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Abstract We present a wavelet characterization of anisotropic Besov spaces Bα
p,q(Rn), valid for the

whole range 0 < p, q < ∞, and in terms of multi-resolution analyses with dilation adapted to the
anisotropy of the space. Our proofs combine classical techniques based on Bernstein and Jackson-type
inequalities, and nonlinear methods for the cases p < 1. Among the consequences of our results, we
characterize Bα

p,q as a linear approximation space, and derive embeddings and interpolation formulae for
Bα

p,q , which appear to be new in the literature when p < 1.
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1. Introduction

The characterization of Besov norms as weighted sums of wavelet coefficients has impor-
tant applications in data compression, nonlinear approximation and the numerical resolu-
tion of elliptic partial differential equations (see, for example, the survey papers [4,6,7]).
In recent years, an increasing interest in non-isotropic models and semi-elliptic equations
has turned attention to the more general class of anisotropic Besov spaces Bα

p,q(R
n),

where α = (α1, . . . , αn) ∈ Rn
+ and 0 < p, q < ∞ [15,16,19]. Wavelet-based techniques

for such problems depend on a corresponding characterization of Bα
p,q in terms of com-

pactly supported wavelets, which has only recently been introduced by the authors in
two different and independent frameworks∗ [13,14].

∗ Some earlier results with wavelets that are not compactly supported can be found in [1].
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There were, however, some limitations in these works that we try to overcome here. The
results in [14,16], for instance, provide characterizations of Bα

p,q with no restrictions in the
indices α, p, q, but only for wavelet bases with a very special tensor-product construction
and for function spaces defined in the unit cube [0, 1]2. On the other hand, the results
in [13] were carried out with a very general multi-resolution analysis (MRA) setting
in Rd which allows the use of non-separable wavelets, but with very specific techniques
of linear operators that only produced characterizations of Bα

p,q(R
n) for indices p, q � 1.

These two works, therefore, left open the study of the cases 0 < p < 1 with a general
MRA setting of non-separable wavelets, which we think may play a useful role in certain
applications.

The goal of the present paper is precisely to fill this gap by presenting a uniform
approach to Bα

p,q(R
n) that is valid in the whole range 0 < p, q < ∞ and which takes

into account the general MRA setting introduced in [13]. This requires a new strategy
compared with [13], where classical methods based on Bernstein and Jackson inequalities
must be combined with the nonlinear techniques introduced by DeVore and Popov in the
isotropic situation (see [9] and also [3]). In fact, in this paper we shall focus more on the
quasi-Banach setting, 0 < p < 1, where nonlinear methods appear naturally, and we refer
to [13] for a complete treatment of the linear methods in the Banach situation p � 1.

To be more precise, let us fix throughout the paper an anisotropy a = (a1, . . . , an),
with all a1, . . . , an > 0 and normalized by (1/a1 + · · ·+1/an)/n = 1. The wavelet system
we are looking for will be dilated by a matrix M , which we shall choose to be ‘compatible’
with a. Namely, we let

M = diag(λ1/a1 , . . . , λ1/an), for some λ > 1, (1.1)

so that we have ‘the correct homogeneity’ over Besov seminorms:

|det M |1/p|f(M ·)|Bαa
p,q

= λα|f |Bαa
p,q

.

Our wavelet approach is based on multi-resolution analysis. We consider a fixed scaling
function ϕ ∈ L2(Rn) (which we assume to be compactly supported) and define, for each
0 < p < ∞, the multi-resolution spaces

V
(p)
j = spanLp{ϕ

(p)
j,γ ≡ |det M |j/pϕ(M j · −γ)}γ∈Zn , j ∈ Z. (1.2)

As is well known, these spaces are nested V
(p)
j ⊂ V

(p)
j+1 ⊂ · · ·, so that one obtains a mul-

tilevel decomposition for every f ∈ Lp(Rn):

f = P
(p)
0 f +

∞∑
j=0

Q
(p)
j f, f ∈ Lp(Rn), (1.3)

where P
(p)
j are suitable ‘projections’ of Lp onto V

(p)
j (which we shall define below) and

Q
(p)
j are ‘details’ given by Q

(p)
j := P

(p)
j+1 − P

(p)
j . The first result in this paper can then be

stated as follows.
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Theorem 1.1. Let 0 < p, q < ∞ and α > 0. Then, for an MRA as above with a
compactly supported and sufficiently smooth scaling function we have

Bαa
p,q(Rn) =

{
f ∈ Lp(Rn) :

∞∑
j=0

λαjq‖Q
(p)
j f‖q

p < ∞
}

.

Moreover, the following equivalence of (quasi)-seminorms holds:

‖f‖Bαa
p,q

∼ ‖P
(p)
0 f‖p +

[ ∞∑
j=0

λαjq‖Q
(p)
j f‖q

p

]1/q

and |f |Bαa
p,q

∼
[ ∞∑

j=−∞
λαjq‖Q

(p)
j f‖q

p

]1/q

.

The previous result can also be translated into the language of approximation theory.
In fact, if we denote the error of approximation of f ∈ Lp(Rn) to V

(p)
j by

E
(p)
j (f) := inf

g∈V
(p)

j

‖f − g‖p, j ∈ Z,

and define the approximation space of order (α, q) by

Aα
q (Lp) =

{
f ∈ Lp : ‖f‖p +

[ ∞∑
j=0

λαjq‖E
(p)
j f‖q

p

]1/q

< ∞
}

,

then a reformulation of Theorem 1.1 will show that Aα
q (Lp) = Bα

p,q(R
n) with equivalent

norms (see Theorem 5.1 below). We must say that it is precisely this application which
will motivate our definition of the projector P

(p)
j f for p < 1, as an almost best approx-

imation of f to V
(p)
j . Dealing with such projectors will require some extra care, since

typically they are nonlinear and of course they will not be continuous.
Before going into our second result, it is worth rephrasing our previous theorem when

p � 1. In this case, if M is integer valued and m = |det M |, then it is well known that
there exists a family of compactly supported wavelets {ψ1, . . . , ψm−1} such that Q

(p)
j is a

linear projection from Lp onto the subspace

W
(p)
j = spanLp{ψ

(p)
�;j,γ ≡ |det M |j/pψ�(M j · −γ) : γ ∈ Zn, � = 1, . . . , m − 1}

for every j ∈ Z. Moreover, the multilevel decomposition in (1.3) takes the form

f =
∑

γ∈Zn

cγϕγ +
m−1∑
�=1

∞∑
j=0

∑
γ∈Zn

d�;j,γψ
(p)
�;j,γ , f ∈ Lp(Rn), (1.4)

and since the generators of V
(p)
j and W

(p)
j are p-stable bases we have

‖P
(p)
0 f‖p

p ∼
∑

γ∈Zn

|cγ |p and ‖Q
(p)
j f‖p

p ∼
m−1∑
�=1

∑
γ∈Zn

|d�;j,γ |p, j ∈ Z.

Finally, the coefficients can be expressed in terms of a dual basis {ϕ̃γ , ψ̃�;j,γ}γ,�,j by

cγ = 〈f, ϕ̃γ〉 and d�;j,γ = 〈f, ψ̃
(p′)
�;j,γ〉, γ ∈ Zn, j ∈ Z, � = 1, . . . , m − 1.
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If we insert this in Theorem 1.1, we obtain, when p � 1, a third and much more useful
characterization of Besov spaces in terms of the size of the wavelet coefficients (compared
with the size of ‘details’ and approximation errors above). These are the results obtained
in [13].

