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Abstract

Our objective is to construct a perfect simulation algorithm for unmarked and marked
Hawkes processes. The usual straightforward simulation algorithm suffers from edge
effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes
as Poisson cluster processes and using their branching and conditional independence
structures, useful approximations of the distribution function for the length of a cluster
are derived. This is used to construct upper and lower processes for the perfect simulation
algorithm. A tail-lightness condition turns out to be of importance for the applicability
of the perfect simulation algorithm. Examples of applications and empirical results are
presented.
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1. Introduction

Unmarked and marked Hawkes processes [10], [11], [12], [14] play a fundamental role in
point process theory and its applications (see, e.g. [8]), and they have applications in seismology
[13], [22], [23], [27] and neurophysiology [7]. There are many ways to define a marked Hawkes
process, but for our purposes it is most convenient to define it as a marked Poisson cluster process
X = {(ti , Zi)} with events (or times) ti ∈ R and marks Zi defined on an arbitrary (mark) space
M equipped with a probability distribution Q. The cluster centres of X are given by certain
events called immigrants, while the other events are called offspring.

Definition 1. (Hawkes process with unpredictable marks.)

(a) The immigrants follow a Poisson process with a locally integrable intensity function
µ(t), t ∈ R.

(b) The marks associated to the immigrants are independent and identically distributed (i.i.d.)
with distribution Q, and are independent of the immigrants.

(c) Each immigrant ti generates a cluster Ci , which consists of marked events of generations
of order n = 0, 1, . . . with the following branching structure (see Figure 1). We first
have (ti , Zi), which is said to be of generation 0. Given the 0, . . . , n generations in
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Figure 1: The branching structure of the various generations of events in a cluster (ignoring the marks)
(top), and the events on the time axis (bottom).

Ci , each (tj , Zj ) ∈ Ci of generation n recursively generates a Poisson process �j of
offspring of generation n+1 with intensity function γj (t) ≡ γ (t − tj , Zj ), t > tj . Here,
γ is a nonnegative measurable function defined on (0, ∞). We refer to �j as an offspring
process, and to γj and γ as fertility rates. Furthermore, the mark Zk associated to any
offspring tk ∈ �j has distribution Q, and Zk is independent of tk and all (tl, Zl) with
tl < tk . As in [8], we refer to this as the case of unpredictable marks.

(d) Given the immigrants, the clusters are independent.

(e) X consists of the union of all clusters.

The independence assumptions in (c) and (d) imply that we have i.i.d. marks. In the special
case where γ (t, z) = γ (t) does not depend on its second argument (or if

P(γ (t, Z) = γ (t) for Lebesgue almost all t > 0) = 1,

where Z denotes a generic mark), the events follow an unmarked Hawkes process. Apart from
in that case, the events and the marks are dependent processes. Another way of defining the
process is as follows (see, e.g. [8]): the marks are i.i.d. and the conditional intensity function
λ(t) at time t ∈ R, for the events given the previous history {(tk, Zk) : tk < t}, is given by

λ(t) = µ(t) +
∑
ti<t

γ (t − ti , Zi). (1)

Simulation procedures for Hawkes processes are needed for various reasons: analytical
results are rather limited due to the complex stochastic structure; statistical inference, especially
model checking and prediction, require simulations; and displaying simulated realizations
of specific model constructions provides a better understanding of the model. The general
approach to simulating a (marked or unmarked) point process is to use a thinning algorithm
such as the Shedler–Lewis thinning algorithm or Ogata’s modified thinning algorithm (see,
e.g. [8]). However, Definition 1 immediately leads to the following approximate simulation
algorithm, where t− ∈ [−∞, 0] and t+ ∈ (0, ∞] are user-specified parameters and the output
consists of all marked points (ti , Zi) with ti ∈ [0, t+).

Algorithm 1. The following steps (i)–(ii) generate an approximate simulation of those marked
events (ti , Zi) ∈ X with 0 ≤ ti < t+.

(i) Simulate the immigrants on [t−, t+).

(ii) For each such immigrant ti , simulate Zi and those (tj , Zj ) ∈ Ci with ti < tj < t+.
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In general, Algorithm 1 suffers from edge effects, since clusters generated by immigrants
before time t− may contain offspring in [0, t+). Brémaud et al. [5] studied the ‘rate of
installation’, i.e. they considered a coupling of X, after time 0, to the output from Algorithm 1
when t+ = ∞. Under a tail-lightness assumption (see the paragraph after Proposition 3, below)
and other conditions, they established an exponentially decreasing bound for the probability
P(t−, ∞), say, that X, after time 0, coincides with the output of the algorithm. Algorithm 1
was also investigated in the authors’ own work [18], where various measures for edge effects,
including refined results for P(t−, ∞), were introduced.

Our objective in this paper is to construct a perfect (or exact) simulation algorithm. Perfect
simulation has been a hot research topic since the seminal Propp–Wilson algorithm [24]
appeared, but the areas of application have so far been rather limited and many perfect simulation
algorithms proposed in the literature are too slow for real applications. As demonstrated in [18],
our perfect simulation algorithm can be practical and efficient. Moreover, apart from the
advantage of not suffering from edge effects, our perfect simulation algorithm can also be
useful in quantifying the edge effects suffered by Algorithm 1 (see [18]).

