
24
The quark model

The first understanding of the underlying structure and “periodic table” of
the hadrons came from the quark model of Gell-Mann and Zweig [Ge64,
Zw65]. We now know that quarks form the underlying fermionic degrees
of freedom for QCD and a field theory of the strong interactions. Solution
to the dynamics of strong-coupling QCD presents formidable problems.
It is often useful to make simple dynamical models that emphasize one
or another aspect of QCD and that provide physical insight and guidance
for further work [Bh88, Wa95]. Models build on three features of QCD:

• Baryons have the quantum numbers of (qqq) systems and mesons of
(q̄q) systems where the flavor quantum numbers of the quarks q are
given in Table 24.1;

• Color and the strong color forces are confined to the interior of
the hadrons. Quarks come in three colors (R,G, B). Lattice gauge
theory calculations indicate that confinement arises from the strong
nonlinear couplings of the gauge fields at large distances;

• QCD is asymptotically free; at short distances the renormalized
coupling constant goes to zero. One can do perturbation theory at
short distances.

One approach to model building is that of the M.I.T. bag which provides
an extreme picture of each of the three items listed above [Ch74, Ch74a,
De75, Ja76]. For baryons, three massless non-interacting quarks (correct
quantum numbers), with the one-gluon-exchange interaction treated as a
perturbation (asymptotic freedom), are placed inside a vacuum bubble of
radius R (confinement). It is assumed that it takes a positive amount of
internal energy density to create this bubble in the vacuum. The Dirac
equation is then solved within this scalar bubble, wave functions for the

210

https://doi.org/10.1017/9781009290616.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.029


24 The quark model 211

Table 24.1. Flavor quantum numbers of the lightest quarks: isospin, third com-
ponent of isospin, baryon number, strangeness, charm, and electric charge, re-
spectively.

Quark/field T T3 B S C Q = T3 + (B + S + C)/2

u 1/2 1/2 1/3 0 0 2/3
d 1/2 −1/2 1/3 0 0 −1/3
s 0 0 1/3 −1 0 −1/3
c 0 0 1/3 0 1 2/3

nucleon are constructed, and its properties calculated. The M.I.T. bag
model is discussed in detail in [Wa95].

Another approach is the non-relativistic quark model [Bh88] whose
most extensive application is due to Isgur and Karl [Is77, Is80, Is85].
Here “constituent quarks” with masses of ≈ m/3 move non-relativistically
in a confining potential.1 The confining potential is most simply taken to
be that of a harmonic oscillator, which has the distinct advantage that the
center-of-mass motion of the three-quark system can be treated exactly
(appendix B).

Let us confine the discussion to the nuclear domain where only the
lightest (u, d) quarks and their antiquarks are retained. The quark field is
thus approximated by

ψ
.
=

(
u

d

)
; nuclear domain (24.1)

To do a calculation one needs the (qqq) wave functions, including all
the quantum numbers. We make an independent-quark shell model of
hadrons and start with the simple case of non-relativistic quarks in a
potential (where the spin and spatial wave functions decouple). In this
case one can write the one-quark wave function as

ψ = ψnlml
(r)︸ ︷︷ ︸

space

χms︸︷︷︸
spin

ηmt︸︷︷︸
isospin

ρα︸︷︷︸
color

;
ms = ± 1/2
mt = ± 1/2
α = (R,G, B)

(24.2)

Consider the color wave function for the (qqq) system. The observed
hadrons are color singlets. Hence the color wave function in this case is
just the completely antisymmetric combination (a Slater determinant with
respect to color)

Ψcolor(1, 2, 3) =
1√
6

∣∣∣∣∣∣
ρR(1) ρG(1) ρB(1)
ρR(2) ρG(2) ρB(2)
ρR(3) ρG(3) ρB(3)

∣∣∣∣∣∣ ; antisymmetric (24.3)

1 The masses of these constituent quarks are presumably generated by spontaneously

broken chiral symmetry in QCD.

https://doi.org/10.1017/9781009290616.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.029


212 Part 4 Selected examples

If Gcolor
α with α = 1, . . . , 8 are the generators of the color transformation

among the quarks, then all of the generators annihilate this wave function2

Gcolor
α Ψcolor = 0 ; α = 1, . . . , 8 (24.4)

Since the total wave function must be antisymmetric in the interchange
of any two fermions, the remaining space-spin-isospin wave function must
be symmetric.