Now observe that there is no hope that such reasoning can be applied when p < 1,
since the nonlinearity of P

(p)
j makes the space Im Q

(p)
j typically much larger than W

(p)
j .

Our second main theorem gives a substitute for this situation and shows that, in a certain
range of indices, the Besov spaces Bαa

τ,τ (Rn) with τ < 1 can be embedded in Lp for some
p > 1, and have corresponding characterizations in terms of weighted sums of wavelet
coefficients.

Theorem 1.2. Let 0 < τ < ∞, n((1/τ) − 1)+ < α < n/τ and p > 1 given by
1/τ = α/n + 1/p. Then Bαa

τ,τ (Rn) ↪→ Lp, and for an MRA as above we have

Bαa
τ,τ =

{
f ∈ Lp(Rn) :

∑
γ∈Zn

|〈f, ϕ̃γ〉|τ +
m−1∑
�=1

∞∑
j=0

∑
γ∈Zn

|〈f, ψ̃
(p′)
�;j,γ〉|τ < ∞

}
.

Moreover, the following equivalence of quasi-seminorms holds:

‖f‖Bαa
τ,τ

∼
[ ∑

γ∈Zn

|〈f, ϕ̃γ〉|τ
]1/τ

+
[ m−1∑

�=1

∞∑
j=0

∑
γ∈Zn

|〈f, ψ̃
(p′)
�;j,γ〉|τ

]1/τ

,

|f |Bαa
τ,τ

∼
[ m−1∑

�=1

∑
j∈Z

∑
γ∈Zn

|〈f, ψ̃
(p′)
�;j,γ〉|τ

]1/τ

.

As far as we know, a complete proof of the previous result, even in the isotropic
situation, has only recently appeared in [4, Theorem 30.7], while previous works just
focused on the domain [0, 1]n (see [9]), or on homogeneous Besov spaces [11]. We also
refer to [4] for modern applications of such theorems to problems involving thresholding.

Finally, we mention that among the consequences of our theorems there are some
interpolation and embedding results for anisotropic Besov spaces which seem to be new
in the literature when p < 1. These are presented in § 5, complementing those obtained
for the unit cube in [16] and the isotropic case in [9]. We also make special reference to
the preprint [19], discovered after this paper was drafted, which contains related results
in nonlinear approximation and interpolation of anisotropic Besov spaces.

2. Background on anisotropic Besov spaces

Fix a = (a1, . . . , an), with aj > 0 and 1/a1 + · · · + 1/an = n. We denote by

|h|a =
n∑

j=1

|hj |aj , h = (h1, . . . , hn) ∈ Rn,

the anisotropic pseudo-distance related to a. Observe that |Mh|a = λ|h|a. We use
the standard notation ∆k

hf for the kth iteration of the difference operator: ∆hf(x) =
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f(x + h) − f(x), k � 1, x, h ∈ Rn. Also, if {e1, . . . ,en} is the canonical basis of Rn, we
write

∆�
hf(x) = (∆�1

h1e1
◦ · · · ◦ ∆�n

hnen
)f(x), x ∈ Rn,

for the mixed difference of order � = (�1, . . . , �n) ∈ Nn and step h = (h1, . . . , hn) ∈ Rn.
Let 0 < α, p, q < ∞ and write α = αa = (α1, . . . , αn). Consider the smallest posi-

tive integer L > max{α1, . . . , αn}. We say that a function f ∈ Lp(Rn) belongs to the
anisotropic Besov space Bα

p,q(R
n) whenever

|f |Bα
p,q

:=
∑

|�|=L

[ ∫
Rn

(|h|−α
a ‖∆�

hf‖p)q dh

|h|na

]1/q

< ∞. (2.1)

We denote the corresponding Besov quasinorm by ‖f‖Bα
p,q

= ‖f‖p + |f |Bα
p,q

.
We observe that our definition of seminorm in (2.1) is equivalent to other expressions

which are common in the literature, with ∆�
hf replaced by the total difference operator

∆L
hf or by the partial differences ∆ki

tei
f , for ki > αi (see, for example, [23, § 2.3.4]

or [22, § 1.4], where proofs of the equivalences are given, valid also for p < 1). In this
paper we shall stick to the mixed differences in (2.1), and some equivalent expressions
using the mixed modulus of continuity

ω�
p(f ; t) = sup

|h|a�t

‖∆�
hf‖p, t > 0.

Proposition 2.1. The following quasi-seminorms are equivalent:

|f |Bα
p,q

∼
∑

|�|=L

[ ∫ ∞

0
(t−αω�

p(f ; t))q dt

t

]1/q

∼
∑

|�|=L

[∑
j∈Z

(λjαω�
p(f ; λ−j))q

]1/q

. (2.2)

We sketch the proof of this proposition, since we could not find a precise reference in
the anisotropic setting; the ideas, however, are more or less standard. We just need to
show the first equivalence, since the last sum is just a discretization of the middle integral
following from the monotonicity of the modulus of continuity. For the first assertion, the
key is the equivalence between ω�

p(f ; t) and the averaged modulus of continuity, which we
state separately below.

Proposition 2.2. Let 0 < p, q < ∞ and � = (�1, . . . , �n) with �j � 1. Then there
exists C = C(p, q, �,a) > 0 and c = c(�,a) � 1 such that

ω�
p(f ; t) � C

(
1
tn

∫
|h|a�ct

‖∆�
hf‖q

p dh

)1/q

, ∀t > 0. (2.3)

Proof. To prove (2.3) we need an identity involving mixed difference operators with
variable increments: for all x, h, s ∈ Rn and m � 1,

∆m
h f(x) =

∑
1�k�m

(−1)|k|
(

m

k

)[ ∑
0�δ�1

(−1)|δ|∆m
δh+ksf(x + (1 − δ)kh)

]
. (2.4)
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Above we use common notation for multi-indices: |m| = m1 + · · · + mn,(
m

k

)
=

(
m1

k1

)
· · ·

(
mn

kn

)
,

mh = (m1h1, . . . , mnhn) and m � 1 if mj � 1 for all j = 1, . . . , n. The identity (2.4) is
an anisotropic version of the one-dimensional formula

∆m
h f(x) =

m∑
k=1

(−1)k

(
m

k

)
[∆m

ksf(x + kh) − ∆m
h+ksf(x)], x, h, s ∈ R

(see [8, p. 184]). We could not find any reference for (2.4), but once the formula is set, the
reader can easily prove it by induction using the one-dimensional case. To pass from (2.4)
to (2.3), one first takes Lp-norms on both sides of (2.4) and raises to the qth power using
the quasi-triangular inequality. Next, integrate the resulting expressions over |s|a � t

and enlarge the region of integration on the right appropriately, so that after taking the
sup over h one concludes with (2.3). �

Remark 2.3. As a final remark we should warn the reader that, when p < 1, our spaces
do not coincide in general with the Besov spaces defined with Littlewood–Paley theory by
Triebel et al . In particular, when α < n((1/p)−1)+ our spaces Bα

p,q(R
n) contain functions

which are not distributions, while Triebel’s spaces may contain distributions which are
not functions (see, for example, [21]). The interest in functional definitions (rather than
distributional ones) seems to be motivated by various applications in approximation
theory (see [9]).

