
ith vertical gluon. The amplitude thus becomes 

. 2 i (8) lIn ig 2kfl kitu 
21,sg k 2 8>'~>'18~~>'2Gn ~ A' . 

1 i=l i+l ,+IP,S 

X [gILW;( -ki - ki+I)O'; + g~;(2ki - ki+I)v; 

+ g~:(2ki+I - kdlL;] . (3.33) 

We showed in the last section that 
2kILi kV; 

AU i+U [glLiVi( -ki - ki+1ti + g~;(2ki - ki+I)v; 
i+1PiS 

lLi Vi 

+ g~~(2ki+I - kdlLi] = 2P2 PI r~~v.(ki' ki+I), (3.34) 
I s ,.-, , 

plus terms proportional to (ki - ki+I)O'i, which vanish because the 
outgoing gluon is on shell and therefore transverse. The result, 
Eq.(3.28), then follows. 
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Fig. 3.12 

We now need to show that, using this gauge technique, the di­
agrams which are not of the form of uncrossed ladders give con­
tributions which are suppressed by at least one power of Pi! Pi+l 

and therefore will only contribute to sub-leading logarithm terms 
when the (phase-space) integrals over all Pi s are performed. 

First of all let us look at the ith section of (the left half of) the 
uncrossed ladder (Fig. 3.12). The contribution from this section is 
proportional to the two effective vertices 

r O"i-l rTO"i 
J.l,T v' 

The leading contribution proportional to p~i-l p~i is 

2P2J.1,Plv \ O"i-1 O"i 
Pi-l Ai+lPl P2 s 

and the contribution proportional to k~":'l~ kfl is 

2P2J.1,Plv kO"i-l kO"i 
~ i-l~ i+l~' s 

(3.35) 

(3.36) 

Since cross-rung graphs involve sections of the ladder where the 
momenta of incoming and outgoing gluons at the ith vertex are not 
simply ki' ki+l (see Fig. 3.13) we need to generalize the formula 
(3.34) for the case where the upper line entering the vertex has 
momentum kf and the lower line has momentum ej. This leads 
to 
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Fig. 3.13. Section of a crossed ladder diagram 

which is 

I"V +k2 [piP~ + AjP~ + (ki + kj)l.l. 
PiA-jS 

Since pj-1Aj is of order k 2 / S from the on-shell condition of the 
jth outgoing gluon, we have a contribution of order 

2 Pj- 1S [piP~ + AjP~ + (ki + kj)l.l· 
Pi 

Now imagine a section of a crossed-rung ladder (shown 
in Fig. 3.13) where the middle vertical line has momentum 
(ki - 1 + ki+l - ki ), giving rise to a denominator from its propa­
gator which is approximately equal to Pi-1Ai+1S, The two vertices 
have a component proportional to p~;-l p~; which is of order 

Pi Pi 2p~pr A 0";-1 0"; 
------Pi-l i+1Pl P2' 
Pi-l Pi-l S 

(3.37) 

The factors of Pi in the numerator of Eq.(3.37) occur because 
Aj ~ Ai+1' This is true at both vertices because IAi+ll ~ IAil 
(or IAi-ll). Using the on-shell conditions we may therefore replace 
pj-l by Pi to arrive at Eq.(3.37). 

Since Pi ~ Pi-b expression (3.37) is much smaller than the un­
crossed ladder product of two effective vertices, expression (3.35). 
In addition to this suppression the denominator from the prop­
agator of the intermediate line is much larger than kf, which is 
what we obtain from the section of the ladder shown in Fig. 3.12. 
Thus there is a double suppression of the crossed ladder diagram. 
If we cross more rungs we get an even greater suppression. 
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Fig. 3.14 

Let us now consider a section of a graph in which two of the out­
going gluons meet at a point. Such a section of a graph involving 
the triple gluon vertex is shown in Fig. 3.14. Again contracting the 
left hand triple gluon vertex with kf_1l. ki+1l.' we obtain a term 

proportional to k~~l~ kfi which is of order 

2PiP2k2 , k ITi - 1 kIT; 
-- Pi-IAi+I S i-I.l il. 