For the ground state in this shell model, the spatial wave functions
ψn00(r) will all be the same, all 1s, and hence the spatial part of the wave
function is totally symmetric

Ψspace(1, 2, 3) = ψ1s(r1)ψ1s(r2)ψ1s(r3) ; symmetric (24.5)

The spin-isospin wave function must thus be totally symmetric. Start with
isospin. One is faced with the problem of coupling three angular momenta;
however, the procedure follows immediately from the discussion of 6-j
symbols in quantum mechanics [Ed74]. An eigenstate of total angular
momentum can be formed as follows

|(j1j2)j12j3jm〉 =
∑

m1m2m3m12

〈j1m1j2m2|j1j2j12m12〉 (24.6)

×〈j12m12j3m3|j12j3jm〉|j1m1〉|j2m2〉|j3m3〉
These states form a complete orthonormal basis for given (j1, j2, j3). The
states formed by coupling in the other order |j1(j2j3)j23jm〉 are linear
combinations of these with 6-j symbols as coefficients.

For isospin in the nuclear domain all the ti = 1/2, thus there are a
total of 2 × 2 × 2 = 8 basis states. Consider first the states with total
T = 3/2. Here the only possible intermediate value is t12 = 1. The state
with T3 = 3/2 is readily constructed from the above as α(1)α(2)α(3). Now
apply the total lowering operator T− = t(1)− + t(2)− + t(3)− and use
t−α = β , t−β = 0. The set of states with T = 3/2 follows immediately

Φ

[(
1

2

1

2

)
1
1

2

3

2

3

2

]
= α(1)α(2)α(3)

Φ

[(
1

2

1

2

)
1
1

2

3

2

1

2

]
=

1√
3
[β(1)α(2)α(3) + α(1)β(2)α(3) + α(1)α(2)β(3)]

Φ

[(
1

2

1

2

)
1
1

2

3

2
− 1

2

]
=

1√
3
[β(1)β(2)α(3) + β(1)α(2)β(3) + α(1)β(2)β(3)]

Φ

[(
1

2

1

2

)
1
1

2

3

2
− 3

2

]
= β(1)β(2)β(3) ; 4 symmetric states (24.7)

There are four symmetric states with T = 3/2.

2 Just as the fully occupied Slater determinant of spins has S = 0, or of j-shells has J = 0.

https://doi.org/10.1017/9781009290616.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.029


24 The quark model 213

Consider next the states with total T = 1/2. Here there are two possible
intermediate values in the above, t12 = 0, 1. For the first of these values
one finds

Φρ

[(
1

2

1

2

)
0
1

2

1

2

1

2

]
=

1√
2

[α(1)β(2) − α(2)β(1)] α(3) (24.8)

Φρ

[(
1

2

1

2

)
0
1

2

1

2
− 1

2

]
=

1√
2

[α(1)β(2) − α(2)β(1)] β(3) ; 2 states

These two states have mixed symmetry; they are antisymmetric in the
interchange of particles (1 ↔ 2).

The second value t12 = 1 yields

Φλ

[(
1

2

1

2

)
1
1

2

1

2

1

2

]
=

1√
6
[2α(1)α(2)β(3) − α(1)β(2)α(3) − β(1)α(2)α(3)]

Φλ

[(
1

2

1

2

)
1
1

2

1

2
− 1

2

]
= (24.9)

− 1√
6
[2β(1)β(2)α(3) − β(1)α(2)β(3) − α(1)β(2)β(3)] ; 2 states

These two states also have mixed symmetry; they are symmetric in the
interchange of particles (1 ↔ 2).