3. Multi-resolution and nonlinear projectors

We recall briefly the multi-resolution setting introduced in [13]. Given the dilation matrix
M in (1.1), we fix a pair of biorthogonal M -scaling functions {ϕ, ϕ̃}, which we assume to
be bounded and compactly supported. These are crucial assumptions in applications, so we
do not consider here more-general settings where the scaling functions have a different
decay. We also recall from § 3.3 in [13] that the theory of multi-resolution analyses is nat-
urally limited to matrices M with integer entries, a constraint which together with (1.1)
implies that the anisotropies must be of the form (1/a1, . . . , 1/an) ∈ R+ log Zn

+. From
now on we shall only consider such anisotropies, although this constraint will not be
used anywhere else in the paper (apart from the existence of {ϕ, ϕ̃}). We refer to § 7.2
below for alternative ideas in other situations.

We will denote by {V
(p)
j }j∈Z the multi-resolution spaces generated by ϕ as in (1.2).

Observe that f ∈ V
(p)
j if and only if T−jf ∈ V

(p)
0 , where T = T(p) denotes the isometry

in Lp(Rn) given by Tf(x) = |det M |1/pf(Mx).
We next show that the systems {λjd/pϕ(M j · −γ)}γ∈Zn are p-stable bases of V

(p)
j . By

a simple change of scale, it is enough to prove this for j = 0. We shall present a different
argument from Cohen et al . (see [4, § 3.7]), where only tensor-product scaling functions
could be handled. These ideas will also be crucial later, when dealing with the nonlinear
projectors P

(p)
j .

https://doi.org/10.1017/S001309150300107X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150300107X


Wavelet characterizations for anisotropic Besov spaces with 0 < p < 1 579

Proposition 3.1. Let ϕ, ϕ̃ be bounded and compactly supported biorthogonal scaling
functions. Then {ϕγ}γ∈Zn is a p-stable basis of V

(p)
0 , meaning that every f ∈ V

(p)
0 can

be written uniquely as f =
∑

γ∈Zn cγϕγ for some {cγ} ∈ �p(Zn), and moreover

∥∥∥∥
∑

γ∈Zn

cγϕγ

∥∥∥∥
Lp(Rn)

∼
[ ∑

γ∈Zn

|cγ |p
]1/p

.

Proof. The proof for 1 � p < ∞ is standard (see the appendix in [13]). We assume
therefore that 0 < p < 1. Then, for every sequence {ck}k∈Zn ∈ �p(Zn), we have

∫
Rn

∣∣∣∣
∑

k∈Zn

ckϕ(x − k)
∣∣∣∣
p

dx �
∑

k∈Zn

|ck|p‖ϕ‖p
Lp.

Thus, the series
∑

k∈Zn ckϕk converges in Lp and defines a function in V
(p)
0 . Conversely,

let
f =

∑
k∈Zn

ckϕk ∈ V
(p)
0 ,

for a finitely non-zero sequence of scalars {ck}. Then, the biorthogonality gives
ck = 〈f, ϕ̃k〉, and therefore

|ck| �
∫

Rn

|f | |ϕ̃k| � ‖ϕ̃‖∞

∫
J̃k

|f |,

where we denote by J̃k the compact set J̃k = Supp ϕ̃k = J̃0 + k, k ∈ Zn. Now, the key
step is the equality of the finite-dimensional subspaces of Lp(J̃k):

V
(p)
0 |J̃k

:= {gχJ̃k
: g ∈ V

(p)
0 } = span{ϕ(· − �)χJ̃k

: � ∈ Zn}. (3.1)

We conclude that V
(p)
0 |J̃k

is independent of p, and by the equivalence of all quasinorms
in finite-dimensional spaces we also have the reverse Hölder estimate

∫
J̃k

|g| � c

( ∫
J̃k

|g|p
)1/p

, ∀g ∈ V
(p)
0 , (3.2)

with a constant c > 0 independent of g, and by translation invariance also independent
of k. Thus,

∑
k∈Zn

|ck|p � ‖ϕ̃‖p
∞

∑
k∈Zn

( ∫
J̃k

|f |
)p

� cp
∑

k∈Zn

∫
J̃k

|f |p �
∫

Rn

|f |p,

at least for f ∈ span{ϕk}. A density argument then establishes the proposition. �

Let us now pass to the construction of the projectors onto V
(p)
j . When p � 1, one uses

the standard definition in terms of ϕ and ϕ̃:

Pj = P
(p)
j : Lp(Rn) → V

(p)
j , f �→ Pjf =

∑
k∈Zn

〈f, ϕ̃
(p′)
j,k 〉ϕ(p)

j,k .
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We recall that these are bounded linear projections satisfying

(1) ‖f − Pjf‖p � E
(p)
j (f) = inf

g∈V
(p)

j

‖f − g‖p;

(2) ‖f − Pjf‖p → 0, as j → +∞;

(3) ‖Pjf‖p → 0, as j → −∞ (only when 1 < p < ∞);

(4) f = P0f +
∞∑

j=0

Qjf

(
=

∑
j∈Z

Qjf , if p > 1
)

, ∀f ∈ Lp(Rn);

where in the last formula Qj = Pj+1 − Pj , and the convergence is in the Lp-norm.
For the cases 0 < p < 1, the previous definition of Pj is no longer valid since functions

in Lp(Rn) may not be locally integrable. We proceed instead with a different definition
based on nonlinear approximation (see the abstract framework in [3,9]). More precisely,
consider first the space of ‘piecewise V

(p)
0 -functions’:

V(p)
0 := {g ∈ Lp

loc(R
n) | ∀� ∈ Zn, ∃f � ∈ V

(p)
0 : g|I�

= f �|I�
},

where I� denotes the cube I� = [0, 1]n + �, � ∈ Zn. Note that V(p)
0 is a priori much

larger than V
(p)
0 . Next, we define a mapping assigning to every f ∈ Lp

loc(R
n) a function

R
(p)
0 f ∈ V(p)

0 so that

‖f − R
(p)
0 f‖Lp(I�) = inf

g∈V
(p)
0

‖f − g‖Lp(I�), ∀� ∈ Zn. (3.3)

That is, in each cube I�, (R(p)
0 f)|I�

is a best approximation to f |I�
in V

(p)
0 |I�

, which exists
because the latter is a finite-dimensional (hence closed) subspace of Lp(I�) (see (3.1)).
Since minimizers may be hard to compute, there is no loss if we take instead near-best
approximations, that is if we define R

(p)
0 f ∈ V(p)

0 so that

‖f − R
(p)
0 f‖Lp(I�) � 2 inf

g∈V
(p)
0

‖f − g‖Lp(I�), ∀� ∈ Zn. (3.4)

In either case we observe that R
(p)
0 is not necessarily continuous, nor even linear.

From (3.4), however, it easily follows that R
(p)
0 f = f if f ∈ V(p)

0 , and for all f ∈ Lp(Rn),

‖R
(p)
0 f‖p

Lp(Rn) � ‖f‖p
Lp(Rn) +

∑
�∈Zn

‖f − R
(p)
0 f‖p

Lp(I�)
� 3‖f‖p

Lp(Rn). (3.5)

Finally, we define P
(p)
0 by composition of R

(p)
0 with P

(1)
0 :

f ∈ Lp
loc(R

n) �→ P
(p)
0 f := P

(1)
0 (R(p)

0 f) =
∑

k∈Zn

〈R(p)
0 f, ϕ̃k〉ϕk.

