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THE LENGTH OF THE CONTINUED FRACTION EXPANSION
FOR A CLASS OF RATIONAL FUNCTIONS IN F (X)

by ARNOLD KNOPFMACHER
(Received 6th December 1988)

A study is made of the length L{h, k) of the continued fraction algorithm for h/k where h and k are co-prime
polynomials in F,[X],F, a finite field. In addition we investigate the sum of the degrees of the partial
quotients in this expansion for h/k, h,k in F [X]. The above continued fraction is determined by means of the
Euclidean algorithm for the polynomials h, k in F {X].

1980 Mathematics subject classification (1985 Revision): 12C05

1. Introduction

Let F,[X], denote a polynomial ring in an indeterminate X over a finite field [, with
exactly g elements, and let d=deg denote the degree function on F [ X]—{0}.

It is known that, with uniqueness up to non-zero (scalar) factors in F,, the gcd.
<h, k) of two non-zero polynomials h, ke F [ X] is obtainable by the Euclidean algorithm:

h=a0k+k1 (0§akl<ak),

k=ayk, +k, (0<dk,<dk,,da,=0ok—ok,>1),
(1)

ki-1=ak;+k;y (0= 0k <Oki, Oa;=0k;_,—0k;2 1),

ky_1=ayky+0 (0L 3ky < 0ky_,, 0ay=0ky_,—0ky21).
Then
Khoky=Cky ky=--"=<ky_y, ky> =kn,
and we denote the length N of the algorithm by L(h, k). The equivalent representation of

h/k as a finite continued fraction in the field of fractions F(X) yields an alternative
interpretation of N = L(h, k) as the length of the expansion
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£=a0+ ! I (6a;z1 foriz=1)
a;+
a2 + . . ' 1
+_
an
The equations (1) also show that
ak=aa1+“'+aa)v+ak~ (2)

and we deduce that 1< L(h,k)=N <0k in all cases. In [4] we investigated the average
length of the Euclidean algorithm over all polynomials h, keF [X], satisfying 0<oh<
dk=t. In order to state these results we need the following notation.

Definition 1. Let Ex(t)= #{(hk):L(h,k)=N,h keF[X] and 0<dh<dk=t}, 1<
N<t.

Furthermore let E(t)= # {(h, k):h,keF [X], 0<0h<dk=t}. Also, we set L(0,k)=0
and

Eo(t)= #{(h, k):h, ke F [X], h=0, ok =1t} =(q—1)q". o)

Then, from the results in [4] the distribution of L(h, k) follows a binomial law:

Prob{L(h, k)=N} = i’;(t;) = < ;) (—‘1;—1>N G)Hv, 0<N=, @

with mean value ((q—1)/g)t and variance ((g— 1)/g*)t. Kilian [3] (using a deep result of
Dixon [1]), obtained asymptotic formulas for the average length of the ordinary
Euclidean algorithm for integers. Equation (4) can therefore be regarded as a stronger
counterpart in F [ X] of these results. However, in the case of natural numbers, much of
the literature dealing with the length of continued fractions considers only co-prime
pairs of integers. See in particular Heilbronn [2] and Porter [6]. We settle now the
similar problem in F,[X]. .

Definition 2. Let &(t)={(h, k):h, ke F[X], <hk>e .97,,\{0}, 0<0h<0dk=t}. Further-
more let

Ex®)= #{(h,k):L(h,k)=N, (h,k)e&(t)}, 1=NZt

and

Ep)= i Ex(t)= #{(h k):h ke &(1)}.
N=1

Theorem 3. Fort=1, 1SNt
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Furthermore for 1 <N £it,

o _ _1\N-1 t—-1-(N-1)
Prob{L(h, k) =N, (h, k)€ 8(t)} = ’%’I‘t‘)) - ( 1:{ _11> (‘17_1> ((11) ©