S 

and again using the fact that PiAi+1 is of order k 2 / S this is of 
order 

2 J.£ v . 
PIP2 ~kC:i-l k~i 

t-Il. tl.' 
S Pi-I 

which is suppressed relative to the equivalent term from the un­
crossed ladder (expression (3.36)) by a factor of pi! Pi-I' In addi­
tion to this the internal gluon propagator has a denominator which 
is again much larger than k 2 , so we get a double suppression. 

From the four-point gluon vertex we get a section of a graph 
shown in Fig. 3.15. Once again the contribution from the vertex 
has a term proportional to k~~l~ kfl which is of order 

1 kITi-1 kITi 
, i-Il. il. 

Pi-IAi+I S 

and we are missing a propagator factor of kf present in the section 
of the graph shown in Fig. 3.12. Thus this graph also gives a 
contribution which is suppressed relative to the uncrossed ladder 
contribution by a factor of order Pi! Pi-I' 

Comparison of other components of the tensor structure (e.g. 
terms proportional to p~i-l p~i) yield similar suppression factors. 
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Fig. 3.15 

This, then, completes the proof that the amplitude for two quarks 
to scatter into two quarks and n gluons via colour octet exchange 
is given by Eq.(3.28) in the kinematic region that leads to leading 
logarithms. 

3.5 Absence of fermion loops 

We have so far only considered outgoing gluons in addition to the 
two quarks present in the initial state. In principle we must also 
consider the production of extra fermion-antifermion pairs, since 
such amplitudes must be included in the dispersion relation for the 
imaginary part of the elastic scattering amplitude. However, these 
also turn out to be suppressed and do not contribute in leading 
logarithm approximation. The essential reason for this is that a 
fermion exchanged in the t-channel gives an s-dependence which 
is lower than that of an exchanged vector particle due to the fact 
that the fermion has spin ~. 

Looking at this in more detail, in Fig. 3.16(a) we display a 
section of a ladder in which two of the gluons are replaced by 
a fermion-antifermion pair. Once again we may use the gauge 
technique to replace the factor of pi from the upper gluon by 
)(21 s )kf-ul Pi-l and the factor of P2' from the lower gluon line 

by ) (21 s )ki+ 1 J.- 1 Ai+ 1. Having done this the contribution from the 
section shown in Fig. 3.16(a) contains terms proportional to 

1 
A u(ki- 1 - kd,· ki - U '· kif· ki+uu(ki+1 - kd· 

Pi-l i+l S 
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II 

k,_1 ki - I 

ki - I 

k i 

ki+1 
k i +1 ki+1 

V 

(a) (b) (c) 

Fig. 3.16. Section of a ladder with a fermion loop. 

This is of order 

k 2 2 
A {ki·ki-I,ki·ki+bki}· 

Pi-I i+I S 

N ow all the scalar products inside the braces are of order k 2 

(Pi-IAi and PiAi+I are both of order k 2 / s), and the factor out­
side the braces is of order Pi! Pi-I. Thus we obtain a contribution 
which is suppressed by Pi! Pi-I compared with a typical term from 
the gluon ladder. 

Examination of the graphs shown in Fig. 3.16(b) and (c) also 
give a similar suppression factor, although in these cases it is due 
to the presence of a hard fermion or gluon propagator. 

Thus we see that it is sufficient to neglect fermion-antifermion 
pair production in the final state in order to obtain the imaginary 
part of the elastic amplitude to leading logarithm order. 

3.6 Ladders within ladders 

We now have an expression for the tree level amplitude for two 
quarks to scatter to two quarks and n gluons, which when multi­
plied by the conjugate amplitude and integrated over phase space 
contributes to the imaginary part of the 'reggeized gluon' ampli­
tude. We now consider loop corrections. A strong hint on how to 
handle these is given by the fact that it was necessary to consider 
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the graphs of Fig. 3.8 at the two-loop level in order to obtain 
a result that looks like the first three terms of the expansion of 
the required reggeized form. The sub graphs on the left of the cut 
in Fig. 3.8 may be viewed as the beginning of an expansion of a 
ladder itself. 