Proposition 3.2. For every 0 < p � 1, the (nonlinear) operator P
(p)
0 is a bounded

projection from Lp(Rn) onto V
(p)
0 , that is

P
(p)
0 f = f, ∀f ∈ V

(p)
0 , and ‖P

(p)
0 f‖p � C‖f‖p, f ∈ Lp(Rn). (3.6)

Moreover, there exists C > 0 such that

‖f − P
(p)
0 f‖p � C inf

g∈V
(p)
0

‖f − g‖p, ∀f ∈ Lp(Rn). (3.7)
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Proof. For the first inequality, the same argument we gave in the proof of Proposi-
tion 3.1 shows that

‖P
(1)
0 g‖p �

( ∑
k∈Zn

|〈g, ϕ̃k〉|p
)1/p

� ‖g‖p, ∀g ∈ V(p)
0 , (3.8)

and thus using (3.5) we easily obtain (3.6). The left-hand identity of (3.6) also follows from
Proposition 3.1, since by p-stability every f ∈ V

(p)
0 can be written as f =

∑
k∈Zn〈f, ϕ̃k〉ϕk

and we also have R
(p)
0 f = f . For the last assertion, we take any g ∈ span{ϕk}, and use

the previous results and the quasi-triangular inequality to obtain

‖f − P
(p)
0 f‖p � ‖f − g‖p + ‖g − P

(p)
0 f‖p

= ‖f − g‖p + ‖P
(1)
0 (g − R

(p)
0 f)‖p

by (3.8) � ‖f − g‖p + ‖g − R
(p)
0 f‖p

� ‖f − g‖p + ‖f − R
(p)
0 f‖p

by (3.4) � ‖f − g‖p +
( ∑

�∈Zn

‖f − g‖p
Lp(I�)

)1/p

= 2‖f − g‖p.

Taking the infimum over all g ∈ span{ϕk}, which is dense in V
(p)
0 , we obtain (3.7). �

Remark 3.3. It is worth noting that for all 0 < ρ < p, the (nonlinear) operator
P

(ρ)
0 also defines a bounded projection from Lp(Rn) onto V

(p)
0 . This is essentially due to

the fact that (R(ρ)
0 f)|I�

is a near-best approximation to f |I�
in V

(p)
0 |I�

(with a constant
only depending on p, ρ and n), as it can be shown using reverse Hölder inequalities in
V

(p)
0 |I�

= V
(ρ)
0 |I�

. Moreover, mimicking the same steps as in Proposition 3.2 one can also
obtain (3.7) with P

(p)
0 replaced by P

(ρ)
0 . We leave details to the reader.

Finally, one could repeat these same arguments to define projectors P
(p)
j from Lp(Rn)

onto V
(p)
j , via best approximations to f |Ij,�

in V
(p)
j |Ij,�

, with Ij,� = M−jI�. This approach
is equivalent to just letting

P
(p)
j := T jP

(p)
0 T−j , j ∈ Z,

which by homogeneity will satisfy analogous properties to P
(p)
0 in Proposition 3.2.

4. Bernstein and Jackson inequalities

The characterization of Besov spaces is typically obtained from direct and inverse inequal-
ities involving moduli of smoothness. In this section we shall show that such inequalities
hold for any of our ‘admissible’ MRAs, provided their corresponding scaling functions
are smooth enough. We begin with the inverse inequality, which is also the simplest.

Proposition 4.1 (Bernstein-type inequality). If ϕ ∈ Bα
p,q(R

n), then

|f |Bα
p,q

� λαj‖f‖Lp, ∀f ∈ V
(p)
j . (4.1)
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Proof. Let us choose an integer L > max{α1, . . . , αn}. By scaling it suffices to show
(4.1) for j = 0. We only include the proof for 0 < p < 1 (the other case is similar,
see [13]). If f =

∑
k∈Zn ckϕk ∈ V

(p)
0 , then for every h ∈ Rn the p-stability gives

‖∆�
hf‖p

p �
∑

k∈Zn

|ck|p‖∆�
hϕk‖p

p � ‖f‖p
p‖∆�

hϕ‖p
p.

Thus,

|f |Bα
p,q

=
∑

|�|=L

[ ∫
Rn

(|h|−α
a ‖∆�

hf‖p)q dh

|h|na

]1/q

� ‖f‖p|ϕ|Bα
p,q

,

completing the proof of (4.1). �

For the direct inequality we need an additional assumption on {ϕ, ϕ̃} guaranteeing
that there is an integer L > max{α1, . . . , αn} so that the space V

(p)
0 contains locally the

polynomials of total degree less than L:

ΠL = span{xr1
1 · · ·xrn

n : r1 + · · · + rn < L}.

This means that for every compact set K and P ∈ ΠL there exists f ∈ V
(p)
0 such that

f |K = P |K . Such an assumption (which does not depend on 0 < p < ∞) is known
to follow from sufficient smoothness of the scaling function (e.g. ϕ ∈ HLa(Rn) (see [5,
Theorem 2.1])). For the particular case L = 1, if ϕ, ϕ̃ ∈ L∞

c (Rn), then it is easy to see
that V0 contains locally the constants (see, for example, [17, Theorem 6.3]).

Theorem 4.2 (Jackson-type inequality). If V
(p)
0 contains locally the polynomials

of degree less than L, then

‖f − P
(p)
j f‖p � λ−αj |f |Bα

p,q
, ∀f ∈ Bα

p,q(R
n). (4.2)

Proof. Again, a scaling argument reduces matters to j = 0. We will just prove the
case 0 < p < 1 (the other one being a bit simpler (see [13])). Following a more or less
standard procedure, we first need to establish two lemmas.

Lemma 4.3 (local boundedness). In the conditions above, there exists a finite set
K# ⊂ Zn such that, for every γ ∈ Zn, we have

‖P
(p)
0 f‖Lp(Iγ) � ‖f‖Lp(Ĩγ), ∀f ∈ Lp

loc(R
n), (4.3)

where Ĩγ =
⋃

m∈K#
(Iγ + m).

Lemma 4.4 (Whitney-type inequality). Let f ∈ Lp
loc(R

n) and J = [a1, b1]×· · ·×
[an, bn] be a rectangle in Rn. Then, for every L � 1 there exists a polynomial Q ∈ ΠL

such that

‖f − Q‖p
Lp(J) � C

∑
|�|=L

1
|J |

∫ b1−a1

0
· · ·

∫ bn−an

0
‖∆�

hf‖p
Lp(J) dh, (4.4)

where C = C(n, p, L) > 0.
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The first lemma has a similar proof to the isotropic case (see [3]). For completeness
we include it below in the case p < 1.

Proof of Lemma 4.3. We may assume γ = 0 and let I = [0, 1]n. By definition of the
projector

‖P
(p)
0 f‖p

Lp(I) �
∑
m

|〈R(p)
0 f, ϕ̃m〉|p

∫
I

|ϕm|p,

with the indices restricted to the finite set K� = {m ∈ Zn : I ∩ [Suppϕ + m] �= ∅}.
It therefore suffices to estimate one coefficient, which we may take to be m = 0. Now,
proceeding as in Proposition 3.1,

|〈R(p)
0 f, ϕ̃〉| � ‖ϕ̃‖∞

∫
J̃0

|R(p)
0 f | � c′

[ ∫
J̃0

|R(p)
0 f |p

]1/p

,

where we have used the fact that R
(p)
0 f is locally in V

(p)
0 and the equivalence of quasinorms

in (3.2). The lemma now follows easily by a similar argument as in (3.5) above. �

The second lemma is the crucial point in most Jackson-type inequalities. The proof
for p < 1 is much more subtle than its counterpart for p � 1 (see, for example, [13,
Lemma 4.3] for a simple proof in this last case). A classical reference is [24], but since
our formulation is slightly different we indicate below how to derive it from there.

