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EXPANSIVE FLOWS AND THEIR CENTRALIZERS
MASATOSHI OKA

1. Introduction and preliminaries

R. Bowen and P. Walters [2] have defined expansive flows on metric
spaces which generalized the similar notion by D. Anosov [1]. On the
other hand, P. Walters [4] investigated continuous transformations of
metric spaces with discrete centralizers and unstable centralizers and
proved that expansive homeomorphisms have unstable centralizers.

M will denote a compact connected C~ manifold without boundary.
We assume that we have some fixed Riemannian metric |-| on M. We
denote by d(x,y) the distance between x,y € M given by this Riemannian
metric. C'M) (resp. C°(M)) will denote the set of all C* (resp. continuous)
functions on M.

X will denote a compact connected metric space with metric func-
tion d(x,y) which denotes the distance between z,%y ¢ X.

R denote the additive group of real numbers.

A map F:R x X — X is called a continuous flow on X if F is con-
tinuous and F(t + s,x) = F(t, F(s, x)), F(0,x) = z for every t,seR and
zeX. We shall sometimes use the notation f,(x) = F(¢, ) and write {f.}
for the flow instead of F'.

DEFINITION 1. A continuous flow F' on X is called an expansive
flow if it has the following property (x);

(x) For any ¢ > 0, there exists § > 0 with the property that if there
exist a pair of points z,y € X and a continuous map s: R — R with s(0)
= 0 such that d(f,(z), f.,(¥)) < d for every t e R, then y = f,(x) for some
It] <e.

Let v be a C'-vector field on M and {f,} be the one-parameter group
of C'-diffeomorphisms f, of M generated by v. We shall sometimes use
the notation f(¢,x) = f(x) for every tc R and ze M. A C'-vector field
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v(or {f;) on M is sometimes called a C!-flow on M.
v(or {f,}) is called a C'-expansive flow on M if {f,} satisfies the
property ().

DEFINITION 2. Let v be a ('-vector field on M. A C'-vector field
w on M is called C'-commutative with v if [v w] = 0, where [ ] is Lie
bracket. Let {f;} be a continuous flow on X, then a continuous flow
{95} on X is called commutative with {f,} if f,0g9, = g,0f, for every ¢,
SER.

Cent (F') (resp. Cent (v)) will denote the centralizer of F' (resp. v), i.e.
the set of all continuous flows (resp. C'-vector fields) (C')-commutative
with F (resp. v).

DEFINITION 3. Let v be a C'-flow on M. v is said to have an un-
stable centralizer if it satisfies the property that w e Cent (v) if and only
if w = h-v with he C'(M), v(h) = 0.

DEFINITION 4. A continuous flow F' on X is said to have an un-
stable centralizer if it satisfies the property that G is in Cent (F") if and
only if there exists a continuous function A on X such that

G@,») = F(A@)}t, ),  A@) = AF(E,2))

for every te R and ze X.
For a continuous flow F on X, we put

&F) =inf{t > 0; F(t,x) = « for some z e X}

in the case when there exists a periodic (or fixed) point of F. When
there is no periodic point we put ¢(F) = + 0.

In this paper, as an analogue of the case of expansive homeomor-
phisms, we shall prove that expansive flows have unstable centralizers.
K. Kato and A. Morimoto [3] proved the above fact for the case of Anosov
flows by using the topological stability.

Next, we shall prove that the set of all expansive flows in Cent (F),
where F is an expansive flow on X, is an open subset of Cent (F) with
respect to C’-topology.

In the section 4, we shall prove that a flow commutative with an
Anosov flow is an Anosov flow if it is a C'-expansive flow on M.

The idea of the proof of Lemma 3 was inspired by that of Theorem
B [3].

https://doi.org/10.1017/5S0027763000017517 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017517

EXPANSIVE FLOWS 3
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Morimoto for his many valuable advices.

2. Unstable centralizers
In this section, we shall prove the following Theorem 1.

THEOREM 1. FEuxpansive flows on X have unstable centralizers.

To prove Theorem 1, first, we shall prove the following Lemma 1
and Lemma 2.

Remark. An expansive flow F on a connected metric space X has
no fixed points (cf. [2]). Further, if a continuous flow F on X has no
fixed points, then ¢(F) > 0.

