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1. Introduction. Let E be an arbitrary (non-empty) set and S the restricted symmetric
group on E, that is the group of all permutations of E which keep all but a finite number of
elements of E fixed. If ®is any commutative ring with unit element, let T' = ®(S) be the group
algebra of S over @, I > ®; and let M be the free ®-module having E as ®-base. The
‘““ natural ” representation of S is obtained by turning M into a [-module in the obvious
manner, namely by writing for a€ S, 2,€®,

a Y Ai= Y Agi
iekE teE

Our object is a more or less complete analysis of this representation. It turns out that the
situation is particularly simple when E is an infinite set, the natural representation being
indecomposable independently of the ring of scalars ®; furthermore when ® is a field the
natural representation contains only one non-trivial irreducible constituent (§ 6). The case
in which the number n of elements of E is finite occupies §§ 2-5, where the natural represen-
tation is seen as one of a set of representations obtained from extensions by ® of a certain
submodule M, of M. Most of these representations are indecomposable (§ 4); and when @
is a field they have only one non-trivial irreducible constituent of degree n—1 or n—2 depend-
ing on the characteristic of the field. In this way one obtains a non-trivial modular irreducible
representation for each symmetric group (§ 5).

2. The natural representation of the symmetric group. Let ® be a commutative ring with

unit element, S a group, and I' = ®(S) the group algebra of S over ®; we shall use 1 to denote
the neutral clement of S as well as the unit element of ®. By a representation module of S

over ® we shall understand a (left) I'-module M which is ®-free, i.e. which has a ®-base.
This last requirement is automatically satisfied when ® is a field, since every module over a
field is necessarily free. By choosing a ®-base for M we can construct a matrix representation
of S in the usual manner.

Since the ring @ is commutative, any two ®-bases of a ®-free module have the same num-
ber of elementst and consequently any two matrix representations arising from the same
representation module have the same * degree ”’. The usual notions of homomorphism, iso-
morphism, etc., of representation modules also obtain. For instance the representation module
M is said to be decomposable if it is possible to express M as the direct sum of two proper
representation submodules. Note that M may be decomposable as a I'-module, but not as a
representation module. Similarly M is a simple or irreducible representation module if and
only if the only representation submodule of M apart from itself is the null submodule.

t See N. Bourbaki, Algébre, Ch. Il § I, p. 20, Ex. 13, and Ch. III § §, No. 7, Cor. 2, p. 67.

https://doi.org/10.1017/52040618500034468 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500034468

122 H. K. FARAHAT

Throughout §§ 2-5 we take S to be the symmetric group on a finite set E; for M we
take the natural representation module of S described in the introduction. Let n be the

number of elements of E.
Clearly the ring @ is itself a ®-free module (having ®-base consisting of the unit element 1

by itself). We make ® into a representation module for I' by writing, forae S, pe®, ad = ¢.
The matrix representation corresponding to this module is the unit-representation o — 1.
We now define a mapping v : M — @ by the equation

v< ¥ l,i) =3

leE
Obviously, v is a ®-homomorphism, and we may verify that if e S then av =va, and v is in
fact a T-homomorphism. Put M, = Ker v; thus M, consists of all elements) A,i of M for

which) 2, = 0.
Clearly M, is a I'-submodule of M. However, it is also a representation submodule of M.

To show this, it is enough to exhibit a ®-base for M,; and it is an easy matter to verify that
if i, is a chosen element of £ then the n—1 elements i—i; (i # i,, ie E) constitute such a base.

By the first isomorphism theorem it follows that M is an extension of M, by the * trivial
module ®. The question arises as to whether or not this extension splits, i.e. whether M,

is a direct summand of M. We prove

(2.1) THEOREM. M, is a direct summand of M if and only if n® = .