Proof of Lemma 4.4. We recall the statement of Theorem 1 in [24]: if f ∈ Lp(J),
then there exists a polynomial Q ∈ ΠL such that

‖f − Q‖p
Lp(J) � C

∑
|�|=L

sup
hj<(bj−aj)/(2L)

‖∆�
hf‖p

Lp(J�
h), (4.5)

where J�
h denotes the rectangle J ∩ (J − �h) (that is, the domain of definition of ∆�

hf

when f is just defined in J). To pass from the right-hand side of (4.5) to (4.4) one uses one
more time the identity of the difference operators in (2.4). Indeed, taking Lp(J�

h)-norms
in (2.4) and changing variables on the right-hand side we obtain the estimate

‖∆�
hf‖p

Lp(J�
h) �

∑
0�δ�1�k��

ck,�‖∆�
δh+ksf‖p

Lp(J).

One then integrates this inequality in 0 � sj � (bj − aj)/2L, takes the sup over hj <

(bj − aj)/2L, and after changing variables concludes easily with (4.4). �

We turn now to the proof of (4.2), which by scaling we only need to prove for j = 0. Let
us fix γ ∈ Zn and a polynomial Q of degree less than L. Note that from our assumptions
we have Q ∈ V(p)

0 . Then, using Lemma 4.3 and (3.4) we obtain

‖f − P
(p)
0 f‖Lp(Iγ) � ‖f − Q‖Lp(Iγ) + ‖P

(1)
0 (Q − R

(p)
0 f)‖Lp(Iγ)

� ‖f − Q‖Lp(Jγ) + ‖f − R
(p)
0 f‖Lp(Jγ) � ‖f − Q‖Lp(Jγ).
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Now, if for each γ ∈ Zn we choose a polynomial Q = Qγ as in Lemma 4.4, we obtain

‖f − P
(p)
0 f‖p

Lp(Rn) =
∑

γ∈Zn

‖f − P
(p)
0 f‖p

Lp(Iγ)

�
∑

γ∈Zn

∑
|�|=L

1
cn

∫
[0,c]n

‖∆�
hf‖p

Lp(Jγ) dh

�
∑

|�|=L

1
cn

∫
[0,c]n

‖∆�
hf‖p

Lp(Rn) dh

�
∑

|�|=L

ω�
p(f, c′)p. (4.6)

One now uses the equivalence between averaged moduli of continuity in Proposition 2.2
to conclude

‖f − P
(p)
0 f‖Lp(Rn) �

∑
|�|=L

[ ∫
|h|a�c′′

|h|n+αq
a

|h|n+αq
a

‖∆�
hf‖q

Lp(Rn) dh

]1/q

� |f |Bα
p,q(Rn),

recovering in the last step the definition of the seminorm in (2.1). �

Remark 4.5. It is possible to weaken the assumptions of Theorem 4.2 using the
following version of Lemma 4.4: for all � = (�1, . . . , �n) � 0, there exists a polynomial
Q ∈ Π� such that

inf
Q∈Π�

‖f − Q‖p
Lp(J) �

n∑
j=1

1
bj − aj

∫ bj−aj

0
‖∆�j

tej
f‖p

Lp(J) dt,

where Π� = span{x
rj

j : 0 � rj < �j , j = 1, . . . , n}. A self-contained proof for this result
appears in [16, Theorem 3.1]. Using this, one can prove (4.2) by just assuming that V0

contains locally Π� for some � = (�1, . . . , �n) with �j > αj . At this point, however, we
do not know of any simple translation of this condition in terms of the smoothness of ϕ

(except in the simpler tensor-product case).

As a corollary of Theorem 4.2 with L = 1 we obtain a general property of the nonlinear
projectors defined in § 3.

Corollary 4.6. If ϕ, ϕ̃ ∈ L∞
c (Rn), then the (nonlinear) projectors P

(p)
j satisfy

lim
j→∞

‖f − P
(p)
j f‖Lp(Rn) = 0, ∀f ∈ Lp(Rn).

Proof. Let ε > 0 and fε ∈ C∞
c (Rn) be such that ‖f − fε‖p < ε. By the case L = 1 in

Theorem 4.2 (which we can use since V0 reproduces the constants when ϕ, ϕ̃ ∈ L∞
c (Rn)

[17, Theorem 6.3]), it follows that

‖fε − P
(p)
j fε‖p � λ−jα|f |Bα

p,q(Rn),
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for some α > 0. To conclude we need to use (3.7), since P
(p)
j is not linear in general:

‖f − P
(p)
j f‖p � inf

g∈V
(p)

j

‖f − g‖p � ‖f − P
(p)
j fε‖p

� ‖f − fε‖p + ‖fε − P
(p)
j fε‖p � ε + λ−jα|fε|Bα

p,q(Rn) � 2ε,

if j is large enough. �

5. The first theorem and its applications

We now have all the tools to prove the main results in this paper. Throughout this
section we assume that the scaling function ϕ ∈ Bα0a

p,q (Rn) for some α0 > 0, and that
V

(p)
0 contains locally the polynomials of degree less than L for a fixed integer L � 1.

Recall from § 1 that
E

(p)
j (f) := inf

g∈V
(p)

j

‖f − g‖p.

Then we prove the following restatement of Theorem 1.1.

Theorem 5.1. Let 0 < p, q < ∞. For every

0 < α < α∗ := min
{

α0,
L

a1
, . . . ,

L

an

}

we have

Bαa
p,q(Rn) =

{
f ∈ Lp(Rn) :

∞∑
j=0

λαjq‖Q
(p)
j f‖q

p < ∞
}

=
{

f ∈ Lp(Rn) :
∞∑

j=0

λαjqE
(p)
j (f)q < ∞

}
.

In this case, we have the equivalence of quasi-seminorms:

|f |Bαa
p,q

∼
[∑

j∈Z

(λαj‖Q
(p)
j f‖p)q

]1/q

∼
[∑

j∈Z

(λαjE
(p)
j (f))q

]1/q

.

Proof. Throughout the proof we denote by µ the number min{1, p}. We will only
show the statement of the theorem involving E

(p)
j (f). The statement involving ‖Q

(p)
j f‖p

follows easily from

‖Q
(p)
j f‖p � E

(p)
j (f)µ + E

(p)
j+1(f)µ � 2

∑
��j

‖Q
(p)
� f‖µ

p , j ∈ Z,

and inequalities of Hardy type (see, for example, [10, Theorem 2.1]). For the inclusion
‘⊆’, the key step is the estimate

E
(p)
j (f) � ‖f − P

(p)
j f‖Lp(Rn) �

∑
|�|=L

ω�
p(f, cλ−j), j ∈ Z,
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which we have seen in the proof of Jackson’s inequality (see (4.6)). From here, and using
the discrete definition of Besov seminorm in (2.2), we conclude easily that

[∑
j∈Z

(λαjE
(p)
j (f))q

]1/q

� |f |Bαa
p,q

,

For the converse ‘⊇’, it suffices to show that for any f ∈ Lp(Rn) and J ∈ N,

ω�
p(f, λ−J) � λ−Jα0

[ J∑
j=−∞

(λα0jE
(p)
j (f))µ

]1/µ

, |�| = L. (5.1)

Indeed, again an argument involving Hardy’s inequality will give (for 0 < α < α0)

[∑
j∈Z

(λαjω�
p(f, cλ−J))q

]1/q

�
[∑

j∈Z

(λαjE
(p)
j (f))q

]1/q

, (5.2)

from which we shall conclude the theorem.
To prove (5.1), we first write for any pair of integers J ′ < J ,

∆�
hf = ∆�

h(f − P
(p)
J f) + ∆�

h(P (p)
J′ f) +

J−1∑
j=J′

∆�
h(Q(p)

j f).