LEMMA 1. Let F be an exponsive flow on X and G e Cent (F).
Then for any 0 <e < e(F)/8, we can find p > 0 such that there exists
uniquely o function z on [—p, pl X X satisfying

G(s, 2) = F(z(s, x), %) , [2(s, )| < e,
for any (s,x)e[—p, uv] X X.

Proof. For any ¢ > 0, we have § > 0 such that if d(f.(x),f.(y)) <o
for every tc R, then y = f,(x) for some |[{| <e Since M is a compact
manifold, there exists sufficiently small x > 0 with

max {d(gy(®), g.(@)); t e [—p, pl,xe M} <3 .
Since f;09, = g;of, for every t,sc R, we get

d(f (@), fi(95(2))) = d(f;° 94(@), f1 0 95(2))
= d(9o(f(2)), 95(f(2))) < 6

for any € M and every t,s € R with |s| < p.
Therefore we get

9;@) = Fz(s, ), %),  |2(5,2)] <e.
Let ¢ > 0 be sufficiently small and ¢ < ¢(F)/3, then
F(z,(s, ), x) = F(2,(s, %), ®)

implies z,(s, ®) = z,(s,x). Hence, we know that z(s,z) is unique.
Q.E.D.
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LEMMA 2. Let F be a continuous flow on X without fixed points.
Let G be a continuous fiow on X such that for fived p >0, there exists
a function z on [—p, 4]l X X, and

G(S, x) = F(Z(S, x), ) , IZ(S, .’.U)I <e ’

where 0 < e < ¢(F)/3. Then we get (i), (ii);
(i) =z is continuous on [—p, pl X X,
G if t,s,t + sel—up pl, then

21t + s, x) = 2(t, 2) + 2(8, G(¢, x))
for any x e X.

Proof. We shall prove (i). If z is not continuous, there exist (s, x)
el—mpd x X and {(Sn )}t © [—pp]l X X such that (s,,x,) — (s, )
and {2(s,, #,)};-, does not converge to z(s,x) as m — oo. Therefore, we
have §, > 0 and subsequence {(Sn,%,)} with [2(s,,2,) — (s, %)| = §, for
any positive integer m. {z(sn, %)} is bounded, hence there exists 5, > 0
such that

0, < d(F(2(8p» ®n), ), F(2(8, ), 7))

for any m.
Whence we get

6, < d(F'(2(Sms Tn)s Tm)s F(2(S s T), X)) (1)
+ dF(2(Sp» )5 Tr), F'(2(8, 2), X)) .
From G(s,,2,) — G(s,x) as m — oo, we get
A(F (8> Tp)s Tm), F(2(8,2),2)) -0 as m— oo .

Since {2(sn,*,)} is bounded, there exist {,e R and subsequence
{#(sy, )} with lim 2(s;, 2) = £, Therefore

A(F(2(Sys T)s Ti)s F(2(Sg, %), 2)) = 0 as k— oo .
This contradicts to (1).
Next, we prove (ii). We can calculate as follows.

G(t + s,2) = G(t, G(s, 2))
= F(z(t, 9,(x)), 9,())
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= F(2(t, 9,(x)), F(2(s, %), )
= F (1, 9.®) + 2(s, %), %) ,
on the other hand
Gt + s,x) = Fz(t + s,2),x) .
Hence we have
2(t + s, 2) = 2(, 9,(2)) + 2(s, %)

for t,s,t + se[—p, p] and 2 e X.
Q.E.D.
Using Lemma 2, we shall prove the following:

LEMMA 3. Let F be a continuous flow on X without fixed points.
Let G be a continuous flow on X such that for fixed p > 0, there exists
a continuous function z on [—py, pl X X, and

G(s, ) = F(z(s, ®), %) , |2(s, )| < e,

for every sel—u, pl and x € X, where 0 <e < ¢g(F)/3. Then there exists
a unique continuous function p: R X X — R such that

for G, x)eR X X, and p =2z on [—p, gl X X.

Proof. Take a positive integer N so large as 1/2% < p.
First, we define a continuous function z;, on [1/2¥,2/2¥] X X by

2t x) =206 — 1/27,x) + 2(1/2Y,G(t — 1/2%, arf))
for (¢, 2) e [1/27,2/27] x X.

We shall prove the following equalities;
(@) =z(1/2Y,2) ==2(1/2Y x) for any xeX,
) G, 2) = F(z(, ), ®)
for any (¢, ) e[1/27,2/27] x X.

(a) is clear from the definition of z,.