The perfect simulation algorithm is derived using similar principles as in Brix and Kendall
[6], but our algorithm is a nontrivial extension, since the Brix–Kendall algorithm requires the
knowledge of the cumulative distribution function (CDF) F for the length of a cluster, and
F is unknown even for the simplest examples of Hawkes processes. By establishing certain
monotonicity and convergence results, we are able to approximate F to any required precision,
and, more importantly, to construct a dominating process and upper and lower processes in a
similar fashion as in the dominated-coupling-from-the-past algorithm of [16]. Under a tail-
lightness condition, our perfect simulation algorithm turns out to be feasible in applications,
while, in the heavy-tailed case, we can at least say something about the approximate form of F

(see Example 7).
The paper is organized as follows. Section 2 contains some preliminaries, including illumi-

nating examples of Hawkes process models used throughout the paper to illustrate our results.
In Section 3, we describe the perfect simulation algorithm, assuming that F is known, while
the above-mentioned convergence and monotonicity results are established in Section 4. In
Section 5, we complete the perfect simulation algorithm, using dominated coupling from the
past. Finally, Section 6 contains a discussion of our algorithm and results, and suggestions on
how to extend these to more general settings.

2. Preliminaries and examples

2.1. The branching structure and self-similarity property of clusters

By Definition 1, we can view the marked Hawkes process X = {(ti , Zi)} as a Poisson
cluster process with cluster centres given by the immigrants, where the clusters, given the
immigrants, are independent. In this section, we describe a self-similarity property resulting
from the specific branching structure within a cluster.

For events ti < tj , we say that (tj , Zj ) has ancestor ti of order n ≥ 1 if there is a sequence
s1, . . . , sn of offspring such that sn = tj and sk , k = 1, . . . , n, is one of the offspring of
sk−1, with s0 = ti . We then say that tj is an offspring of nth generation with respect to ti ; for
convenience, we say that ti is of zeroth generation with respect to itself. Now we define the
total offspring process Ci as all those (tj , Zj ) such that tj is an event of generation n ∈ N0
with respect to ti (note that (ti , Zi) ∈ Ci). The clusters are defined as those Ci for which ti is
an immigrant (see Definition 1).

https://doi.org/10.1239/aap/1127483739 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483739


632 • SGSA J. MØLLER AND J. G. RASMUSSEN

The total offspring processes have the same branching structure relative to their generating
events. More precisely, since γi(t) = γ (t − ti , Zi) for any event ti , we see by Definition 1 that,
conditional on the events ti < tj , the translated total offspring processes

Ci − ti := {(tl − ti , Zl) : (tl, Zl) ∈ Ci},
Cj − tj := {(tl − tj , Zl) : (tl, Zl) ∈ Cj }

are identically distributed.
In particular, conditional on the immigrants, the clusters relative to their cluster centres

(the immigrants) are i.i.d. with distribution P, say. Furthermore, conditional on a cluster’s
nth generation events Gn, say, the translated total offspring processes Cj − tj with tj ∈ Gn

are i.i.d. with distribution P. We refer to this last property as the i.i.d. self-similarity property
of offspring processes or, for short, the self-similarity property. Note that the assumption of
unpredictable marks is essential for these properties to hold.

2.2. A basic assumption and some terminology and notation

Let F denote the CDF for the length L of a cluster, i.e. the time between the immigrant
and the last event of the cluster. Consider the mean number of events in any offspring process
�(ti), ν̄ := E ν, where

ν =
∫ ∞

0
γ (t, Z) dt

is the total fertility rate of an offspring process and Z denotes a generic mark with distribution
Q. Henceforth, we assume that

0 < ν̄ < 1. (2)

The condition ν̄ < 1 appears commonly in the literature on Hawkes processes (see, e.g. [5],
[8], and [14]), and is essential to our convergence results in Section 4.2. It implies that

F(0) = E e−ν > 0,

where F(0) is the probability that a cluster has no offspring. It is equivalent to assuming that
E S < ∞, where S denotes the number of events in a cluster: by induction on n = 0, 1, . . . ,

because of the branching and conditional independence structure of each cluster, ν̄n is the mean
number of generation n events in a cluster, meaning that

E S = 1 + ν̄ + ν̄2 + · · · = 1

1 − ν̄
(3)

if ν̄ < 1, while E S = ∞ otherwise.
The other condition, ν̄ > 0, excludes the trivial case in which there are almost surely no

offspring. It is readily seen to be equivalent to

F < 1. (4)

Furthermore,
h(t) = E[γ (t, Z)/ν], t > 0,

and
h̄(t) = E[γ (t, Z)/ν̄], t > 0, (5)
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are well-defined densities (with respect to the Lebesgue measure). The density h̄ will play a
key role later in this paper; it can be interpreted as the normalized intensity function for the first
generation of offspring in a cluster started at time 0. Note that h specifies the density of the
distance R from an arbitrary offspring to its nearest ancestor. In the sequel, since the clusters,
relative to their cluster centres, are i.i.d. (see Section 2.1), we assume without loss of generality
that L, R, and S are defined with respect to the same immigrant t0 = 0, with mark Z0 = Z.

Clearly, if L > 0 then R > t implies that L > t , meaning the distribution of L has a thicker
tail than that of R. The probability function for S is given by

P(S = k) = P(Sn+1 = k − 1 | Sn = k)/k, k ∈ N,

where Sn denotes the number of events of nth generation and n ∈ N is arbitrary (see [9] or
Theorem 2.11.2 of [15]). Thus,

P(S = k) = E[e−kν(kν)k−1/k!], k ∈ N. (6)

2.3. Examples

Throughout the paper, we illustrate the results with the following cases.

Example 1. (Unmarked process.) An unmarked Hawkes process with exponentially decaying
fertility rate is given by

ν̄ = ν = α, h̄(t) = h(t) = βe−βt ,

where α, 0 < α < 1 and β > 0 are parameters. Here, 1/β is a scale parameter for both the
distribution of R and the distribution of L.

The left-hand panel of Figure 2 shows perfect simulations of this process on [0, 10] when
µ(t) = 1 is constant, α = 0.9, and β = 10, 5, 2, 1. By (3), we expect to see about 10 clusters
(in total) and 100 events. The clusters of course become more visible as β increases.