Proof. Suppose that n® = @, that is that an’ = 1 for a suitable n'e®. Let e denote the
sum of all elements of E: e = )i, and define the mapping v' : ® » M by

ieE
v = n'de.
Since ae = e for all ae S, v’ is a '-homomorphism. We have, for ¢e®,
wo=vn'¢pe=n'¢n=¢;
whence vv' is the identity map of ®. It follows that £ = v'vis an idempotent I'-endomorphism
of M into itself:

E=(Wv)i=vwy=yv.
We have

ez ui=v(su)=n(za)e

and this is zero if and only if ) A; =0, i.e. if and only if Y Aie M,. It follows that M is a
direct summand of M, more precisely, that M is the direct sum of M, and the  trivial

cyclic submodule ®e generated by e.
Conversely if M, is a direct summand of M then there exists a ['-epimorphism n : M — M,

whose restriction to M, is the identity map. Let i, be a fixed element of E and put

miy =Y Ajj,
JeE
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so that we have YA, =0. Since = is a I'-homomorphism we have for any «€S, an = na;
hence

Y Auj = omiy = noiy = w((oiy —iy)+iy) = (aiy —i)+7iy. (%)
jeE
If j,j* are distinct elements of E other than i,, there exists a€.S such that o’ = j, ai; = i,.
Comparing coefficients of j in (*) we then get A, = 4;. It follows that the coefficient of j
(j #iy) in mi; is independent of j. Let 4 be this coefficient. Then 4; = — (n—1)A and so

niy = Ale—niy), e= Y i
icE
Equation (%) now gives for arbitrary «,
Me—nai,) = ani, = ai, —i, + A(e—niy),
i.e. —Anai; = ai, —i (14 4n).

Choosing for o any permutation which * moves ” i, and comparing coefficients of ai,, we
get —An=1. Hence n® = ® and the proof is complete.

3. The group of extensions of M, by ®. The module 4 is said to be an extension of the
module B by the module C if B is a submodule of 4 such that A4/B is isomorphic with C.
Here we are concerned with the extensions of M, by ®.

According to the general theory of extensions of representation modules (see e.g. D. G.
Northcott, Homological algebra, Ch. 10, § 9) all extensions of M, by ® will be known once the
cocycles on Sinto Hom g, (®, M) &~ M, are determined. We recall that a cocycleon S into M,
is a mapping ¢: S — M, such that

e(af) = ae(f)+e(a) (¢, f€S)

Those extensions which are isomorphic with the direct sum of M, and ® (i.e. split ex-
tensions) correspond to the coboundaries, namely cocycles of the form

go(@) =amog—my (xeS),

where my is a fixed element of M. The group of extensions Ext(M,, ®) is then defined as the
factor group of the additive group of cocycles modulo the subgroup of coboundaries.

In this section we compute the group of extensions of My by ®. Let iy, i,, ..., i, be the
elements of the set E in any order, and, if r is any integer and 1 £ k S n—1, write 7, _,,_)
= (i;, i,). Then it is well known (see e.g. R. C. Carmichael, Groups of finite order, Ch. VII
§48) thatt,, ..., 7, generate the symmetric group S on E, and that every identical relation
between them is a consequence of the following relations:

(@ w=1 (b @u)’=1 () (un. 1kaj)2 =1,
where k, j range over the set 1, 2, ..., n—1, except that j is different from k and k+1.
It follows that a cocycle ¢ is uniquely determined once its * values > at 7, ..., 7,-, are
known. In fact, if ®,, w,, ... , w, is any selection of the above 2-cycles, then

(0,07 ... ©) = 0,0, ... Wy 18(W) + @ W3, ... Wy_28(W,- )+ ... +©8(w;)+e(w,).
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Using this formula we can verify easily from (a), (b), (c) that the values of the cocycle at
Ty, ... > To— Satisfy the identities

(@) (1+7)e(z) =0,
(0) A+700 1 + T T{e@) +16(Te4 )} = 0,
©) G+ ntme() +1;(0m0 + De(t) + Tty (8(1h4 )] = 0,

where, once more, k, j range over 1, 2, ..., n—1, j being different from k and k+1.