Since by Bernstein’s inequality limJ′→−∞ |P (p)
J′ f |Bα

p,q
= 0, we can take pointwise limits

and use Fatou’s Lemma to obtain

‖∆�
hf‖µ

p � ‖∆�
h(f − P

(p)
J f)‖µ

p +
J−1∑

j=−∞
‖∆�

h(Q(p)
j f)‖µ

p , a.e. h ∈ Rn.

Then, the same reasoning as in the proof of Bernstein’s inequality gives

‖∆�
hf‖µ

p � ‖f − P
(p)
J f‖µ

p +
J−1∑

j=−∞
‖Q

(p)
j f‖µ

p‖∆�
hϕj+1,0‖µ

p

by (3.7) � E
(p)
J (f)µ +

J∑
j=−∞

E
(p)
j (f)µω�

p(ϕ, λ−(J−j))µ, if |h|a � λ−J .

Now using (2.3) one can control the modulus of continuity of ϕ by

ω�
p(ϕ, λ−(J−j)) � λ−(J−j)α0 |ϕ|Bα0a

p,q
, j ∈ Z.

Substituting into the sum above and taking the sup over all |h|a � λ−J we arrive at (5.1).
This completes the proof of the theorem. �

Our first corollary gives a rigorous justification of the multilevel decomposition in (1.3)
for functions in Bαa

p,q(Rn).
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Corollary 5.2. In the conditions of the theorem, if f ∈ Bαa
p,q(Rn), then we can write

f = P
(p)
0 f +

∑∞
j=0 Q

(p)
j f with convergence in the norm of Bαa

p,q .

Proof. By Corollary 4.6, we only have to verify that

lim
j→∞

|f − P
(p)
j f |Bαa

p,q
= 0, f ∈ Bαa

p,q(Rn).

Now, using the elementary fact E
(p)
� (f − P

(p)
j f) � E

(p)
max(j,�)(f), it follows from the char-

acterization in Theorem 5.1 that

|f − P
(p)
j f |qBαa

p,q
�

∑
�∈Z

(λ�αE
(p)
� (f − P

(p)
j f))q

�
∑
��j

(λ�αE
(p)
� (f))q → 0, as j → ∞.

�

Theorem 5.1 can also be written as Bαa
p,q(Rn) = Aα

q (Lp(Rn)), the latter denoting the
space of Lp-approximation obtained from the approximating family {V

(p)
j }∞

j=0 (in the
notation of [10]). This equality and the results in [9,10] give us the following interpolating
properties of anisotropic Besov spaces.

Corollary 5.3. Let 0 < p, q < ∞, α > 0 and α = αa as in § 3. Then, for the real
interpolation method we have the identity

(Lp(Rn), Bα
p,r(R

n))θ,q = Bθα
p,q(R

n), ∀0 < θ < 1 and 0 < r < ∞.

Moreover, if 0 < α0 < α1 < ∞ and we let αθ = (1 − θ)α0 + θα1, then we also have

(Bα0a
p,q0

, Bα1a
p,q1

)θ,q = Bαθa
p,q , ∀0 < θ < 1 and 0 < q < ∞.

Proof. This is a direct consequence of the identity Bαa
p,q(Rn) = Aα

q (Lp(Rn)), and
Theorems 3.1 and 4.2 in [10] for the approximations spaces Aα

q (X). �

We conclude with an embedding result announced in the introduction.

Corollary 5.4. Let 0 < p, q < ∞, α > 0 and

1
τ

=
α

n
+

1
p
. (5.3)

Then, Bαa
τ,p(Rn) ↪→ Lp(Rn) and

‖f‖Lp(Rn) � ‖f‖Bαa
τ,p(Rn), ∀f ∈ Bαa

τ,p(Rn). (5.4)

Proof. The proof relies on a sort of Bernstein inequality:

‖f‖Lp(Rn) � Cλjα‖f‖Lτ (Rn), ∀f ∈ V
(τ)
j . (5.5)
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Indeed, assume (5.5) for the moment and write every f ∈ Bαa
τ,p(Rn) as f = P

(τ)
0 f +∑∞

j=0Q
(τ)
j f . Then, Fatou’s Lemma and Theorem 5.1 (with µ = min{1, p}) give

‖f‖Lp(Rn) �
[
‖P

(τ)
0 f‖µ

p +
∞∑

j=0

‖Q
(τ)
j f‖µ

p

]1/µ

�
[
‖P

(τ)
0 f‖µ

τ +
∞∑

j=0

(λjα‖Q
(τ)
j f‖τ )µ

]1/µ

� ‖f‖Bαa
τ,µ

.

Now, if µ = p � 1, this is the desired result. If p > 1, one must choose 1 � p0 < p < p1 <

∞ so that
‖f‖pi � C‖f‖B

αia
τ,1

, i = 0, 1,

where αi, pi, τ are related as in (5.3). Using the real interpolation formula in Corollary 5.3
(and interpolation of Lp spaces) one establishes (5.4).

It remains to prove (5.5), which by scaling it suffices to do for j = 0. Let f =
∑

k ckϕk,
for a finite sequence of scalars {ck}k. Then, the same argument we used in (3.2) involving
reverse Hölder inequalities gives

‖f‖p
Lp(Rn) �

∑
γ∈Zn

∫
Iγ

∣∣∣∣
∑

k

ckϕk

∣∣∣∣
p

dx �
∑

γ∈Zn

( ∫
Iγ

∣∣∣∣
∑

k

ckϕk

∣∣∣∣
τ

dx

)p/τ

� ‖f‖p
Lτ (Rn),

where in the last step we must use the inclusion �1 ↪→ �p/τ (since τ < p). �

Remark 5.5. Below we will also need a local form of the previous embedding: there
is a finite set K# ⊂ Zn such that, for every γ ∈ Zn, we have

‖f‖Lp(Iγ) � ‖f‖Bαa
p (Lτ (Ĩγ)), ∀f ∈ Bαa

τ,p(Rn), (5.6)

where Ĩγ =
⋃

m∈K#
(Iγ + m). In the above expression the norm of Bαa

q (X) when X is a
quasinormed space must be interpreted as follows:

‖f‖Bαa
q (X) = ‖f‖X +

∑
|�|=L

[ ∫
Rn

(|h|−α
a ‖∆�

hf‖X)q dh

|h|na

]1/q

.

To obtain (5.6) one can apply the previous corollary to the function Φf , where Φ is
smooth and satisfies χIγ � Φ � χ2Iγ

. For a sharper version of this result, directly applied
to Besov spaces over rectangles, see [16, Theorem 5.2].