The left-hand panel of Figure 3 shows six simulations of clusters with α = 0.9. Here, α is an
inverse scaling parameter; β is irrelevant since, to obtain comparable results for this example
and the following two examples, we have omitted showing the scale. All the clusters have been
simulated conditional on S > 1 to avoid the frequent and rather uninteresting case containing
only the immigrant. These few simulations indicate the general tendency of L to vary widely.

Example 2. (Birth–death process.) Consider a marked Hawkes process with

γ (t, Z) = α 1(t ≤ Z)

E Z
,

where α, 0 < α < 1, is a parameter, Z is a positive random variable, and 1(·) denotes the
indicator function. Then X can be viewed as a birth–death process with birth at time ti and
survival time Zi for the ith individual. The birth rate is

λ(t) = µ(t) + α

E Z
card{i : ti < t ≤ ti + Zi}, t ∈ R

(cf. (1)). Moreover,

ν = αZ

E Z
, ν̄ = α, h(t) = E

[
1(t ≤ Z)

Z

]
, h̄(t) = P(Z ≥ t)

E Z
.

Since ν is random, the distribution of S is more dispersed than in the unmarked case (cf. (6)).
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Figure 2: On the left, we display four perfect simulations on [0, 10] of the unmarked Hawkes process
(Example 1) with parameters α = 0.9, µ = 1, and β = 10, 5, 2, 1 (top to bottom). Random jitter has been
added in the vertical direction to help distinguish events located close together. On the right, we display
three perfect simulations on [0, 10] of the birth–death Hawkes process (Example 2) with parameters
α = 0.9, µ = 1, and β = 5, 2, 1 (top to bottom), where the projections of the lines onto the horizontal

axis show the size of the marks.

Figure 3: On the left, we display six simulations of clusters started at 0 and conditioned on S > 1 in the
unmarked case with α = 0.9. In the centre, we display the same simulations, in the birth–death case, and,

on the right, in the heavy-tailed case. Different scalings are used in the three cases.

The special case in which µ(t) = µ is constant and Z is exponentially distributed with mean
1/β was considered in [5, p. 136]. In this case, X is a time-homogeneous Markov birth–death
process with birth rate µ+αβn and death rate βn, where n is the number of living individuals.
Furthermore, h̄(t) = βe−βt and h(t) = βE1(βt), where

E1(s) =
∫ ∞

s

e−t

t
dt

is the exponential integral function. As in Example 1, 1/β is a scale parameter for the distribution
of L. As discussed in Example 8, below, the stationary distribution (i.e. the distribution of X at
any fixed time) is known up to a constant of proportionality, and it is possible to simulate from
this by rejection sampling.

The right-hand panel of Figure 2 shows three perfect simulations on [0, 10] in the Markov
case with µ = 1, α = 0.9, and β = 5, 2, 1, where the marks are indicated by line segments of
different lengths. The centre panel of Figure 3 shows six simulations of clusters (with marks
excluded) with α = 0.9, simulated conditional on S > 1. These simulations indicate that L is
slightly more dispersed than in Example 1, since the marks introduce additional variation in the
cluster lengths. In fact, the coefficient of variation estimated from 10 000 perfect simulations
is 1.92 in Example 1 and 2.85 in the present case.
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Example 3. (Heavy-tailed distribution for L.) Suppose that γ (t, Z) = αZe−tZ, where α ∈
(0, 1) is a parameter and Z is exponentially distributed with mean 1/β. Then ν̄ = ν = α

is constant, meaning that the distribution of S is the same as in the unmarked case (cf. (6)).
Furthermore,

h(t) = h̄(t) = β

(t + β)2

specifies a Pareto density. This is a heavy-tailed distribution, as it has infinite Laplace transform
(L(θ) = E eθR = ∞ for all θ > 0). Moreover, it has infinite moments (E[Rp] = ∞ for all
p ≥ 1). Consequently, L also has a heavy-tailed distribution with infinite moments and infinite
Laplace transform. Note that β is a scale parameter for the distribution of L.

The right-hand panel of Figure 3 shows six simulations of clusters with α = 0.9 and β = 1.
These indicate that L is much more dispersed than in Examples 1 and 2 (in fact, the dispersion
is infinite in the present case).

3. Perfect simulation

Assuming, for the moment, that F (the CDF for the length of a cluster) is known, the
following algorithm for perfect simulation of the marked Hawkes process is similar to the
algorithm for simulation of Poisson cluster processes without edge effects given in [6] (see also
[17] and [21]).

Algorithm 2. Let I1 be the point process of immigrants on [0, t+), and let I2 be the point
process of immigrants ti < 0 such that {(tj , Zj ) ∈ Ci : tj ∈ [0, ∞)} �= ∅.

1. Simulate I1 as a Poisson process with intensity function λ1(t) = µ(t) on [0, t+).

2. For each ti ∈ I1, simulate Zi and those (tj , Zj ) ∈ Ci with ti < tj < t+.

3. Simulate I2 as a Poisson process with intensity function λ2(t) = (1 − F(−t))µ(t) on
(−∞, 0).

4. For each ti ∈ I2, simulate Zi and {(tj , Zj ) ∈ Ci : tj ∈ [0, t+)} conditional on the event
that {(tj , Zj ) ∈ Ci : tj ∈ [0, ∞)} �= ∅.

5. The output is all marked points from steps 1, 2, and 4.

Remark 1. In steps 1 and 2 of Algorithm 2, we use Algorithm 1 (with t− = 0). In step 4, it
is not obvious how to construct an elegant approach ensuring that at least one point will fall
after 0. Instead, we use a simple rejection sampler: we repeatedly simulate Zi , from Q and the
successive generations of offspring tj to ti (together with their marks Zj ), until there is at least
one event of Ci after time 0.