The upshot of all this is that the imaginary part of the octet 
exchange amplitude in leading In s is 

a superposition of n-rung ladders with effective vertices at 
each rung, whose vertical lines are a superposition of n-rung 
ladders with effective vertices at each rung, whose vertical lines 
are a superposition of n-rung ladders with effective vertices at each 
rung, whose vertical lines are a superposition of n-rung ladders with effective 
vertices at each rung whose vertical lines are a superposition of n-rung la.dders with 

effective vertices at each rung ... 

(n runs from 0 to (0). The effect ofthese ladders is to 'reggeize' the 
gluon, i.e. if we consider the ith section of the ladder (see Fig. 3.12) 
the square of the centre-of-mass energy coming into this section is 

Si = (ki- 1 - ki+d 2 ~ -Pi-lAi+lS = Pi-l(ki - ki+1)2 (3.38) 
Pi 

(where in the last step we have used the on-shell condition for the 
ith outgoing gluon). 

The reggeization simply means that the propagator of the ith 
vertical gluon (in Feynman gauge) is replaced by 

ig (s. )€G(kf) 
iJ J1v( Si, kJ) = .dv k~ 

1 

(3.39) 

Since all the transverse momenta are of the same order we may 
replace (ki - ki+l)2 in Eq.(3.38) by a typical squared transverse 
momentum, k 2 , and rewrite this as 

iJ ( A. k~) _ zgJ1V Pt-l . (. )€G(kf) 
J1V S" t - k 2 

i Pi 
(3.40) 

We shall establish the validity of this proposition by a 'boot­
strap' method. Encouraged by the results of the first few orders in 
perturbation theory, we shall assume that Eq.(3.40) is true. This 
will enable us to establish an integral equation for the (Mellin 
transform of) the amplitude for colour octet exchange. The inte­
gral equation has a solution in which the Mellin transform has a 
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pole at w = fG(t), (implying an s"'G(t) behaviour) and this justi­
fies the assumption of reggeization used to establish the integral 
equation in the first place. It demonstrates the self-consistency 
of the proposition and, together with the results of the first few 
orders in perturbation theory, provides an inductive derivation of 
reggeization valid to all orders in perturbation theory. 

The horizontal gluon rungs are attached to the vertical lines 
via effective vertices r~v(ki' ki +I ) and so the amplitude for two 
quarks to scatter into two quarks plus n gluons via colour octet 
exchange becomes 

A (8)0"1"'O"n n+2.. G(8)· ,; (1 )€G(kn 
= i2sg u),,), u),,), --

2--+(n+2) 1 1 2 2 n ki PI 

n 2pll-i pVi + 1 i (p' )€G(k;+l) 
x II 1 2 r~:Vi+l(ki,ki+l)~ _.t_ .(3.41) 

i=l s i+l Pt+I 

In actual fact this is the multi-Regge exchange amplitude for 
the 2 ----c. 2 + n amplitude via the exchange of n + 1 reggeized parti­
cles with Regge trajectory aG(kl). This can be established using 
techniques of Regge theory, exploiting unitarity in all possible fi­
nal state sub-channels. This long calculation was performed by 
Bartels (1975) and is outlined by Lipatov (1989) and we refer the 
reader to the literature for further details. We shall now proceed 
to demonstrate the self-consistency of the reggeization ansatz. 

3.7 The integral equation 

The imaginary part of the octet exchange amplitude is given by 
(see Fig. 3.17 in which a dash on the vertical gluon lines indicates 
that they are reggeized gluons) 

8mA(8)(s, t) t f) -It J d(p.s.(n+2)) (A~~(~'~~)(kI"" kn ) 

n=O 

X A(8)t (kI - q ···k - q)) (342) 2---t(n+2)0"1"'O"n ,n , . 

and d(p.s.(n+2)) is the (n+2)-hody phase space given in Eq.(2.27) 
in the preceding chapter. 