Thus the distribution of L(h, k) in &(t) follows a shifted binomial law with mean value

g—! t+1 and variance q—21 (t—1).

t q q

We observe from (4) and (6) that the average length of the Euclidean algorithm for
co-prime pairs (h, k) is greater by a constant 1/q than the average for the general case.
Partially related to the above, and also a problem of independent interest is the
following: given a pair of non-zero polynomials h, ke F [X] with

h_

E-—ao+
a, +
a,+ 1
*an
let D(h k)=>YM, da;. It follows from (2), as in the case of L(h, k), that 1 <D(h, k)<t,
whenever 0<0h<ok=t. In Section 2 we also investigate the distribution of the
quantities D(h, k). By combining these results with those for L(h, k) we can deduce an
expression for the average degree per digit of the polynomials “a;” in the continued
fraction expansion of h/k, 0 £dh < dk=t. This quantity is given by

D(h, k 1 B
%L;h,k;=qil—(q—ql)zt(l_g)=_q_1+0(t ), as t-ooo, (7

where the summations extend over 0<dh<dk=t. Similarly, we show that the average
degree per digit in the continued fraction expansion of co-prime polynomials (h, k) € &(t) is

YDhk_ g 4
YLk K (g=D+(1/t) (¢—1)

+0(t"1'), as t—oco, (8)

where here the summations extend over all (h, k) € £(t). These last results are somewhat
analogous to those of Panov [5], who derived an asymptotic expression for the average
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value of the partial quotients in the ordinary continued fraction expansion of co-prime
pairs of integers lying in a certain class.

In general the treatments of ordinary continued fractions deal with denominators of
bounded rather than fixed magnitude, hence the problem of determining average lengths
of the continued fraction for h/k over all polynomials h, k in F [X] with 0<0h<0k<t is

also of interest. Analogues of the above results for this larger class of pairs are derived
in Section 3. The proof of Theorem 3 appears in Section 2.

2. Proofs of Results

In order to state the results concerning D(h, k) we require some further notation.

Definition 4. For 1 <N <t, define
Dy(t)= #{(h,k):D(h,k)=N,h keF [X],0<0h<dk=t}.

Also, since D(0, k)=0, let Dy(t) =Ey(t)=(q— 1)q"
Note that by (2)

Dy(t)= # {(h, k):h, ke F,[X],0<0h<dk=t, Ch,ky =t —N}. )

In particular, D(t)=E(t). Thus with this interpretation, Dy(t) is independent of the
Euclidean algorithm or continued fraction.

Theorem 5. Fort<1, 1SNZ,
Dy(t)=(qg—1)*¢" "'~ ". (10)

It follows that D(h, k) has a truncated geometric distribution

Prob{D(h, k)=N}=Pﬁ(t—;)=(q—1) ($>'+1_N, 1<N<t, 1

with mean value

and variance
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Let us denote the mean values of L(h, k) in equations (4) and (6) by L(E,t) and
L(E, 1), respectively, and the mean value of D(h, k) in equation (11) by D(E,t). We can
immediately deduce equations (7) and (8) since the respective ratios are given by D(E, t)/
L(E, t) and t/I(E, ).

Finally in order to combine our approach to Theorems 3 and 5 concerning L{h, k)
and D(h, k) respectively, we define for 1M <t, MSNZt,

LDy n(8)= # {(h, k):h, ke F,[X],0<0h <dk=t, L(h,k) = M, D(h, k)=N}.

Proof of Theorem 5. Consider any (h, k) with L(h,k)=M,D(h,k)=N,1<M<N<Lt
By equations (1) and (2) there exists a unique set of M + 1 polynomials a,,a,,..., ay, kx
which satisfy

Oa,+0a,+ - +0ay+0kpy=t, da; 21, 1Z5isM (12)
and
aal+aaz+"'+aaM=N- (13)

The number of solutions of (13) is the number of solutions of
X1 +x2+ U +XM=N—M

in non-negative integers x;,, 1<i<M. By a classical result in combinatorics (see e.g.
Riordan [7]) this number is
M—1+N-M\_ (N-1
N-M M—1/)

Now for each solution of (13) the number of m-tuples of polynomials {b,,b,,...,b,}
satisfying 0b;=da;, 1<i<M is
(g-1g**(g—Dg**...(a—1)g*™ =(q—1)"q".