Conversely, suppose that we are given n—1 elements &(z)), ..., &(t,-;) of My which
satisfy the relations (a’), (b"), (¢'). We show that they are the values of a cocycle at 7,, ... , T, .
If wy, ..., , is a sequence of elements 7,, put

q
e(wy, 0y, ... , W) = lelwz ... 0, _16(0,),
it being understood that empty sums are zero. It follows immediately that, if @, ..., @) is
another sequence, then

e(@y, . Wgy OF, ...y, W) = W@, ... WE(WY, ... , @) +E(@y, ... , @).

Since the &(1,) satisfy (a'), (b'), (¢'), it follows that e(w,, w,, ..., ®,) = 0 whenever 0w, ... @,
= 1. Hence, if 0,0, ... 0, = 0\ @) ... ), then &(wy, ..., 0, 0, ..., w}) =0 and so

e(wy, 0y, ..., ) = = (0,0, ... WYe(Wp, Wp_y, ... , V)
= — (00} ... wpe(w,, ©p_y, ... , ®])
= e(®}, W3, - , Wp)s
by (a’) and the definition. Thus we may define for « = w,w; ... @, &(¢) = &(w,, w,, ..., ®),

and then ¢ is a cocycle on S into M, as required. Hence we have proved

(3.1) LemMA. Ifeis a cocycle on S into My, then the elements m, = ¢(t) (1 Sk Sn—1)
of M, satisfy the relations (a'), (b'), (¢). Conversely, any n—1 elements of M satisfying these
relations are the values of a cocycle at t, ..., T,_,.

Let ¢ be a cocycle, and for k= 1,2, ...,n—1 put

&(n) = 12'1 Pr i
Applying (a’) we find that

ek = ~Prn = P (s2Y) )
and 2¢,, =0 for I#k 1#n (ii)
Next apply (b'), comparing coefficients of i, on both sides. We have
0 = sum of coefficients of i,, iy, ix4; in E(T) +Tu8(Ths 1) = Gi ka1 +Pes1, o

Hence ¢k, k+1 = ¢k+1, ke (iif)
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Finally apply (c¢’), comparing coefficients of i; on both sides. Then 0 = sum of coefficients of
Iy, I; i

e(1) + 1 (T4 Ths 1 + DE(T) + TuTies 18(Tir 1)-
The contribution of the first term is zero by (i). The contribution of the second is the sum of
the coefficients in e(ty) of T4 1 TuTjin, Tus 17T ijs Tjins T;f;, Which is clearly equal to

it
Gr,jF Dt byt Prn = 204, ;+ G — d = 0.
The contribution from the last term is obviously the sum of the coefficients in &(t,,) of
Ti+ 1Tklns Ti+1Tki;; that is
Prr1pt Prrr,y =0 (@iv)
Hence, by (iii) and (iv), we see that, for each k, ¢, , has constant value provided that [ # k,
! # n. Denote this common value by ¢, ; then we have proved that

e(t) = Y #Z" i+ @ (ix—=i,) (2¢,=0),

or writing as usual e = i, +i,+ ... +1i,, we have

(1) = Yie+ & (i —1in)- (3.2)

Since &(t,) € M, we have ny, = 0 = 2f,. Let ®, denote the set of elements § of @ such that
(2, M)y = 0. Thus @, is necessarily zero if n is odd. Then ¥, e ®, (all k).
Now a straightforward calculation shows that for arbitrary &, € ®, the elements

my = ék(ik—in) (k= 1: 2: cres n_l)

satisfy the requirements of Lemma (3.1). Hence there is a unique cocycle &’ such that &'(t;)
=& (iy—1i,). It follows from (3.2) that the equations

g'(t)=yYe (k=1,2,...,n-1)

also define a cocycle. Clearly for any a€S, ¢'(x) =y,e, where y,e®,. We have for
o, Be S,

Yage = &"(af) = ae” (B)+6" (@) = « . Ype+ e = (Y +ae.