To prove (b), first, we can calculate from Lemma 2 as follows;

0 = 2(1/2" — 1/2¥, g,(%))
= 2(1/27,G(t — 1/2%,2)) 4+ 2(—1/2%,9,(x)) .
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Therefore we get
2(—1/2%, g (@) = —2(1/2Y, G(t — 1/27, %))
for te[1/27,2/27] and e X. Hence,

F(—2(1/2¥, G(t — 1/2%, ), F(z,(t, %), %))
= F=(t — 1/2%,x), x)
= Gt — 1/2%, x)
= G(—1/2%, g,(®))
= F(2(—1/2%, g,(2)), 9,(2)) .

Whence we get
G(t’ x) = F(zx(t, .’l)), iI})

for (¢, x)e[1/27,2/27] X X.
Next, we define a continuous function z, on [—2/2¥, —1/2%] X X by

Z(t, x) = 2(t + 1/2%, %) + 2(—1/2%, G(t + 1/2¥, x))

for (t,x)e[—2/2¥, —1/27] X X.
We shall prove the following equalities;

(¢) z(—=1/2%,2) =2(—1/27,2) for xe X,
d) GG, 2) = F@E(t, ), ®)

for (t,x)e[—2/27, —1/27] x X.
(c) is clear from the definition of Zz,.
To prove (d), we can obtain the following equality from Lemma 2,

2(1/2%, g,(®)) = —2(—1/2",G(t + 1/2%, 2))
for te[—2/2Y, —1/2%] and xe€ X. Hence,

F(—2(—1/2%, G(t + 1/27, ), FG(t, %), 2))
= F(2(t + 1/2%, 2), x)
= G(t + 1/27, 2)
= G(1/27%, g,(x))
= F(2(1/27, g,(x)), g,(%)) .

Therefore, we get

G(t: x) = F(zl(ts x)) x)
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for (t,x)e[—2/2¥, —1/2"] x X.
Now, for any positive integer k& we define a continuous function z,
on [k/2%,(k + 1)/2"] X X by

2t ¥) = 2(t — k/2¥, %) + ﬁ 2(1/2%, G(t — /27, 7)) .

We shall prove the following equalities;

(@ z((k+1)/2Y,2) =2, .((k + 1)/2Y,2) for ze X,
@ 2@, 2) =z, — 1/27,2) + 2(1/27, Gt — 1/27, x))

for (t,x)elk/2Y, (kK + 1)/27] X X,

for telk/2¥,(k + 1)/27] and x ¢ X.
In fact, the right-hand side of (e) is > %.,2(1/2%, G(i/2%, x)), while
left-hand side of (e) is

2l + D/2Y,7) = 2(1/2Y,2) + 3 2(1/2Y, G((k + 1 — /2%, )
- i 2(1/2%, GG/2Y, 7)) .

Next, we shall prove (f) as follows;
2ty @) = 2t — 1/29 — (k — 1)/2%, 1)
¥ }22(1/2”, G(t — 1/2Y — (G — 1)/2¥, a))
— A1)2Y, Gt — 127, 2)) + 2t — 1/2% — (k — 1)/2%, 2)
+ :Z"llza/zN, G(t — 1/2% — §/2%, &)
= z(l;z”, Gt — 1/2Y,2)) + 2z,_,(t — 1/27,2) .

We shall show (g) by induction. We have already proved (g) for
k=1. From (f),

F(—=zQ/2Y, Gt — 1/2%, ), F(z,(t, x), x))
= F(z,_,(t — 1/27, %), x)
=Gt —1/2V, %)
= G(—~1/2%, g,(2))
= F(2(—1/2%, g,(2)), 9,(%))
= F(—2(1/27,G(t — 1/2%, x)), 9,(x)) .
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Whence we get
G(t, x):F(zk(t’ x), w)

for telk/2¥,(k + 1)/2"] and x e X.
Next, we define a continuous function Z,, where k is a positive in-
teger, on [—(k + 1)/27, —k/2"] X X by

2ty @) = 2(t + k/2Y, %) + 3 2(—1/2Y, G(t + i/2¥, ) .
i=1
We can verify the following (h), (i), (j) in the same way as the proof

of (e), (1), (2).
(h) z,(—(k + 1)/27,2) = Z,,,(—(k + 1)/2",2) for ze X,
(1) 7@, ) =7, + 1/2%, ) + 2(—1/2Y, G(t + 1/2%,x))
for (t, ) e[—(k + 1)/27Y, —k/27] x X
for te[—(k + 1)/27, —k/27] and z € X.
Consequently, we can define the function p(t,x) on R X X by