Corresponding to each of these we have (g— 1)¢' ~¥ possibilities for k,, by (12). Hence

N-1

L0wn0=(

)(q— nM*ig. (14)

By Definition 7,

N N
N-—1 -
Dy(= Y LDy nt)=¢" Y (@—DM"* =(g—1)’¢"" 1.
M=1 M=1\M—1

Since E(t)=(q—1)g*,
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1 t+1-N
Dp(t)/E()=(q—1) <5> , 1=N=st

Thus Prob{D(h, k)= N} has a truncated geometric distribution with mean

_ ' ND -1 ¢
BiE = 3 FER=UTD 5 Ne®

_(g=1) {q—(t+1)q‘”+tq‘”}
q1+t (q_l)z

To determine the variance we must evaluate

t 2

Now

: 2D:v(t)_(q 1) Ng" _te+2q—(t+1)?  2tq’—(t+1)g) (l)
N; E(ty q'*'§ Z (g—1) (g—1)° v

as t—oo.

Next,

_ 2 1
(D(E,1))*>=1*— ? t1)+(q 1)2+0(t>, as t-»00.

By subtracting these expressions we obtain as t—o0 the required asymptotic estimate
for the variance.

Proof of Theorem 3. By (2) and (8)
E()=D()=(g—1)¢*"".

The conditions <h,k)eF,\{0}, L(h,k)=N correspond to the conditions L(h,k)=N,
D(h, k)=t. Thus by (14) we obtain
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1

E0=L0y 0= |

>(q—1)"“q'. (19)

Hence

Prob{L{h, k)= N, h, ke &(z)} =’;§~((t;) =( - 11> @1y gt~

t—l q—l {(N-1) 1 (t—-1)—-(N-1)
o)) @

This is a binomial distribution in terms of N—1 for 0SSN —1<¢—1. It follows that the
mean value for L(h, k) is ((q—1)/q)(t —1)+1 and the variance is ((g— 1)/g*)(t—1).

3. Averages over a larger class of polynomials

We require some further notation, in order to state the results concerning pairs of
polynomials (b, k) for which 0<dh< 0k <t.

Definition 6. Let M(t)= # {(h,k):h,keF,[X], 0<0h<0dk<t}. Furthermore let for
0<NSt,
Ly(t)= #{(h,k):L(h,k)=N,0<0h<0ok<t}
and
D¥(t)= #{(h,k):D(h,k)=N,0<0h<dk<t}.

In [4] we derived an expression for Ly(t) and determined the mean value over all pairs
(h, k), 0£0h<ok=<t, and h+#0, to be

q-1 1 (t)
—— +0({=}, as t—oo.
qg q(g+1) q

For our purposes we prefer to include the cases for which h=0. A simple modification
of the proof in [4] gives the mean value over all pairs (h, k) with 0<0h<dk=t as

_ g—1 1 t
M t)y="—-t— +0{ ), as t—o0. 16
M. 5 q q(g+1) (qz‘> ” (16

We derive below the corresponding result in the case of co-prime pairs (h, k).

Definition 7. Let #(t)={(h,k):h, ke F [X],<hk>e qu\{O}, 0<0h<0k<t}. Further-
more let
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L) = #{(h k):L(h, k) =N, (h, k)e A(t)}, 1<N<t

and
M(t)= #{(hk):h ke H#(t)}.