The colour factor is readily calculated using repetitions of the 
Jacobi identity (Eq.(3.18)) as was done to obtain the colour factor 
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Pl--~--~--~----

P2--~--~--~----

Fig. 3.17. n-rung ladder contribution to imaginary part of ampli­
tude. The dashes on the vertical gluon lines indicate that they are 
reggeized gluons. 

at the two-loop level (Eq.(3.19)). The result is 

Performing the contractions of the effective vertices we obtain 
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<SmA(8)(S, t) = f 1 d(p.s.(n+2)) 
n=O 

N (8) n g2sq2 ( 1 )€G(k~)+€G((kl-q)2) 
X 4"Ao (s, t)( -N) kHkl _ q)2 PI 

lIn [ g2 ( 2 _ kf(ki+1 - q)2 + (ki - q)2kf+l ) 
X 2 2 q 2 

i=l ki+1 (ki+1 - q) (ki - ki+1) 

X ( ~)€G(ki+l)2+€G((ki+l-q)2)] (3.43) 
Pi+I 

(for n = 0 the product in Eq.(3.43) is replaced by 1). The reader 
can check that, apart from the reggeization factors, the n = 0 
and n = 1 terms correspond to (the s-channel contributions to) 

<smA~8) (Eq.(3.5)) and <SmA~8) (Eq.(3.22)) respectively. 
We note that the integrations over the Pi are nested and the 

best way to unravel them is to take the Mellin transform and 
make use of the convolution formula, Eq.(A.2.7). To this end we 
define a quantity F(8)(w, k, q) by 

J (~:;:::; t)) (:, r-1 
d (:,) ~J k'(:~ q)' 1'(8)( w, k, q). 

(3.44) 
The Mellin transform and integration over the Pi then leaves us 
with 

co ( N)n+I 
F(8)(w,k,q) = E~ :~2 (-It 

q2 1 
X 2 d2kn+l 

(w - fG( _k2) - fG( -(k - q) )) 

IT [I d2ki 1 
X i=l kf(ki - q)2 (w - fG( -kf) - fG( -(ki _ q)2)) 

X 2 _ 1 H HI 1 82(k _ k ). (3.45) ( 
k~(k' 1 - q)2 + k~ (k. - q)2)] 

q (ki - ki+1)2 n+1 

This sum of all ladders is most easily treated by obtaining an 
integral equation for F(8)(w, k, q). This integral equation, shown 
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+ 

Fig. 3.18. Integral equation for imaginary part of the octet ex­
change amplitude. 

diagrammatically in Fig. 3.18 (where again a dash on a gluon line 
indicates that it is a reggeized gluon), is 

7r asN q2 
F(8)(W, k, q) = 

"2 47r2 (w - EG( -k2) - EG( -(k _ q)2)) 

_ asN ! d2k' F(8)(W, k', q) 
47r2 (w - EG( _k2) - EG( -(k _ q)2)) 

X 1 ( 2 _ k 2(k' - q)2 + k,2(k _ q)2) 
k,2(k' _ q)2 q (k _ k,)2 . (3.46) 

The first term represents the exchange of two reggeized gluons 
with no rungs on the ladder. The second term represents the ef­
fect of adding a rung which couples with effective vertices to the 
vertical lines, which are themselves reggeized, and serves to build 
up the sum of all ladders (as discussed in Section 2.5). 
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This rather forbidding looking equation in actual fact has a 
rather simple solution in which F(8)(w, k, q) is independent of k. 
To see this we multiply by (W-EG( _k2)-EG( -(k - q)2)) to obtain 

(w - EG( _k2) - EG( -(k - q)2))F(8)(w, k, q) 

~ usN q2 _ usN J d2k' F(8)(w k' ) 
2 47r2 47r2 ' , q 

(
q2 k 2 (k _ q)2 ) 

X k'2(k' _ q)2 - k'2(k _ k,)2 - (k' _ q)2(k _ k,)2 . (3.47) 

N ow we note that 

E (_k2) - - usN J d2k' k 2 (3.48) 
G - 47r2 k'2(k _ k,)2 

E (-(k - )2) - _ usN J d2k' (k - q)2 (3.49) 
G q - 47r2 (k' _ q)2(k _ k,)2' 

Thus if F(8)(w, k, q) is independent of k we have 

2 2 (8) 7r usN q2 
(w-EG(-k )-EG(-(k-q) ))F (w, .. ,q) = 2" 47r2 

+( EG( _q2) - EG( _k2) - EG( -(k - q)2))F(8)(w, .. , q). (3.50) 

The terms with factors of EG( _k2) and EG( -(k - q)2) cancel out 
exactly. It is worth emphasizing that this remarkable cancellation 
only works in the octet exchange channel. It depends crucially on 
the fact that the colour factor from the addition of an extra rung 
is N /2. It is the generalization of the seemingly miraculous can­
cellation of those terms corresponding to Figs. 3.5 and 3.8 which 
spoiled the exponentiation up to order u;. 