Hence

‘/’aﬂ = l//a+¢ﬂ)

and so either ¢, = 0 (all a), or else there is a non-zero element Y € ®, such that

v, = 0 ifaiseven,
«7 ¢y ifais odd.

This last case is only possible when n is even.
Conversely it is clear that, if »# is even and € ®,, then

¢ (o) = 0 ifaiseven,
e ifais odd,

is a cocycle on S into M.

https://doi.org/10.1017/52040618500034468 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500034468

126 H. K. FARAHAT

Thus we have completely determined the cocycles:
Every cocycle ¢ is given by

e(n) = Ye+&(ix—i,) (1Sk=sn-1), (3.3)
where Y€ ®y, &, e®; and conversely if, Y e®,, &, €0, then (3.3) defines a cocycle on S into M.

Remark. We observe that for n > 2 the elements ¢, &,, ..., &,_ are uniquely determined
by &(ty), ..., &(1r,-;). For n=2 we have e =y(i, +i,) =¢(i; —i;), so that ¢ may be
replaced by zero. This will be assumed to be the case whenever an interpretation of (3.3)
for n = 2 is required in what follows.

Now we determine the coboundaries. If

e(a) = amy—my,

n n
where my= ) Wiy ( Y owm= 0)
k=1 k=1
is any coboundary, then

e(ti) = (= ) (ix— 1) = & (ix— 1),
say, where & = u,—p,; we have
51+ +€n—-l = (n"‘l)ﬂ,,“[ll— e Ty = n”nen(b‘
Conversely, suppose that ¢ is a cocycle such that
e(ry) = & (iv—in) i+ ... +&,-, €nd).
Put &, + ... +¢&,-, = ny, and define u,, ..., p,_; by
==& (1=ksn-1).
If my = 2 ukik’ then
k=1
v(ime) =+ ... +py=np,— 1+ ... +&-1) =0,
so that mye My; and furthermore

Tmg—mg = (= ) (iy— i) = & (ix—1,) = e(7y).
Consequently

e(e@) =amy—m, (foraeS)
and ¢ is a coboundary. Hence we have
(3.4) The cocycle (3.3) is a coboundary if and only if
Yy=0 and &+ ... +&,-,end.

We are now in a position to prove

(3.5) THEOREM. If n > 2, the group Ext(M,, ®) of extensions of M, by ® is isomorphic to
the direct sum of ®[n® and ®,, where @, is the set of elements  of ® such that (2, n)y = 0.
For n = 2 we have Ext(M,, D)~ ©/20.
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If n>2 and ¢ is the cocycle (3.3), put Ne= (&, + ... +&,-1» ¢)._ Then N maps the
(additive) group of cocycles homomorphically onto ®/nd @ ®,. Here ¢ denotes the residue
class of ¢ modulo n®. The kernel of N is precisely the group of coboundaries, by the
remark preceding the theorem. This proves the first assertion and makes the second assertion
obvious.

(3.6) COROLLARY. If n® = @ then every extension of My by ® splits.
For in this case we have ®/n® = 0, ®, = 0, and so Ext(M,, ®) =0.

4. The extensions of M, by ®. As before, M denotes the ®-free module with base

E ={i,, iy, ..., i,}. We shall show how M can be made into a I'-module in such a way that it

becomes an extension of M, by ® having a prescribed cocycle &. If a is any element of T', we

shall use ag to denote the ®-homomorphism of M into itself corresponding to « in the proposed

module. Furthermore, we denote the resulting I'-module by eM. Clearly it is sufficient to
define ag when ae.S. We write, for me M, ¢S,

aem = am+v(m)(e—&)(«), 4.1)

where £ is the cocycle of the natural module M (computed by using (4.3) below) and, as befqre,
v(m) is the sum of coefficients of m. Clearly, when ¢ = &, (4.1) reduces to the natural definition
aem = am. We verify that (4.1) does in fact make M into a I-module. If «, f€ S, then, for
meM,
(@B)em —ag(Bem) = (aB)m +v(m) (e —&) () —ae[ fm+v(m)(e—E)(B)]

= (af)ym+v(m)(e—&)(«f) — a[fm+v(m)(e—&) ()] —v[Bm +v(m)(e—&) ()] (e —&)(®)

= v(m){(e~&) (@) —a(e-&(B)—(e—&) (@)} =0,
since e— £ 1s a cocycle. This proves our contention.