Theorem 8. Fort=1,1<N<t,

Ly=(q-n** ‘z ( 1:,__11) q (17)
"t N N i NN
=D {Gip T AN—1.00+ (-1, 19

where

r=0
r#i

C\N-1
c(N—l,i)=(—1)i<Ni 1> I ¢—n.

Further the average length of the continued fraction summing over all pairs (h, k)e #(t) is

L ZLk)_(a=1), 1 o .
LM, )= NG p t+q+1+0<q2')’ as t—o0. (19)

Note that for any fixed value of N, equation (18) is far better suited for the exact
computation of Ly(t), than equation (17) when ¢t becomes large.
We consider next the distribution of D¥(1).

Theorem 9. For t=1,

s J@—Da"g-qa"""), 1=Nzy,
oro={9 07 =N 20)

Furthermore the mean value of D(h, k) summing over all pairs (h, k) with 0<0h<dk<t is

DM, t)=zfll((};’)k)=t— ;;;21 +0(g™"), as t—oo. (21)

In addition, the mean value of D(h, k) summing over pairs (h, k) in #(t) is

D(M")=qu((’:’)k)=‘“q21—1+0(ﬁ>’ t—00. (22)
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Using the above results, the average degree per digit in the continued fraction
expansion of h/k for co-prime pairs (h, k) € #(t) is

D(M,1)_ ¢
I:(Ms t)—q_l

_ 1 -2 —_
<1 t(q—l))+o(t ), as t—oo. (23)

Similarly, the average degree per digit in the continued fraction expansion of h/k over
all pairs with 0<oh<dk<tis

D(M,1)_ g (1_ 1 )+0(r2), as t—o0. (24)

LM,t) q-1 tg—1)

Proof of Theorem 8. By definition of Ly(t) and Ex(¢),
~ ! -~
Lyt)= Y, Exr).
r=1
Hence by Theorem 3

L) =@-1""" ¥ (1:,__11> q
r=N

Now using the result (see [4]),

N+1 d r qN“H al i N-1,N
(-1 ( )q’= o(N,)g " +(=1)"""q
r=ZN N N' l'=ZO

where

N
¢(N, i)=(—l)‘(1:’> Zo (t+1-r),

r#i

the other formula for Ly(t) follows.
To determine the average value it is simplest to use L(E, t). By definition,

T(K1 =Zh.ke.llt uh’k)
L(M, 1) —i—ul——mt) .

Now

Z D(h, k) = Z Z L(h: k) = Z i‘(E, r)E(r)
(h,k)e H#(t) r=1 (h.akk):f(t) r=1
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((c;1+ 1)2 {1—(t+1)g* +1q**?} +(q+ 3 (¢*—1) (by Theorem 3).

Next,

K<)
_—
=

I

try

—
~
Neum’

I
_—
=Y

|
—
o’
N
=
—
«
»
|
Pk
A

Combining these results,

o 1 (q—1 1 1 1
M, t)=— - (1 ——
LMo =rr= 2')( P q(q+1))+q< +(q+1)(q2'—1)>

=%lt+q~:-l+o< tzt) as t—o0.

Proof of Theorem 9. By definition, for 1 SN ¢,

D¥(1)= =Z~ Dy(r)=(g—1)(¢""*—g*""").

Similarly, D¥(t) =q(q* — 1). Next

M(t) — i E(r) — (q _ 1)22((12! _ 1)

r=1 q_l
Thus
- _(q : 2N-1
D(M,0)= ¥ NDHO/M( M(t){ 3 Ng'- ¥ Ng }
I AL WS U ST U
‘(1—q-2')(' (th))ﬁq”—l)(" @-1 q(q2—1)>
= -, as t—oo0.
Finally,
N - T I !
D(M, 1) _’; rE()/M() = e
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=t— 1 +0<L), as t—ooo.

q2 —1 th

In addition to the mean values, formulas (17) and (20) can in principle be used to
determine precisely the variances of L(h, k) and D(h, k), for the respective classes of pairs
(h, k).
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