Lo [mb®) I telk/2Y, (b + /2]
P, 2) = {zk(t, ¥  if tel—(k + 1)/2Y, —k/2]

for ¥k =0,1,2, ..., where z, = 2. Using (e), (h), we see that p is a con-
tinuous function on B X X and from (g), (j), we know

G(t, ) = F(p(t, ), )

for every tc R and ze X.
It is clear that p(t, x) = 2(t, x) for every te[—py, pu] and ze X.
Finally, we shall prove the uniqueness. We assume that there exist
two functions p,, p, such that

G(t: x) = F(pi(t’ x)’ x)

for ((,2)eR X X and p;,=2 on [—ppul X X@¢=1,2). Put af,z)=
p,(t, x) — D¢, 2) and T, = {t e R; a(t, x) = 0} for fixed x € X. Then, since
F(a(t, ), ) = 2 holds for (f,x) e R X X, we see that T, is a non-empty,
open and closed subset of R. Therefore we get T, = R for any ze¢ X
which implies p, = p,. Q.E.D.
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Proof of Theorem 1. Let F be an expansive flow on X and let
G ¢ Cent (F). By Lemma 3, we can calculate as follows;

G(t, F(s, 1)) = 9,0 fs(x) = fs09.(x)
= F(s, G(t, v)) = F(s + p(t, 2),2) ,

on the other hand
G, F(s, %)) = F(p(t, (), f{(®)) = F((@, f(x)) + s, ) .
Therefore, for sufficiently small x> 0, we have
p(, %) = p(, f(x))

for every te[~py, ] and se R. From the uniqueness of the function p
and using (f),(Q) in the proof of Lemma 3, we can prove by induction
that

(t, %) = p(¢, ()

for every t,scR.
Now, we get

G + s,2) = G(¢, G(s, 2)) = F@(, 9.(®)) + (s, %), 2) ,
on the other hand
G + s,x) = F(pit + s,x),2) .
Hence, for sufficiently small x> 0, we get
p(t + s, %) = p@, ) + p(s, x)

for every ¢,s,t +sel[—ppl and zeX. From the uniqueness of the
function p and using (f), i), we can prove that

p(t + s,2) = p(t, ) + 0(s, x)
for every t,se R and xeX. Therefore, we can write
P, x) = A@)-t

for teR and ze¢ X, where A(x) is a continuous function on X. Since
p(t, ) = p(t, f(x)) for any se R, we get A(x) = A(F'(s, x)) for every seR.

Conversely, if G is a continuous flow on X and there exists a con-
tinuous function A(x) on X such that
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G, v) = F(A(w)t, ») , A(x) = AF (s, 2))
for every t,se R, then it is clear that G is in Cent (F). Q.E.D.
COROLLARY 2. C'-expansive flows on M have unstable centralizers.
Proof is omitted.

COROLLARY 3 (K. Kato and A. Morimoto). Amnosov flows on M have
unstable centralizers.

3. Expansive flows in Cent (F)

For continuous maps f,g: X — X, d,(f, g) is defined by

do(f> 9) = max {d(f(2), 9(x)) ; x € X} .

First, we state the following:

LEMMA 4 (R. Bowen and P. Walters). Let F be an expansive flow
on X and let G be a continuous flow on X. If there exists a continuous
function p: R x X — R such that G(,x) = F(p(t,x),x) for every teR
and xeX, and p,: R — R is a homeomorphism of R with p,0) =0 for
any x € X, where p,(t) = p(t,x). Then G is an expansive flow on X.

For the proof, see [2] Corollay 4.

THEOREM 4. Let F be an expansive flow on X, and let G e Cent (F).
Then there exist e > 0 and 6 > 0 such that tf d(f,, g9,) <e for any tel0,d],
then G is an expansive flow on X.

Proof. Put § = &(F)/2, and
Q@) = max {d(z, f,(x)) ; t € [0, 61}

for any xeX. Since F' has no fixed points, Q(z) > 0 for every z e X.
Moreover, for any x e X, there exist 6,(x) > 0 and a neighborhood U of
x with Q(¥) = 8,(x) for y € U. Therefore, we get ¢ = inf {Q(x); x € X} > 0.