The key point is how to simulate I2 in step 3, since this requires knowledge of F , which is
unknown in closed form (see Remark 3, below). In Section 4, we address this problem and, in
Section 5, we construct an algorithm for simulating I2.

In practice, we must require that I2 is (almost surely) finite or, equivalently, that

∫ 0

−∞
(1 − F(−t))µ(t) dt < ∞. (7)

In the case that µ(t) is bounded, (7) is satisfied if supt≥0 µ(t) E L < ∞. A condition for the
finiteness of E L is established in Lemma 1 and Remark 2, below.
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Proposition 1. The output of Algorithm 2 follows the distribution of the marked Hawkes
process.

Proof. The immigrant process minus I1 ∪ I2 generates clusters with no events in [0, t+).
Since I1 consists of the immigrants on [0, t+), it follows directly that I1 is a Poisson process
with intensity λ1(t) = µ(t) on [0, t+). Since I2 consists of those immigrants on (−∞, 0)

with offspring after 0, I2 can be viewed as an independent thinning of the immigrant process
with retention probability p(t) = 1 − F(−t) and, thus, I2 is a Poisson process with intensity
λ2(t) = (1 − F(−t))µ(t). Since I1 and I2 are independent, it follows from Section 2.1 that
{Ci : ti ∈ I1} and {Ci : ti ∈ I2} are independent. Viewing the marked Hawkes process as a
Poisson cluster process, it follows from Remark 1 that the clusters are generated in the right
way in steps 2 and 4 of Algorithm 2 when we only want to sample those marked points (tj , Zj )

with tj ∈ [0, t+). Thus, Algorithm 2 produces realizations from the distribution of the marked
Hawkes process.

Using the notation of Section 2.2, the following lemma generalizes and sharpens a result
of [14] about the mean length of a cluster.

Lemma 1. We have

1

E e−ν
E[(1 − e−ν) E[R | Z]] ≤ E L ≤ ν̄

1 − ν̄
E R̄. (8)

Proof. Consider a cluster starting with an immigrant at time t0 = 0, with mark Z0 = Z

(cf. Section 2.1). For tj ∈ G1, let Rj denote the distance from tj to 0, and Lj the length of the
total offspring Cj process started by tj . Then L = max{Rj +Lj : tj ∈ G1}, so, if we condition
on Z and let Rj,z be distributed as Rj , conditional on the event Z = z, then

E L = E[E[L | Z]] = E

[ ∞∑
i=1

e−ννi

i! E[max{Rj,Z + Lj : j = 1, . . . , i}]
]
. (9)

To obtain the upper inequality, observe that

E L ≤ E

[ ∞∑
i=1

e−ννi

i! E

[ i∑
j=1

(Rj,Z + Lj )

]]
= E[ν E[R | Z]] + ν̄ E L,

where we have used the fact that the Lj are identically distributed and have the same distribution
as L, because of the self-similarity property (see Section 2.1), and the fact that the Rj are
identically distributed when conditioned on Z. Hence,

E L ≤ 1

1 − ν̄
E[ν E[R | Z]] = 1

1 − ν̄
E

[∫ ∞

0
sγ (s, Z) ds

]
= ν̄

1 − ν̄
E R̄,

which verifies the upper inequality. Finally, by (9),

E L ≥ E

[ ∞∑
i=1

e−ννi

i! (E[R | Z] + E L)

]
= E[(1 − e−ν) E[R | Z]] + E[1 − e−ν] E L,

which reduces to the lower inequality.
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Remark 2. If either ν or γ /ν is independent of Z (in other words, either the number or the
locations of offspring in an offspring process are independent of the mark associated to the
generic event), then it is easily proven that h̄ = h and, thus, (8) reduces to

(
1

E e−ν
− 1

)
E R ≤ E L ≤ ν̄

1 − ν̄
E R.

Consequently, E L < ∞ if and only if E R < ∞. This immediately shows that E L < ∞ in
Example 1 and E L = ∞ in Example 3. In Example 2, when Z is exponentially distributed
with mean 1/β, (8) becomes

α(α + 2)

2(α + 1)β
≤ E L ≤ α

β(1 − α)
,

so in this case E L < ∞. Not surprisingly, apart from for small values of α ∈ (0, 1), the bounds
are rather poor and of little use except in establishing the finiteness of E L.

4. The distribution for the length of a cluster

In this section, we derive various distributional results concerning the length L of a cluster.
The results are needed in Section 5 to complete step 3 of Algorithm 2; however, many of the
results are also of independent interest.

4.1. An integral equation for F

Below, in Proposition 2, an integral equation for F is derived, and we discuss how to ap-
proximate F by numerical methods, using a certain recursion. Proposition 2 is a generalization
of Theorem 5 of [14], which was proved using void probabilities obtained from a general result
for the probability-generating functional for an unmarked Hawkes process. However, as was
pointed out in [8], the probability-generating functional for the marked Hawkes process is
difficult to obtain. We give a direct proof based on void probabilities.

For n ∈ N0, let 1n denote the CDF for the length of a cluster when all events of generations
n + 1, n + 2, . . . are removed (it will become clear in Section 4.2 why we use the notation
‘1n’). Clearly, 1n is decreasing in n, 1n → F pointwise as n → ∞, and

10(t) = 1, t ≥ 0.