Now look at the spin wave functions. The analysis is exactly the same!
We have a set of spin states Ξ identical to those above.

For the overall spin-isospin wave function, we must take a product
of these wave functions and make the result totally symmetric. Recall
first from quantum mechanics how one makes a wave function totally
antisymmetric. Introduce the antisymmetrizing operator

A = N
∑
(P )

(−1)pP (24.10)

Here the sum goes over all permutations, produced by the operator P ,
of a complete set of coordinates for each particle. The signature of the
permutation is (−1)p, and N = 1/

√
NP where NP is the total number of

permutations.
Similarly, to make a wave function totally symmetric introduce the

(unnormalized) symmetrizing operator

S = N
∑
(P )

P (24.11)

Note that if a wave function is antisymmetric under the interchange of any
two particles, the application of S will give zero. This result is established
as follows. Use

P12S = SP12 (24.12)
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Table 24.2. Totally symmetric spin-isospin states for three non-relativistic
quarks.

T S Number of states

3/2 3/2 16
1/2 1/2 4

20

This follows since as P goes over all permutations, so does P12P or PP12∑
(P )

P12P =
∑
(P )

P =
∑
(P )

PP12 (24.13)

It follows that

P12Sψ = Sψ = SP12ψ = −Sψ = 0 (24.14)

This is the stated result.
Note further that if the operator S is applied to the product of the

totally symmetric 3/2 state and either of the 1/2 states with mixed symme-
try, the result will vanish. The proof is as follows. Since SΦ3/2 = Φ3/2S,
one just needs to show that

S[AΦρ + BΦλ] = 0 (24.15)

The first term gives zero since Φρ is antisymmetric in the interchange of
the first pair of particles. The second vanishes because of the nature of
the sums in Eqs. (24.9) and the fact that S produces an identical result
when applied to each term in the sum

S(ααβ) = S(αβα) = S(βαα) (24.16)

It is a consequence of these two observations that the only non-zero
totally symmetric wave function will be obtained by combining the spin and
isospin wave functions of the same symmetry. Thus one must combine the
two totally symmetric spin and isospin states and the other two pairs
of states with the same mixed symmetry; in the latter case there is only
one totally symmetric linear combination (this is proven in appendix J
of [Wa95]). This leads to the set of totally symmetric spin-isospin states
shown in Table 24.2 and given by

Φ3
2mt

Ξ3
2ms

1√
2

(
Φλ

1
2mt

Ξλ
1
2ms

+ Φ
ρ
1
2mt

Ξ
ρ
1
2ms

)
(24.17)

These are all the baryons one can make in this model. Since all these
states are degenerate in the model as presently formulated, one has a
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24 The quark model 215

supermultiplet of baryons. The present calculation predicts the spins and
isospins of the members of this supermultiplet.3

These arguments can be extended to the situation in the M.I.T. bag
model where, in contrast to massive, non-relativistic constituents, one has
massless relativistic quarks. The problem is more complicated since the
space–spin parts of the wave functions are now coupled; however, if the
quarks occupy a common lowest positive energy ψ1s1/2mj

(r) ground state,
the problem is greatly simplified. Make the following replacement in the
space–spin wave functions discussed above

ψ1s(r)χms
→ ψ1s1/2mj

(r) (24.18)

Instead of the spin S, now talk about the total angular momentum J; the
angular momentum and symmetry arguments are then exactly the same
as before.

Let us investigate some consequences of the quark model. Consider the
nucleon (N) ground-state expectation value of the following operator

O =
3∑

i=1

Oi(ri, σi)Ii(τ i) (24.19)

Assume that the isospin factor is diagonal Ii = (1, τ3)i. Since the wave
function is totally symmetric, it follows that one need evaluate the matrix
element only for the third particle.4

〈ΨN |
3∑

i=1

OiIi|ΨN〉 = 3〈ΨN |O3I3|ΨN〉 (24.20)