The solution to Eq.(3.50) is simply 

, (8) _ ~ usN q2 1 
F (w, .. ,q)- 2 ( (2))' (3.51) 2 47r w - EG -q 

so that the imaginary part of the amplitude (inserting 
Eq.(3.44) and recalling that t = _q2) is 

into 

7r ( S )€G(t) Sm.A(8)(s,t) = -2"EG(t) k 2 A~8). (3.52) 

The analytic function of which this is the imaginary part is 

_ ~ (_S)€G(t) (8) 
- 2 k2 Ao . 
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Since A~8) is proportional to 8 we have an 8-dependence of 

_( _8)1+EG(t). 

Adding the contribution from the u-channel graphs and using 
u ~ -8 we obtain a total expression for the octet exchange ampli­
tude from summing the leading In 8 to all orders in perturbation 
theory given by 

k 2 ( 8 ) aG(t) 1 _ ei1raG (t) 
A(8) = 87ra s TTa ® Ta8).1).~ 8).2).~ k 2 2' (3.53) 

where 

aG(t) = 1 + fG(t). 
This is a Regge trajectory of odd signature and we have justified 
the ansatz made in Eq.(3.39) for the 'reggeized' gluon propagator. 

Although aG(t) is infra-red divergent, if we regularize using 
dimensional regularization, i.e. if we perform the integration over 
transverse momenta in 2 + f dimensions, then we havet 

a _ 2 _ 1 _ Na s q2 ! d2+Ek _ 1 _ Na s 2(q2)E/2 
G( q) - (27r )2+E k2(k _ q)2 - 47r f ' 

such that aG(O) = 1 and we find that the massless, spin-l gluon 
does indeed lie on the trajectory. This has been shown by Fadin, 
Kuraev & Lipatov (1976), Frankfurt & Sherman (1976), Tyburski 
(1976), and Cheng & Lo (1976) to be true also in the case where 
the gauge group is broken spontaneously so that the 'gluon' ac­
quires a mass, M, and it turns out that aG(M2) = 1. In this 
case graphs involving Higgs bosons (which do not occur in the 
treatment described in this chapter) playa crucial role. 

We have now done most ofthe hard work. In the next chapter we 
shall be using these reggeized gluons to construct the perturbative 
Pomeron. 

3.8 Summary 

• The first few terms in the perturbative expansion for the am­
plitude involving spin-I, colour octet exchange suggest that the 
gluon reggeizes, i.e. its propagator is given by Eq.(3.1) with fG(t) 
given by Eq.(3.9). After regularization of the infra-red divergence 

t We have absorbed In 41r and the Euler constant 'YE into 1/ E. 
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3.B Summary 81 

we find aG(O) (= 1 + EG(O)) = 1 so that the gluon lies on this 
trajectory. 
• The two-quark to two-quark plus n-gluon amplitude at the tree 
level, in the kinematic regime which leads to leading In s in the 
octet exchange amplitude, is given by the left half of uncrossed 
ladder diagrams with effective vertices, r~v' given by Eq.(3.11) 
coupling the rungs of the ladder and the vertical gluon lines. 
• Loop corrections in leading In s approximation are introduced 
by replacing the propagators for the vertical gluon lines of the 
ladder by reggeized gluons. 
• An integral equation for the Mellin transform of the imaginary 
part of the octet exchange amplitude can be obtained using a 
dispersion relation involving these ladders. 
• The integral equation has a solution which consists of a simple 
pole at w = EG(t), thereby justifying the proposition that the 
gluon reggeizes. 
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