6. The second theorem

In this section we prove Theorem 1.2, which gives a wavelet decomposition for the spaces
Bαa

τ,τ (Rn) when α > n((1/τ) − 1)+. Under this assumption, for any 0 < τ < ∞ we can
define p(α, τ) > 1 by the identity (5.3), i.e.

p(α, τ) =

⎧⎪⎨
⎪⎩

(
1
τ

− α

n

)−1

, if α < n/τ,

∞, otherwise.
(6.1)
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It follows from Corollary 5.4, and the trivial embedding Bαa
τ,q ↪→ Bα1a

τ,q for α > α1, that
Bαa

τ,τ (Rn) ↪→ Lp(Rn) for every finite p such that τ � p � p(α, τ). In particular, for those
p which are also greater than 1, every f ∈ Bαa

τ,τ can be decomposed as

f =
∑

k∈Zn

〈f, ϕ̃k〉ϕk +
m−1∑
�=1

∞∑
j=0

[ ∑
k∈Zn

〈f, ψ̃
(p′)
�;j,k〉ψ(p)

�;j,k

]
=

m−1∑
�=1

∑
j∈Z

[ ∑
k∈Zn

〈f, ψ̃
(p′)
�;j,k〉ψ(p)

�;j,k

]
,

with convergence of the series at least in Lp(Rn). Recall that the generating wavelets used
in this paper ψ�, ψ̃� are compactly supported, since they arise from scaling functions ϕ,
ϕ̃, which are assumed to satisfy this property (see the references in [13, § 3.2]).

Theorem 1.2 characterizes, among all functions with such representation, those having
wavelet coefficients in �τ . We state below a stronger form of this theorem more akin to
the notation in § 5, and with a few less restrictions in the indices. As usual, we shall
assume that the scaling function ϕ ∈ Bα0a

τ,τ , and that the space V0 contains locally the
polynomials of degree less than L.

Theorem 6.1. Let 0 < τ < ∞, n((1/τ) − 1)+ < α < α∗ and p(α, τ) given by (6.1).
Then, for any p ∈ (1,∞) such that τ � p � p(α, τ) we have

Bαa
τ,τ (Rn) =

{
f ∈ Lp(Rn) : ‖P

(p)
0 f‖τ

τ +
∞∑

j=0

λjτα‖Q
(p)
j f‖τ

τ < ∞
}

.

In this case, we have the equivalence of quasinorms:

‖f‖Bαa
τ,τ

∼ ‖P
(p)
0 f‖τ +

[ ∞∑
j=0

λjτα‖Q
(p)
j f‖τ

τ

]1/τ

and |f |Bαa
τ,τ

∼
[∑

j∈Z

λjτα‖Q
(p)
j f‖τ

τ

]1/τ

.

Proof. We first prove the direct inclusion ‘⊆’. The case τ � 1 is just a reformulation
of Theorem 5.1, since in this case the projectors are linear and P

(p)
j = P

(1)
j = P

(τ)
j . We

will assume, therefore, that τ < 1, and fix a finite 1 < p � p(α, τ).
Let f ∈ Bαa

τ,τ (Rn) ↪→ Lp(Rn). We first claim that P
(p)
0 f ∈ V

(τ)
0 . Indeed, writing

P
(p)
0 f =

∑
k〈f, ϕ̃k〉ϕk and using the embedding in (5.6) we have

|〈f, ϕ̃k〉| �
[ ∫

Supp ϕ̃k

|f |p dx

]1/p

‖ϕ̃‖p′ � ‖f‖Bαa
τ (Lτ (Jk)), (6.2)

where Jk = J + k and J = Supp ϕ̃ is a fixed compact set. Then,
∑

k∈Zn

|〈f, ϕ̃k〉|τ �
∑

k∈Zn

‖f‖τ
Bαa

τ (Lτ (Jk)) � ‖f‖τ
Bαa

τ,τ (Rn),

which by the τ -stability of {ϕk} implies that P
(p)
0 f ∈ V

(τ)
0 and

‖P
(p)
0 f‖τ ∼

[ ∑
k∈Zn

|〈f, ϕ̃k〉|τ
]1/τ

� ‖f‖Bαa
τ,τ

.
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Next, we show that

[∑
j∈Z

m−1∑
�=1

∑
k∈Zn

λτj(α+n/2−n/τ)|〈f, ψ̃
(2)
�;j,k〉|τ

]1/τ

� |f |Bαa
τ,τ

, ∀f ∈ Bαa
τ,τ (Rn). (6.3)

Since
Q

(p)
j f =

∑
�,k

〈f, ψ̃
(2)
�;j,k〉ψ(2)

�;j,k

and τ < 1, observe that we also have
∑
j∈Z

λαjτ‖Q
(p)
j f‖τ

τ �
∑
�,j,k

λαjτ |〈f, ψ̃
(2)
�;j,k〉|τ‖ψ

(2)
�;j,k‖τ

τ

=
∑
�,j,k

λτj(α+n/2−n/τ)|〈f, ψ̃
(2)
�;j,k〉|τ‖ψ�‖τ

τ ,

so that (6.3) will suffice for the direct inclusion of the theorem.
To prove (6.3) we shall use the following estimate, valid for all α1 < α∗ such that

n((1/τ) − 1)+ < α1 < n/τ :

[∑
�,k

λτj(n/2−n/τ)|〈f, ψ̃
(2)
�;j,k〉|τ

]1/τ

� Cλ−jα1 |f |Bα1a
τ,τ

, j ∈ Z. (6.4)

Assume for the moment that (6.4) holds and choose α1 < α. Since 〈ϕj,k′ , ψ̃�;j,k〉 = 0 for
all �, j, k, k′, by definition of P

(τ)
j we must also have

〈P (τ)
j f, ψ̃

(2)
�;j,k〉 = 0, ∀k ∈ Zn, j ∈ Z, ∀f ∈ Lτ (Rn). (6.5)

Combining (6.4) with Theorem 5.1 and using the fact E
(τ)
r (f − P

(τ)
j f) � E

(τ)
max(r,j)(f),

we obtain
∑
�,k

λτj(α+n/2−n/τ)|〈f, ψ̃
(2)
�;j,k〉|τ =

∑
�,k

λτj(α+n/2−n/τ)|〈f − P
(τ)
j f, ψ̃

(2)
�;j,k〉|τ

� λjτ(α−α1)|f − P
(τ)
j f |τ

B
α1a
τ,τ

� λjτ(α−α1)
∞∑

r=j

λrτα1E(τ)
r (f)τ .

Thus, summing this estimate in j and using Theorem 5.1 one more time we will have
established (6.3):

∑
�,j,k

λτj(α+n/2−n/τ)|〈f, ψ̃
(2)
�;j,k〉|τ �

∑
r∈Z

λrτα1E(τ)
r (f)τ

( r∑
j=−∞

λjτ(α−α1)
)

�
∑
r∈Z

λrταE(τ)
r (f)τ ∼ |f |Bαa

τ,τ
.
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Let us now prove (6.4), which by homogeneity we just need to verify for j = 0. We let

p1 = p(α1, τ) =
(

1
τ

− α1

n

)−1

,

which by assumption is a real number in (1,∞). The proof will be a little more subtle
than (6.2) above, since we want seminorms on the right-hand side. Observe first that
by the local polynomial condition on V0 the functions ψ̃� have vanishing moments up to
degree L (see, for example, (6.5)). Thus, proceeding as in (6.2), we see that for every
polynomial Q of degree less than L,

|〈f, ψ̃�;k〉| =
∣∣∣∣
∫

Supp ψ̃�;k

(f − Q)ψ̃�;k dx

∣∣∣∣ � ‖ψ̃�‖p′
1
‖f − Q‖Lp1 (Supp ψ̃�;k)

� ‖f − Q‖Lτ (Jk) + |f − Q|Bα1a
τ (Lτ (Jk)).

The difference operator ∆�
h with |�| = L, annihilates such polynomials, so the second

term equals
|f − Q|Bα1a

τ (Lτ (Jk)) = |f |Bα1a
τ (Lτ (Jk)).