(4.2) TuEOREM. The representation module eM defined by (4.1) is an extension of M, by ®
with cocycle e.

Proof. By (4.1), we have aem = am whenever me M,. Hence M, is a T-submodule of

eM. Furthermore, we have for me M, o€ S,

v(aem) = v(am) = av(m) ;
hence v is a I'-epimorphism of éM onto ®. Since M, = Ker v, it follows that ¢M is an extension
of M, by ®. It remains only to compute the cocycle of this extension; and to do this we need
mappings which express M as a direct sum of the ®-modules M, and ®. Define n: M — M,,
p:®— Mby

nm=m—v(m), p¢=di,
where me M, ¢e®. It is easy to see that

incl

My> M3M,; ©5M50 4.3)
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is a representation of M as a direct sum of the ®-modules M, and ®. According to the usual
method for computing the cocycle ¢, of the extension ¢M we have, for a€ S,

61 (a) = naspl = nusi, = nlai, + (-8 (@],
& (@) = ati,— i, +(e— &) ().
But & is the cocycle of the * natural ” module M. Hence when ¢ =& we have ¢, = &.
Consequently our formula gives

&) = ati,— i, 4.4)

and g, (a) = e(a); that is, the cocycle of the extension eM computed by using (4.3) is . The
proof is complete.

Remark. The proof also yielded the formula (4.4) for the cocycle of the natural extension
of M, by ® computed by using the representation (4.3). In particular we have &(t,) = iy~ i,.
By (3.4), we have that & is a coboundary if and only if n—1 € n®, i.e. if and only if n® = .
This yields another proof of Theorem (2.1).

The remainder of this section will be devoted to a discussion of the decomposability of
these extensions eM as representation modules. We begin with an easy lemma.

(4.5) LeMMA. If the representation module A is decomposable, then there exists an idem-
potent endomorphism 6 of A such that § and 1 are linearly independent over @, that is, such that

¢0a+¢,a=0forallac A implies that ¢, = ¢, =0.

Proof. Suppose that B and C are proper representation submodules of A such that
A = B+ C (direct sum). Every element ae 4 has a unique expression in the form a=b+c
with be B, ce C. Let § be the mapping of A into itself carrying every element a to its com-
ponent b in B. Obviously é is an idempotent endomorphism of 4, and it only remains to show
that §, 1 are linearly independent over ®. Now since B is a representation module, it is ®-free,
and so the only element ¢ € ® such that ¢B = 0 is the zero element. A similar assertion holds
for C. However B =64, and C = (1—-05)4. It follows that ¢ = 0 implies that ¢ =0 and
that ¢(1-9) = 0 also implies that ¢ =0. Suppose now that ¢,0+¢,1 =0. Multiplying by
1—46 and remembering that 62 =3, we get ¢,(1—-8) =0 and hence ¢, =0,¢, =0. The
lemma follows.

(4.6) Lemma. If n>2 and deHom (eM, &' M), then SMo<=M,. This conclusion is
valid in the case n = 2 provided that no non-zero element of ®, annihilates .
Proof. We have, for aeS, mye My, ag'dm, = daemy = dam,. Hence
vdam, = vag'dmgy = vadmg = vémy,.