Let C denote the class of Borel functions f : [0, ∞) → [0, 1]. For f ∈ C, define ϕ(f ) ∈ C by

ϕ(f )(t) = E

[
exp

(
−ν +

∫ t

0
f (t − s)γ (s, Z) ds

)]
, t ≥ 0. (10)

Proposition 2. We have
1n = ϕ(1n−1), n ∈ N, (11)

and
F = ϕ(F ). (12)

Proof. As in the proof of Lemma 1, we can consider a cluster started at time t0 = 0,
with associated marks Z0 = Z. For a fixed t ≥ 0 and n ∈ N, split �(0) into three point
processes �1, �2, and �3: the process �1 consists of those first generation offspring ti ∈
�(0)∩[0, t) that do not generate events of generation n−1 or lower with respect to ti on [t, ∞);
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�2 = (�(0)∩[0, t))\�1 consists of the remaining first generation offspring on [0, t); and �3 =
�(0)∩[t, ∞) consists of the first generation offspring on [t, ∞). Conditional on Z, �1, �2, and
�3 are independent Poisson processes with intensity functions λ1(s) = γ (s, Z)1n−1(t − s) on
[0, t), λ2(s) = γ (s, Z)(1−1n−1(t − s)) on [0, t), and λ3(s) = γ (s, Z) on [t, ∞), respectively.
This follows by an independent thinning argument since, conditional on Gn (the nth generation
of offspring in C0), the processes Cj − tj with tj ∈ Gn are i.i.d. and distributed as C0 (this is
the self-similarity property from Section 2.1). Consequently,

1n(t) = E[P(�2 = ∅ | Z) P(�3 = ∅ | Z)]
= E exp

(
−

∫ t

0
λ2(s, Z) ds −

∫ ∞

t

λ3(s, Z) ds

)
,

which reduces to (11). Taking the limit as n → ∞ on both sides of (11), we obtain (12) by
monotone convergence, since 1n(t) ≤ 1n−1(t) for all t ≥ 0 and n ∈ N.

Remark 3. As illustrated in the following example, we have been unsuccessful in using (12)
to obtain a closed form expression for F even for simple choices of γ . Fortunately, the
recursion (11) provides a useful numerical approximation to F . As the integral in (10), with
f = 1n−1, quickly becomes difficult to evaluate analytically as n increases, we compute the
integral numerically, using a quadrature rule.

Example 4. (Unmarked process.) Consider Example 1 with β = 1. Then (12) is equivalent to

∫ t

0
F(s)es ds = et

α
ln(eαF (t)),

which is not analytically solvable.

4.2. Monotonicity properties and convergence results

As established in Theorem 1 below, many approximations of F other than 1n exist, and
their rates of convergence may be geometric with respect to different norms. Notice that
certain monotonicity properties are fulfilled by ϕ, where, for functions f : [0, ∞) → [0, 1],
we recursively define ϕ[0](f ) = f and ϕ[n](f ) = ϕ(ϕ[n−1](f )), n = 1, 2, . . . , and set
fn = ϕ[n](f ), n = 0, 1, . . . . Note that Fn = F for all n ∈ N0. As 1n = ϕ[n](1) is decreasing
towards the CDF F , cases in which G is a CDF and Gn increases to F are of particular interest.

Lemma 2. For any f, g ∈ C, we have

f ≤ g ⇒ fn ≤ gn, n ∈ N, (13)

f ≤ ϕ(f ) ⇒ fn is nondecreasing in n, (14)

f ≥ ϕ(f ) ⇒ fn is nonincreasing in n. (15)

Proof. Equation (13) follows immediately from (10) when n = 1, and then by induction in
the remaining cases. Equations (14) and (15) follow from (13).

Theorem 1. With respect to the supremum norm ‖f ‖∞ = supt≥0 |f (t)|, ϕ is a contraction on
C, that is, for all f, g ∈ C and n ∈ N, we have fn, gn ∈ C and

‖ϕ(f ) − ϕ(g)‖∞ ≤ ν̄‖f − g‖∞. (16)
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Furthermore, F is the unique fixpoint, i.e.

‖F − fn‖∞ → 0 as n → ∞ (17)

and

‖F − fn‖∞ ≤ ν̄n

1 − ν̄
‖ϕ(f ) − f ‖∞, (18)

where ‖ϕ(f ) − f ‖∞ ≤ 1. Furthermore, if f ≤ ϕ(f ) or f ≥ ϕ(f ), then fn converges to F

from below or, respectively, above.

Proof. Let f, g ∈ C. Recall that, by the mean value theorem (e.g. Theorem 5.11 of [1]), for
any real numbers x and y, we have ex − ey = (x − y)ez(x,y), where z(x, y) is a real number
between x and y. Thus, by (10),

‖ϕ(f ) − ϕ(g)‖∞ = sup
t≥0

∣∣∣∣E
[

e−νec(t,f,g)

∫ t

0
(f (t − s) − g(t − s))γ (s, Z) ds

]∣∣∣∣,
where c(t, f, g) is a random variable between

∫ t

0 f (t − s)γ (s, Z) ds and
∫ t

0 g(t − s)γ (s, Z) ds.
Since f, g ≤ 1, we obtain ec(t,f,g) ≤ eν (see (2)). Consequently,

‖ϕ(f ) − ϕ(g)‖∞ ≤ sup
t≥0

∣∣∣∣E
[∫ t

0
(f (t − s) − g(t − s))γ (s, Z) ds

]∣∣∣∣
≤ E

[∫ ∞

0
‖f − g‖∞γ (s, Z) ds

]

= ν̄‖f − g‖∞.

Thereby, (16) is verified. Since C is complete (see, e.g. Theorem 3.11 of [26]), it follows, from
the fixpoint theorem for contractions (see, e.g. Theorem 4.48 of [1]), that the contraction has a
unique fixpoint: by (12), this is F .