Substitution of Eq. (24.17) then yields5 for the state of total mj = 1/2

3〈ΨN |O3I3|ΨN〉 =
3

2
〈Φρ|I3|Φρ〉〈1

2
(3)|O3|1

2
(3)〉

+
3

2
〈Φλ|I3|Φλ〉1

6

{
4〈−1

2
(3)|O3| − 1

2
(3)〉 + 2〈1

2
(3)|O3|1

2
(3)〉

}
(24.21)

3 Define ζi ≡ χmsηmt with (ms, mt) = (±1/2,±1/2). Then in a non-relativistic quark model

with spin-independent interactions one has an internal global SU(4) (flavor) symmetry

— this is just Wigner’s supermultiplet theory [Wi37]. Here the baryons belong to the

totally symmetric irreducible representation one gets from 4
⊗

4
⊗

4; this is the [20]

dimensional representation with spin-isospin content worked out in the text and shown

in Table 24.2.
4 Assume the operators form the identity with respect to color; the color wave function

then goes right through the matrix element, and it is normalized.
5 Use 〈Φρ|I3|Φλ〉 = 0 if I3 is diagonal; this follows immediately from the form of Eqs.

(24.8) and the orthogonality of the mixed-symmetry wave functions.
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Here the remaining labels on the single-particle matrix elements of O3 are
|mj, (particle number)〉. The result is

〈ΨN
mt

1
2
|

3∑
i=1

OiIi|ΨN
mt

1
2
〉 = 〈1

2
|O|1

2
〉
[
3

2
〈Φρ|I3|Φρ〉 +

1

2
〈Φλ|I3|Φλ〉

]

+〈−1

2
|O| − 1

2
〉
[
〈Φλ|I3|Φλ〉

]
(24.22)

This result is for total mj = 1/2; the remaining isospin operator I3 acts
only on the third particle. For an isoscalar operator with I3 = 1 this
expression reduces to

〈ΨN
mt

1
2
|

3∑
i=1

Oi|ΨN
mt

1
2
〉 = 2〈1

2
|O|1

2
〉 + 〈−1

2
|O| − 1

2
〉 (24.23)

This is now just a sum of single-particle matrix elements. For an isovector
operator with I3 = τ3, the required isospin matrix elements for the proton
with mt = 1/2 follow from Eqs. (24.8) and (24.9)

〈Φρ|τ3(3)|Φρ〉 = 1 (24.24)

〈Φλ|τ3(3)|Φλ〉 =
1

6
(−4 + 1 + 1) = −1

3
; proton mt =

1

2

For a neutron with mt = −1/2, these isovector matrix elements simply
change sign. It follows that

〈ΨN
1
2

1
2
|

3∑
i=1

Oiτ3(i)|ΨN
1
2

1
2
〉 =

4

3
〈1

2
|O|1

2
〉 − 1

3
〈−1

2
|O| − 1

2
〉

〈ΨN
− 1

2
1
2
|

3∑
i=1

Oiτ3(i)|ΨN
− 1

2
1
2
〉 = −4

3
〈1

2
|O|1

2
〉 +

1

3
〈−1

2
|O| − 1

2
〉 (24.25)

The notation here is ΨN
mt,mj

.

In the nuclear domain with only (u, d) quarks the electric charge is given
by

ei =

[
1

6
+

1

2
τ3(i)

]
ep (24.26)

Hence the expectation value of an operator proportional to the
charge in the composite three-quark proton and neutron ground state
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is given by

〈p|
3∑

i=1

Oiei|p〉 = ep

[
1

6
(2O1/2 + O−1/2) +

1

2
(
4

3
O1/2 − 1

3
O−1/2)

]

= ep〈1

2
|O|1

2
〉

〈n|
3∑

i=1

Oiei|n〉 = ep

[
1

6
(2O1/2 + O−1/2) +

1

2
(−4

3
O1/2 +

1

3
O−1/2)

]

= −ep

3
〈1

2
|O|1

2
〉 +

ep

3
〈−1

2
|O| − 1

2
〉 (24.27)

Let us apply this result to compute the magnetic moment of the ground
state of the nucleon in the non-relativistic quark model using for the
expectation value of the single quark matrix element the Dirac magnetic
moment of a point quark of mass mq

〈1

2
|O|1

2
〉 =

1

2mq
(24.28)

Since the magnetic moment is a vector operator, its expectation value in
the state mj = −1/2 must simply change sign 〈−1

2 |O| − 1
2〉 = −1/2mq .