Now, if di(f;, 9,) <e for every te[0,4], then G is an expansive flow.
In fact, if G is not an expansive flow, then by Lemma 4 there exists
x,e X with A(xz)) = 0, where A is a continuous funtin on X such that
G(t, ) = F(A®)t, ) for every te R and zeX. Hence, G(t,z,) = z, for
te R. We can estimate as follows;
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e = Q@y) = d(@,, () = d(g,(xy), [(x,))
é do(gs’fs) <e

for some se[0,6]. This is a contradiction. Therefore, G is an expan-
sive flow on X. Q.E.D.

THEOREM 5. Let F be an expansive flow on X. In Cent(F), the
set of all expansive flows on X is open with respect to C’-topology.

Proof. Let G be an expansive flow on X such that G e Cent ().
Let H (or {,}) be a continuous flow in Cent (F) and dy(g;, k) < e(G) for
every tel[0,5(G)], where (@) and d(G) are positive numbers which are
obtained in Theorem 4. By Theorem 1, there exists a continuous func-
tion B on X such that

H(t,x) = F(B(»)t, x) , B(x) = B(F(t, x))
for te R and xe X. On the other hand, we can write
G, ) = FA@t, 2), A = AF(,2)

for te R and z e X, where A is a continuous function on X. Therefore,
we get

heo 94(x) = h(F(A(%)s, ©))
= F(B(x)t, F(A(x)s, x))
= F(A(x)s, F(B(x)t, x))
= 9,(F(B(2)t, x))
= g0 hy(x)
for every t,seR and zcX. Hence, by Theorem 4 H is an expansive

flow on X. So we see that in Cent (/") the set of all expansive flows on
X is an open set with respect to C°’-topology. Q.E.D.

EXAMPLE. Let S*' be the unit circle. We consider S' as a compact
connected C~ manifold by polar coordinates. Let a Riemannian metric
d(e*, ) on S!, where 7 = +/—1, be defined by

d(e*, e¥) = |t — s|, —r < t—s<nz (mod2nr) .

A continuous flow F(t, e?®) = ¢“*® is an expansive flow on S
By Theorem 1, we get that for any continuous flow on S' Ge
Cent (F'), there exists a unique constant a € R with G(¢, z) = F(a-t,x) for
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teR and xeS'. Consequently, we know that G e Cent (¥") is not an ex-
pansive flow on S! if and only if G(¢,x) = x for every te R and z ¢ S

4. Anosov flows

TM will denote the tangent bundle of M and V(M) (resp. V(M))
the vector space of all C' (resp. continuous) vector fields on M. A dif-
feomorphism f of M induces a linear automorphism F = F(f) of V(M)
defined by F(v) = dfovo f~ for v e V(M), where df denotes the differ-
ential of f.

DEFINITION 5. A vector field v e Vi(M) or the flow {f,} generated
by v is called an Anosov flow on M if »(x) % 0 for x € M and if there
exist a Riemannian metric |-| on M, constants C >0, 0<1<1 and a
decomposition of the tangent space T,M = E%® E:® E* into three sub-
spaces, which vary continuously with z on M satisfying the following
conditions;

(0) EL=R-v®),

(i) df, leaves invariant the subbundles E* and E* respectively, where
B = Uzen B3, a = s,u,

(i) ldfow|] < C2|w| for weEst=0

[dfiw| < Ca~¢|w| for we E* t < 0.

The splitting TM = E°@ E* @D E*, E° = U en E%, is the continuous
Whitney sum.

Now, the vector space V°(M) becomes a Banach space with the norm

lv]] = sup {Jv(@)|; € M}

for v e V°(M). An equivalent way of defining an Anosov flow is as fol-
lows; v or {f;} is an Anosov flow if there exist a Riemannian metric
|-] on M and constants C > 0,0 <21<1, such that V(M) = V'@ V*D V*
(vector space direct sum), where we have put V°= {h.v; he C'(M)},
FtV* = V< (teR), a = s,u, and the restriction F* = F*|,., « = s, u, satis-
fies

Fill < C2 t=0
IFul=C2t t=<0,

where we define F{(w) = df,owof_, for we V(M) and the norm

[Fell = sup {|F*w)|[; we Vo, lw| <1},  a=su.
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LEMMA 5. Let v (or {f;}) be an Anosov flow on M and let {g,} be
a C-flow on M such that {g,}eCent(v). Let V(M) =V'D VD V* be
the decomposition of V(M) with respect to v. We decompose the oper-
ator G'(w) = dg,owog_, into