Since f ∈ C implies that ϕ(f ) ∈ C, we find that fn ∈ C by induction. Hence, using (12),
(16), and induction, we have

‖fn − F‖∞ = ‖ϕ(fn−1) − ϕ(F )‖∞ ≤ ν̄‖fn−1 − F‖∞ ≤ ν̄n‖f − F‖∞ (19)

for n ∈ N. Since ν̄ < 1, we recover (17).
Similarly to (19), we have

‖fn − fn−1‖∞ ≤ ν̄n−1‖f1 − f ‖∞, n ∈ N. (20)

Furthermore, by (17), we have

‖F − f ‖∞ = lim
m→∞ ‖fm − f ‖∞.

So, by the triangle inequality and (20), we have

‖F − f ‖∞ ≤ lim
m→∞(‖f1 − f ‖∞ + ‖f2 − f1‖∞ + · · · + ‖fm − fm−1‖∞)

≤ lim
m→∞ ‖f1 − f ‖∞(1 + ν̄ + · · · + ν̄m−1)

= ‖f1 − f ‖∞
1 − ν̄

(see (2)). Combining this with (19), we obtain (18). Finally, if f ≤ ϕ(f ) or f ≥ ϕ(f ) then
by (14) or, respectively, (15) and (17), fn converges from below or, respectively, above.
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Similar results to those of Theorem 1, but for the L1-norm, were established in [18]. The
following remark and proposition show how to find upper and lower bounds on F in many
cases.

Remark 4. Consider a function f ∈ C. The conditions f ≤ ϕ(f ) and f ≥ ϕ(f ) are satisfied
in the extreme cases f = 0 and f = 1, respectively. The upper bound f = 1 is useful in the
following sections, but the lower bound f = 0 is too small a function for our purposes; if we
require that E L < ∞ (cf. Remark 1) then f = 0 cannot be used (in fact we use only f = 0
when producing the right-hand plot in Figure 4, below). To obtain a more useful lower bound,
observe that f ≤ ϕ(f ) implies f ≤ F < 1 (cf. (4) and Theorem 1). If f < 1 then a sufficient
condition for f ≤ ϕ(f ) is

1

ν̄
≥

∫ t

0 (1 − f (t − s))h̄(s) ds + ∫ ∞
t

h̄(s) ds

1 − f (t)
, t ≥ 0. (21)

This follows readily from (5) and (10), using the fact that ex ≥ 1 + x.
The function f in (21) is closest to F when f is a CDF G and we have equality in (21).

Equivalently, G satisfies the renewal equation

G(t) = 1 − ν̄ + ν̄

∫ t

0
G(t − s)h̄(s) ds, t ≥ 0,

which has the unique solution

G(t) = 1 − ν̄ +
∞∑

n=1

(1 − ν̄)ν̄n

∫ t

0
h̄∗n(s) ds, t ≥ 0, (22)

where ∗n denotes n-times convolution (see Theorem IV2.4 of [2]). In other words, G is the
CDF of R̄1 + · · · + R̄K (setting R̄1 + · · · + R̄K = 0 if K = 0), where K, R̄1, R̄2, . . . are
independent random variables, each R̄i has density h̄, and K has a geometric density (1− ν̄)ν̄n.
Interestingly, this geometric density is equal to E Sn/ E S (see (3)).

The next proposition shows that, in many situations, G ≤ ϕ(G) when G is an exponential
CDF with a sufficiently large mean. In such cases, F has no heavier tails than such an exponential
distribution.

Denote by

L(θ) =
∫ ∞

0
eθt h̄(t) dt, θ ∈ R,

the Laplace transform of h̄.

Proposition 3. If G(t) = 1 − e−θt for t ≥ 0, where θ > 0 and L(θ) ≤ 1/ν̄, then G ≤ ϕ(G).

Proof. Upon inserting f = G into the right-hand side of (21), we obtain
∫ t

0
eθs h̄(s) ds + eθt

∫ ∞

t

h̄(s) ds.

Since this is an increasing function of t > 0, (21) is satisfied if and only if L(θ) ≤ 1/ν̄.

Note that Proposition 3 always applies for sufficiently small θ > 0, except in the case where
h̄ is heavy tailed in the sense that L(θ) = ∞ for all θ > 0. The condition L(θ) ≤ 1/ν̄ is
equivalent to the tail-lightness condition [5, Equation (2.1)].
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Figure 4: On the left, we display plots of 1n and Gn for n = 0, 5, . . . , 50 in the unmarked case with
α = 0.9 and β = 1 (see Example 5); 150 and G50 are drawn solid to illustrate the approximate form of
F , whereas the other curves are dashed. In the centre, we display plots of the density 1

2 [1′
n/(1 − 1n(0))+

G′
n/(1 − Gn(0))] when n = 50 (solid) and the exponential density with the same mean (dashed). On the

right, we display the same plots as on the left, for Example 7 with α = 0.9 and β = 1, using 1n and 0n

as approximations of F .

4.3. Examples

In Examples 5 and 6 below, we let

G(t) = 1 − e−θt , t ≥ 0, (23)

be the exponential CDF with parameter θ > 0.

Example 5. (Unmarked process.) For the case in Example 1, L(θ) = β/(β − θ) if θ < β,
and L(θ) = ∞ otherwise. Interestingly, for the ‘best choice’, θ = L−1(1/ν̄) = β(1 − α),
(23) becomes the CDF for R times E S, which is easily seen to be the same as the CDF in (22).

The left-hand panel of Figure 4 shows 1n and Gn when θ = β(1 −α) and (α, β) = (0.9, 1).
The convergence of 1n and Gn (with respect to ‖ · ‖∞) and the approximate form of F are
clearly visible. Since G is a CDF and Gn+1 ≥ Gn, we find that Gn is also a CDF. The centre
panel of Figure 4 shows the density F ′(t)/(1 − F(0)) (t > 0) approximated by

1

2

(
1′
n(t)

1 − 1n(0)
+ G′

n(t)

1 − Gn(0)

)

when n = 50 (in which case 1′
n(t)/(1 − 1n(0)) and G′

n(t)/(1 − Gn(0)) are effectively equal).
As shown in the plot, the density is close to the exponential density with the same mean, but
the tail is slightly thicker.