This yields

μp =
ep

2mq
μn = −2μp

3
(24.29)

The experimental results are

μp = +2.79 n.m. μn = −1.91 n.m. (24.30)

The calculated ratio is quite impressive, and the absolute value can be
fitted in the first relation with a constituent quark mass of mq = m/2.79,
which is certainly in the right ballpark.

Suppose that instead of just the static magnetic moment, one wanted the
matrix element of the transverse magnetic dipole operator at all momen-
tum transfer in the constituent quark model, how would the calculation
change? From Eq. (9.16) one has

T̂
mag
1M (κ) =

∫
d3x

{
j1(κx)YM

111·Ĵc(x) + [∇ × j1(κx)YM
111] · μ̂(x)

}
(24.31)

There is no convection current in a 1s state, so the first term does not
contribute. For the second term use the general relation [Ed74]
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∇ × [jJ(κx)YM
JJ1] = −iκ

[
jJ+1(κx)

(
J

2J + 1

)1/2

YM
J,J+1,1

−jJ−1(κx)

(
J + 1

2J + 1

)1/2

YM
J,J−1,1

]
(24.32)

Since there is no orbital angular momentum in the initial and final states,
the first term does not contribute; retention of just the second leads to

T̂
mag
1M (κ)

.
= iκ

(
2

3

)1/2 ∫
d3x j0(κx)YM

101 · μ̂(x)

= iκ

(
1

6π

)1/2 ∫
d3x j0(κx)μ̂(x)1M (24.33)

The spatial distribution of the magnetization is that of a 1s harmonic
oscillator wave function, and from the discussion is chapter 20 we know
that

〈1s|j0(κx)|1s〉 = e−y ; y =

(
κ bosc

2

)2

(24.34)

Hence, for the nucleon

ep〈N 1

2
|T̂mag

10 (κx)|N 1

2
〉 = i

(
1

6π

)1/2

κ μN e−y (24.35)

The C-M motion for particles in a harmonic oscillator is now treated as
in appendix B.

Consider the transition magnetic dipole moment between the ground
state (N) and the excited state (Δ) formed from the product of the totally
symmetric isospin state and totally symmetric space–spin state. Since only
different mj states are involved in the latter, we are in a position to
calculate this matrix element. The wave functions are given by

ΨN
1
2

1
2

=
1√
2

[
Φλ

1
2

1
2
Ξλ

1
2

1
2
+ Φ

ρ
1
2

1
2

Ξ
ρ
1
2

1
2

]
(24.36)

ΨΔ
1
2

1
2

= Φ3
2

1
2
Ξ3

2
1
2

The subscripts on the left are (mt, mj) and those of the right (Tmt, Jmj);
in detail, these wave functions are

Φ3
2

1
2

= (24.37)

1√
3

[
φ− 1

2
(1)φ 1

2
(2)φ 1

2
(3) + φ 1

2
(1)φ− 1

2
(2)φ 1

2
(3) + φ 1

2
(1)φ 1

2
(2)φ− 1

2
(3)
]
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A similar expression holds for Ξ3
2

1
2
. The transition magnetic dipole moment

is now given by

μ∗ = 〈ΨΔ
1
2

1
2
|

3∑
i=1

μ(i)
1

2
τ3(i)ep|ΨN

1
2

1
2
〉 =

3

2
ep〈ΨΔ

1
2

1
2
|μ(3)τ3(3)|ΨN

1
2

1
2
〉 (24.38)

Here it has been observed that only the isovector part of the magnetic
dipole operator can contribute to the transition and the total symmetry of
the states has been used. It now follows from Eq. (24.37) and the previous
results that