60 G(t)s 811,
G'=|Gy GY G,
G'ZO G:Ls G'f/.u
according to its components in V°, V: and V*. Then
G, =0 if axg.
Proof. Since f,og, = ¢;of, for t,re R, we get
G, Gi, Gi\(F; 0 0 F; 0 0\/Giw Gi G,
Ggo Gfss Ggu 0 F: 0 = 0 F; 0 gO Gis qu
:»0 G:Ls G:.m 0 0 F:l, 0 0 F:l, 240 G:Ls G;u

for every t,c R. Hence we have

Gio F§ = FioGY (1)
GloFy = F oGy (2)
Giso Y = Fio G, (3)
GiyoFy, = FioGi, (4)
G o Fy = Fy 0 Gy, (5)
GiuoFy = Fo Gy, (6).

By (5), we can estimate as follows;
Gl S 1FZTGoall- | Fi Il < C°2 || Gl

for every t,recR. Since C22” <1 for sufficiently large » > 0, we get
G, = 0 for every t ¢ R. Similarly from (6), we get G¢, = 0 for teR.
Now, put M, = max{|v(x)|; x € M}, m; = min {jv(x)|; x € M}. Then
since F"(v) = v and F"(h-v) = hof_,-v for heC'(M) and rc R, we get
|F7l| < M,/m,. Therefore, from (1), (2),(3), (4), we have Gi, = 0 and G,
=0,a =s,u, for teR. Q.E.D.

THEOREM 6. Let v (or {f.}) be an Anosov flow on M and let {g,}
be a C-flow on M such that {g,} € Cent (v). Then {g.} is a C-expansive
flow on M if and only if {9} is an Anosov flow on M.

https://doi.org/10.1017/50027763000017517 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017517

14 MASATOSHI OKA

Proof. Since “if” has been proved by D. Anosov [1] (cf. [2]), we
shall prove ‘“only if”. From Theorem 1 and v(x) % 0 for any xzc¢ M,
there exists a C'-function A on M such that

9(t, ) = f(A@)t, 2) , A(@) = A(f(@, x)

forte R and x ¢ M. Since M is connected and {g,} has no fixed points,
A@) > 0 for any ze M or A(x) <0 for any ze M.

We assume that A(x) >0 for xe M and put M, = max {A(x); v € M}
and m, = min {A(x); v € M}.

Now, let V(M) = V'@ V* @ V* be the decomposition of V(M) with
respect to v. To get the norm of G, G,, we calculate as follows. Fix
roeM,weV,teR and ke C'(M), then we get

(G (wIh) () = dg.(w(g_.(x)))h = w(g_(x))(hog,) .

Take a neighborhood of g_,(x,) with local coordinate system {y,, ---,¥.},
and put

w(g_@y) = z 0:0/3Y0,s a0 »

where n =dimM and a,,---,a, are C'-functions defined on the neigh-
borhood of g_,(x,). We put y, = g_,(x)).

wy o g) = z 0:0/0Y3), (o FAWE, )

=3 a [dhof(s, yo)] _ [aA(y)t]
i=1 ds s=Ayort 0y; Jdv=w

» oho (AW,
n :élai [ f(ay(iy) y)]mo
=t w(A)Yy) - v(f (AW, Y)h + wy)(ho F(AWIE, ¥))
= t- w(A)(Yo) - V(S (AW, YNh + Af 4 WYNh
= t-(w(4) o g_) (@) - v(@)h + Af acypso W o F(A@N(—1), Z)h
= [(t-w(A)og_p)-v + FA w)(@)h .

Therefore we get
Giw(x) = F49%(x) , w(d) =0

for xeM and weV:. For any we Vs, ||w||£1,t =0, we have
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|Gtwl| = sup {|GLw@)|; v € M}

sup {|{F4=tw(x)|; © € M}

Il

< sup {C14®t \w(x)|; v € M}
< sup {C2™* |lw(x)|; x+ M}
< C@™)t.

Hence we get
Gl = C™)  ¢=0.
Similarly we get
G w(x) = F4@yw(x) , wl) =0
for xreM and we V* Whence we have
Gl = Ca™™ t=<0.
In the case of A <0, we get
Gl < CG™)  t<0,

|Goull < C(A M2t t=0.

Consequently, in either case, using Lemma 5 we see that {g,} is an
Anosov flow on M. Q.E.D.
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