Example 6. (Birth–death process.) For the case in Example 2,

L(θ) = E
∫ Z

0

eθs

E Z
ds = LZ(θ) − 1

θ E Z
,

where LZ(θ) = E eθZ is the Laplace transform of Z. In the special case where Z is expo-
nentially distributed with mean 1/β, L(θ) = LZ(θ) = β/(β − θ) is of the same form as in
Example 5. Plots of 1n, Gn, and

1

2

(
1′
n

1 − 1n(0)
+ G′

n

1 − Gn(0)

)

for n = 0, 5, . . . , 50 and (α, β) = (0.9, 1) are similar to those in the centre and right-hand
panels of Figure 4, and are therefore omitted.
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Example 7. (Heavy-tailed distribution for L.) For the case in Example 3, Proposition 3 does
not apply, as L(θ) = ∞ for all θ > 0. The CDF in (22) is not known in closed form, since
the convolutions are not tractable (in fact, this is the case when h̄ specifies any known heavy-
tailed distribution, including the Pareto, Weibull, log-normal, or log-gamma distributions).
Nonetheless, it is still possible to get an idea of what F looks like: the right-hand panel of
Figure 4 shows 1n and 0n := ϕ[n](0) for n = 0, 5, . . . , 50 in the case (α, β) = (0.9, 1). As in
Examples 5 and 6, the convergence of 1n and Gn (where, now, G = 0) and the approximate form
of F are clearly visible. However, as indicated by the plots and verified in [18], limt→0 Gn(t) <

1 when G = 0, meaning that Gn is not a CDF.

5. Simulation of I2

To complete the perfect simulation algorithm (Algorithm 2), we need a useful way of
simulating I2. Our procedure is based on a dominating process and the use of coupled upper
and lower processes, in the spirit of the dominated-coupling-from-the-past algorithm [16].

Suppose that f ∈ C is in closed form, with f ≤ ϕ(f ), and that (7) is satisfied when we
replace F by f (situations in which these requirements are fulfilled are considered in Sections 3,
4.2, and 4.3). Particularly, if µ is constant and f is a CDF, (7) implies that f has a finite mean.
Now, for n ∈ N0, let Un and Ln denote Poisson processes on (−∞, 0) with intensity functions

λu
n(t) = (1 − fn(−t))µ(t) and λl

n(t) = (1 − 1n(−t))µ(t),

respectively. By Theorem 1, λu
n is nonincreasing and λl

n is nondecreasing in n, and they both
converge to λ2 (geometrically fast with respect to the supremum norm). Consequently, we can
use independent thinning to obtain the following sandwiching/funnelling property (see [16]):

∅ = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ I2 ⊆ · · · ⊆ U2 ⊆ U1 ⊆ U0. (24)

The details are given by the following algorithm.

Algorithm 3. (Simulation of I2.)

1. Generate a realization {(t1, Z1), . . . , (tk, Zk)} of U0, where t1 < · · · < tk .

2. If U0 = ∅ then return I2 = ∅ and stop; otherwise, generate independent uniform
numbers W1, . . . , Wk on [0, 1] (independently of U0) and set n = 1.

3. For j = 1, . . . , k, assign (tj , Zj ) to Ln or Un if Wjλ
u
0(tj ) ≤ λl

n(tj ) or, respectively,
Wjλ

u
0(tj ) ≤ λu

n(tj ).

4. If Un = Ln then return I2 = Ln and stop; otherwise, increase n by 1 and repeat steps 3–4.

Proposition 4. Algorithm 3 works correctly and terminates almost surely within finite time.

Proof. To see this, imagine that, regardless of whether U0 = ∅ in step 2 or Un = Ln in
step 4, we continue to generate (U1, L1), (U2, L2), etc. Furthermore, add an extra step: for
j = 1, . . . , k, assign (tj , Zj ) to I2 if and only if

Wjλ
u
n(tj ) ≤ λ2(tj ).
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Then clearly, because of the convergence properties of λu
n and λl

n (see the discussion above),
(24) is satisfied and, conditional on t1, . . . , tk ,

P(Ln �= Un for all n ∈ N0) ≤
k∑

j=1

lim
n→∞ P(Wjλ

u
0(tj ) ≤ λu

n(tj ), Wjλ
u
0(tj ) > λl

n(tj ))

=
k∑

j=1

P(λ2(tj ) < Wjλ
u
0(tj ) ≤ λ2(tj )) = 0.

Thus, Algorithm 3 almost surely terminates within finite time and the output equals I2.

Remark 5. We compute 1n and fn numerically, using a quadrature rule (see Remark 3). After
step 1 in Algorithm 3, we let the last quadrature point be given by −t1 (since we do not need to
calculate 1n(t) and fn(t) for t > −t1). Since we have to calculate 1n and fn recursively for all
n = 0, 1, 2, . . . until Algorithm 3 terminates, there is no advantage in using a doubling scheme
for n, as in the Propp–Wilson algorithm [24].

Example 8. (Birth–death process.) We have checked our computer code for Algorithms 2
and 3 by comparing with results produced by another perfect simulation algorithm. Consider
the case in Example 2 when µ(t) = µ is constant and Z is exponentially distributed with mean
1/β. If N denotes the number of events alive at time 0, we have the following detailed balance
condition for its equilibrium density πn:

πn(µ + αβn) = πn+1β(n + 1), n ∈ N0.