〈Φ3
2

1
2
|τ3(3)|Φρ

1
2

1
2

〉 = 0 (24.39)

〈Φ3
2

1
2
|τ3(3)|Φλ

1
2

1
2
〉 =

1√
18

[
2〈−1

2
|τ3| − 1

2
〉 − 2〈1

2
|τ3|1

2
〉
]

= − 4√
18

〈Ξ3
2

1
2
|μ(3)|Ξλ

1
2

1
2
〉 =

1√
18

[
2〈−1

2
|μ| − 1

2
〉 − 2〈1

2
|μ|1

2
〉
]

= − 4√
18

〈1

2
|μ|1

2
〉

Use of Eqs. (24.27) allows the final result for μ∗ to be expressed in terms
of the ground-state magnetic moment of the proton

μ∗ =
3

2

1√
2

16

18
μp =

4

3
√

2
μp (24.40)

This is the matrix element for (mj, mt) = (1
2

1
2 ) → ( 1

2
1
2 ); other components

follow from the Wigner–Eckart theorem. This result agrees to about 30%
with experimental observations of the transition magnetic dipole matrix
element obtained from electroproduction of the first nucleon resonance
[Ka83].

Since only the spin is flipped in the constituent quark model, and the
radial 1s wave functions are unchanged in the N → Δ transition, one can
simply read off from Eq. (24.35) that the transition matrix element of the
transverse magnetic dipole operator is given by

ep〈Δ+ 1

2
|T̂mag

10 (κx)|p1

2
〉 = i

(
1

6π

)1/2

κ

(
4

3
√

2
μp

)
e−y

= i
2

3
√

3π
κ μp e

−y (24.41)

Particularly simple is then the ratio of the transition to the static matrix
elements of the transverse magnetic dipole operator

〈Δ+ 1
2 |T̂mag

10 (κx)|p 1
2〉

〈p1
2 |T̂mag

10 (κx)|p1
2〉

=
2
√

2

3
(24.42)
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Note that this ratio is a numerical constant independent of κ in the
constituent quark model. This result is also independent of the detailed
form of the single-quark wave function since the form factor cancels in
the ratio.6

The Coulomb monopole moment for the proton simply reflects the 1s
radial wave function of each quark, and, as in chapter 20, the elastic
scattering form factor for the proton is given by

〈p1

2
|M00(κx)|p1

2
〉 =

1√
4π

e−y (24.43)

The transition magnetic dipole form factor is thus proportional to the
elastic form factor of the proton in this model.

ep〈Δ+ 1
2 |T̂mag

10 (κx)|p1
2〉

〈p1
2 |M00(κx)|p 1

2〉
= i

4

3
√

3
κμp (24.44)

This result is again independent of the form of the single-quark radial
wave functions since the form factor cancels in this ratio. Since there
is no orbital angular momentum in either the ground or excited state,
the transition matrix elements of the Coulomb and transverse electric
quadrupole operators vanish here.

To the extent that the cross section is dominated by the transverse
interaction and q2

μ ≈ q2 ≡ κ2, the constancy of the ratio in Eq. (24.42) is
indeed manifest by the experimental data shown in Fig. 12.9. Of course,
the experimental elastic form factor itself falls off as a dipole [Eq. (22.5)]
and not the gaussian of the simple-harmonic oscillator model, and it is
certainly inconsistent to use a non-relativistic model for κ ≥ mq .

The N → Δ transition is particularly simple in the constituent quark
model. Higher excitations of the nucleon can be constructed by promoting
one of the quarks to a higher oscillator state and then constructing totally
symmetric space-spin-isospin wave functions for the nucleon. Similarly, the
hyperfine splitting coming from (asymptotically-free) one-gluon exchange
can be readily included in the model. We refer the reader to the literature
for these developments [Is77, Bh88].

6 The present treatment of the C-M motion, however, only holds in the simple harmonic

oscillator model (appendix B).

https://doi.org/10.1017/9781009290616.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.029