For the first term we can choose Q = Qk as in Whitney’s inequality, so that it easily
follows that

|〈f, ψ̃�;k〉| � |f |Bα1a
τ (Lτ (Jk)).

Raising to the power τ and summing in k ∈ Zn, we end up with (6.4).
Let us now show the inverse inclusion of the theorem ‘⊇’. By Theorem 5.1, the case

τ � 1 only requires verification that functions on the right-hand set belong to Lτ (Rn).
But this is immediate by Minkowski’s inequality since

‖f‖τ � ‖P
(p)
0 f‖τ +

∞∑
j=0

‖Q
(p)
j f‖τ � ‖P

(p)
0 f‖τ +

[ ∞∑
j=0

λjτα‖Q
(p)
j f‖τ

τ

]1/τ

,

where the last step follows by Hölder’s inequality (since τ � 1).
We are thus left with the case τ < 1. By the assumptions on f (and λ > 1) we also

see that

‖f‖τ
τ � ‖P

(p)
0 f‖τ

τ +
∞∑

j=0

‖Q
(p)
j f‖τ

τ � ‖P
(p)
0 f‖τ

τ +
∞∑

j=0

λjτα‖Q
(p)
j f‖τ

τ < ∞. (6.6)

Next we shall establish a Bernstein-type estimate:

|g|Bαa
τ,τ

� λjα‖g‖τ , ∀g ∈ V
(p)
j . (6.7)

From here we can easily conclude the proof of the theorem since

|f |τBαa
τ,τ

� |P (p)
0 f |τBαa

τ,τ
+

∞∑
j=0

|Q(p)
j f |τBαa

τ,τ
� ‖P

(p)
0 f‖τ

τ +
∞∑

j=0

λjτα‖Q
(p)
j f‖τ

τ . (6.8)
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Moreover, combining (6.3), (6.4) and (6.7) it is not difficult to also obtain the norm
equivalences:

‖Q
(p)
j f‖τ ∼

[∑
�,k

λτj(n/2−n/τ)|〈f, ψ̃
(2)
�;j,k〉|τ

]1/τ

and [∑
j∈Z

λjτα‖Q
(p)
j f‖τ

τ

]1/τ

∼ |f |Bαa
τ,τ

.

To prove (6.7) we shall assume j = 0 and proceed as in Bernstein’s inequality:

|g|τBαa
τ,τ (Rn) � |ϕ|τBαa

τ,τ

∑
γ∈Zn

|〈g, ϕ̃γ〉|τ �
∑

γ∈Zn

∫
Supp ϕ̃γ

|g|τ dx � ‖g‖τ
Lτ (Rn),

where in the second step we have used the reverse Hölder inequality in V
(p)
0 |Supp ϕ̃γ

. The
proof of the theorem is now complete. �

As a simple corollary we obtain a slight sharpening of (5.4).

Corollary 6.2. Let 0 < τ � 1, n((1/τ)−1) < α < n/τ and p = p(α, τ) given by (6.1).
Then,

‖f‖Lp(Rn) � |f |Bαa
τ,τ (Rn), ∀f ∈ Bαa

τ,τ (Rn).

Proof. Choose very smooth scaling functions so that α∗ > α. Since by assumption
f ∈ Bαa

τ,τ ↪→ Lp and p ∈ (1,∞), we can write

f =
∑
j∈Z

Q
(p)
j f =

∑
j∈Z

[ m−1∑
�=1

∑
k∈Zn

〈f, ψ̃
(2)
�;j,k〉ψ(2)

�;j,k

]

with convergence of the series at least in Lp. Then, using Minkowski’s inequality, rela-
tion (6.1) and the embedding �τ ↪→ �1 we obtain

‖f‖p �
∑
j∈Z

‖Q
(p)
j f‖p �

∑
�,j,k

λj(n/2−n/p)|〈f, ψ̃
(2)
�;j,k〉|

�
[ ∑

�,j,k

λτj(α+n/2−n/τ)|〈f, ψ̃
(2)
�;j,k〉|τ

]1/τ

.

By Theorem 6.1, when f ∈ Bαa
τ,τ (Rn) this last expression is equivalent to |f |Bαa

τ,τ (Rn),
establishing the corollary. �

7. Final comments and further remarks

We conclude the paper with several remarks about limitations and possible extensions
of the results presented above.
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7.1. More general wavelet bases

The use of compactly supported wavelets and scaling functions is a typical requirement
in problems arising from numerical applications. In our results above this assumption
was used at several crucial points, in particular when dealing with the nonlinear pro-
jectors P

(p)
j . This is actually a quite common procedure in approximation theory (see,

for example, [4, 6, 7]), although it is still fair to ask what happens with wavelet bases
having more general decay conditions. We will not pursue this question here, but we
stress that a main difference appears when p < 1 and α < n((1/p) − 1), since the Besov
spaces introduced above are not distribution spaces. There is a rich literature on Besov
spaces defined from Littlewood-Paley theory (especially in the isotropic setting (see, for
example, [2,18,20])), but the techniques used in such cases seem too restrictive to be
applied here. We think this is an interesting question left to future research.

7.2. Other dilation matrices

As was pointed out above, the theory of multi-resolution analyses has only been devel-
oped for dilation matrices M with integer entries. This produces some limitations if one
wishes to study anisotropic spaces, since, for instance, diagonal integer matrices of the
form in (1.1) will only exist when

(
1
a1

, . . . ,
1
an

)
∈ R+ log Zn

+

(see [13, § 3.3]). In applications this does not seem to be a serious restriction, since one
can at least cover all the cases a ∈ Qn

+. However, if one wishes to analyse more-general
anisotropic spaces, then the traditional MRA setting must be abandoned.

An alternative approach for function spaces in the cube [0, 1]2 was developed by the
second author in [16]. If a = (a1, a2) is a general anisotropy in R2 with a1 � a2 > 0 and
{Vj}∞

j=0 is a one-dimensional dyadic MRA in L2(R), then one can consider an adapted
subcollection of two-dimensional tensor-product spaces:

Vj,a := Vj ⊗ V[ja1/a2], j = 0, 1, 2, . . . ,

where [s] denotes the integer part of s. Roughly speaking, the factor a1/a2 gives the pro-
portion of ‘extra details’ we need to consider in the x2-variable every time we change scale
in the x1 variable. This produces a multilevel decomposition based on {Vj,a}∞

j=0 which
is well adapted to the study of anisotropic spaces Bαa

q (Lp[0, 1]2). A similar approach has
also been developed more recently in [19].

7.3. Nonlinear approximation spaces

Our last remark concerns the characterization of anisotropic Besov spaces as nonlinear
approximation spaces. For this one defines a new approximating family ΣN , consist-
ing of all S =

∑
k ckϕk +

∑∞
j=0

∑
�,k d�;jkψ�;j,k with at most N non-null entries. If we
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denote the error of approximation by σN (f)p = infS∈ΣN
‖f − S‖p, then, similarly to the

isotropic setting [11], one would like to show

Bαa
τ,τ = Aα

τ (Lp; ΣN ) :=
{

f ∈ Lp :
∞∑

j=0

2jατσ2j (f)τ
p < ∞

}
, if p = p(α, τ).

Such a result (more subtle than the ones in this paper) has been investigated inde-
pendently in [16] and [19], both with the multilevel decomposition for [0, 1]2 described
in § 7.2. A characterization in the general MRA setting of this paper will be presented
separately in [12].
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