This density is well defined, since limn→∞(πn+1/πn) = α < 1. Now, choose m ∈ N0 and
ε ≥ 0 such that a = α + ε < 1 and πn+1/πn ≤ a whenever n ≥ m. If µ ≤ αβ, we can take
ε = m = 0; otherwise, we can use m ≥ (µ−αβ)/βε for some ε > 0. Define an unnormalized
density π ′

n, n ∈ N0, by π ′
n = πn/π0 if n ≤ m, and by π ′

n = an−mπm/π0 otherwise. We can
easily sample from π ′

n by inversion (see [25]), since we can calculate

∞∑
0

π ′
n =

m∑
0

πn

π0
+ a

1 − a

πm

π0
.

Then, since π ′
n ≥ πn/π0, we can sample N from πn by rejection sampling (see [25]). Fur-

thermore, conditional on N = n, we generate n independent marks Z′
1, . . . , Z

′
n that are

exponentially distributed with mean 1/β (here, we exploit the memoryless property of the
exponential distribution). Finally, we simulate the marked Hawkes process with events in
(0, t+], using the conditional intensity

λ′(t) = µ + αβ

( n∑
i=1

1(t < Z′
i ) +

∑
0<ti<t

1(t < ti + Zi)

)
.

We have implemented this algorithm for comparison with our algorithm. Not surprisingly,
it is a lot faster than our perfect simulation algorithm (roughly 1200 times as fast in the case
α = 0.9, β = µ = 1, and t+ = 10), since it exploits the fact that we know the stationary
distribution in this special case.
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6. Extensions and open problems

Except in the heavy-tailed case, our perfect simulation algorithm is feasible in the examples
we have considered. However, simulation of the heavy-tailed cases is an unsolved problem. In
these cases, we can only say something about the approximate form of F (see Example 7).

For applications such as those in seismology [23], extensions of our results and algorithms
to the heavy-tailed cases are important. The epidemic-type aftershock sequences (ETAS
model) [22], used for modelling times and magnitudes of earthquakes, is a heavy-tailed marked
Hawkes process. Its spatio-temporal extension, which also includes the locations of the
earthquakes (see [23]), can be applied to the problem of predictable marks (the location of
an aftershock depends on the location of the earthquake that causes it). This problem is easily
solved, though, since the times and magnitudes are independent of the locations and can be
simulated without worrying about these. This, of course, still leaves the unsolved problem of
the heavy tails.

Extensions to nonlinear Hawkes processes [3], [8] would also be interesting. However,
things again become complicated, since a nonlinear Hawkes process is not even a Poisson
cluster process.

Simulations of Hawkes processes with predictable marks can, in some cases, be obtained by
using a thinning algorithm, if it is possible to dominate the Hawkes process with predictable
marks by a Hawkes process with unpredictable marks. We illustrate the procedure with a simple
birth–death example.

Example 9. (Birth–death process.) Consider two birth–death Hawkes processes as defined in
Example 2. Let �1 have unpredictable marks, with Z1

i ∼ Exp(β), and let �2 have predictable
marks, with Z2

i ∼ Exp(β + 1/Z2
A), where Z2

A is the mark of the first-order ancestor of ti . Both
models have γ (t, Z) = αβ 1(t < Z), with the same α and β, and they also have the same µ(t).
The model �2 has the intuitive appeal that long-lived individuals have long-lived offspring.
Note that the intensity of �1 dominates the intensity of �2 if the marks are simulated such that
Z1

i > Z2
i .

To simulate �2, we first simulate �1 using Algorithm 3, with the modifications that we
associate both marks Z1

i and Z2
i to the event ti , and we keep all events from the algorithm

whether they fall in or before [0, t+). Each marked event (tj , Z
1
j ) is then included in �2 with

retention probability

µ(t) + αβ
∑

ti<tj , ti∈�2
1(tj − ti < Z2

i )

µ(t) + αβ
∑

ti<tj
1(tj − ti < Z1

i )
,

and the final output is all marked events from �2 falling in [0, t+). It is easily proven that these
retention probabilities result in the correct process �2.

Another process that would be interesting to obtain by thinning is the Hawkes process
without immigrants considered in [4]; this process has µ(t) = 0 for all t . However, for this to
be nontrivial (i.e. not almost surely empty), it is necessary that ν̄ = 1, which means that any
dominating Hawkes process has ν̄ ≥ 1 and, thus, cannot be simulated by Algorithm 3.

Many of our results and algorithms can be modified if we slightly extend the definition (in
Section 1) of a marked Hawkes process, as follows. For any event ti with associated mark Zi ,
let ni denote the number of (first-generation) offspring generated by (ti , Zi), and suppose
that ni , conditional on Zi , is not necessarily Poisson distributed, but that ni is still conditionally
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independent of ti and the previous history. A particularly simple case occurs when ni is either 1
or 0, and

p̄ = E[P(ni = 1 | Zi)]
is assumed to be strictly between 0 and 1 (here p̄ plays a role similar to that of ν̄, introduced in
Section 4). We then redefine ϕ by

ϕ(f )(t) = 1 − p̄ + p̄

∫ t

0
f (t − s)h̄(s) ds,

where, now,
h̄(s) = E[p(Z)h(s, Z)]/p̄.

Since ϕ is now linear, the situation is much simpler. For example, F is given by G in (22)
(with ν̄ replaced by p̄).

Another extension of practical relevance is to consider a non-Poisson immigrant process, e.g.
a Markov or Cox process. The results in Section 4 do not depend on the choice of immigrant
process, and the straightforward simulation algorithm (Algorithm 1) applies provided that it
is feasible to simulate the immigrants on [t−, t+). However, the perfect simulation algorithm
relies heavily on the assumption that the immigrant process is Poisson.

Finally, we notice that it would be interesting to extend our ideas to spatial Hawkes processes
(see [19] and [20]).
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