Suppose that n 2 3, and let &, / be distinct integers such that 1 £ k,/<n-1. Applying our
formula with a = 1, mg = i, —i,, we get

v (iy—i,) = v8(iy—ip) = v8(iy—i,)— vo (i~ i,).

n—1
Consequently vo(i,—i,) = 0, i.e. 6(j,~i,)e My. But My = Y ®(i,—i,). Hence 6M, c M,.
=1
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Suppose finally that n = 2 and that ¢&| =0, ¢ €@, imply that ¢ = 0. We have, writing
0(iy ~ip) = A1y +Aad,

llil +/12i2 = 5(i1 - 12) = 1:18,5'[18(1.1 - 12) = 118'51.'1(1'1 - lz) = —118'5(1'1 - iz)
= —1,& (Aiy +Ay05) = —(A1ip+ A1) — (§1 = DA, + ) (i —i3).
Hence
(A +2){2i,+ &1 (i, —ix)} = 0.
Comparing coefficients we have
2(A+4) =0, (4,+4,)8;=0.
Our hypothesis now gives A, +4, =0, i.e. d(i; —i,)€ M. The proof is complete.

Remark. The condition required for the case # = 2 cannot be dispensed with in general.
Consider for example the mapping & defined by

6(i1—i2)=2i1+2i2, 512 =0,

taking for @ the ring of the residue classes of the integers modulo 8. Clearly é does not map
M, into itself, and a straightforward calculation will show that 6eEnd e M if e(r,) = 0.
The next object is to determine the endomorphisms of M,

(4.7) LemMA. Every endomorphism of My is a multiplication by a scalar.
Proof. Let e End.M, and put for 1 £k sn—-1,

n-1
5(ik—in) = ’;l ¢(ika il)(il_in)-

For any aeS we have 6 = a"!'éa. Apply this, choosing for « any permutation leaving i,
fixed. Then

"il @ (ipy iD(iy—ip) = 0 (ix—1i,) = a7 Oa(ix—ip)= ™ ' (atix—i,)
=1

n-1 n-1
=q 2l ¢ @iy ip)(ip=in)= ¥ d(@ip ai)(i=iy) (i = ai)).
= =
Hence ¢ (iy, i) = ¢(aiy, «iy) whenever ai, = i,. This implies that, if k+# /; k, /s n-1,
(i i) =@, i) =0, ¢l i) =03, i) =1
say. Consequently, writing ¢ —x =,
8(iv—i) = {(ix—i)+x(e—ni) QSkgn-1).
In the case n = 2 this gives
0(iy—iz) = {(iy— i)+ x(iy— i) = C+ 03 —iy),

so that the assertion is proved in this case.
1
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Ifn>21letp<n—1andp#k. Since 6—{ commutes with 7,, we have

(0= Ux~1,) = (=0, (k=) = 1,6 =) (i —i,) = T,x(e—ni,) = x(e—ni,).
But

@=0—ip) = O=D{(l— i) — (=i} = O =) (i =i) — (6 =) ({,—in) = 0.
Hence x(e—ni,) =0, x =0, and 6(i,—i,) = {(iy—i,). The result follows.

(4.8) CoroLLARY. The representation module M, is indecomposable.
This is an immediate consequence of (4.7) and (4.5).

(4.9) LemMma. Let n > 2 and suppose that § is a T'-homomorphism of the representation
module ¢M into the representation module ¢' M, where & is given by (3.3) and & by a similar
Sormula having ', £, in place of Y, . Then we can find elements {, 8, 0, of ® such that for
meM,

1
dm = Cm+v(m){8 3 (- l)ik+00e}, (4.10)

n~=1
9 ; & =n(—0,), 6y =0. (4.11)

Conversely, (4.10) defines a homomorphism 6 provided that (4.11) are satisfied. These assertions
are valid also in the case n = 2 if no non-zero element of ®, annihilates &;.

Proof. Letn > 2. By (4.6), we have 6M, c M,; i.e. é induces an endomorphism of M.
By (4.7), there exists { in ® such that dm = {m whenever me M,. PutA = §—~{,sothat Am =0

whenever me M, and let Ai, = ) 6,i,. The relation A = 7,6'At,e now gives
1
Y Oy = 1 Argei, = 18 Alig+ e+ (E— D) — i)} = n&'A{i,+ e+ E(iy—i,)} = ue'Ai,
1
= Tksl ; Hkik = Tk ; 9“"(‘*‘(; 9") {I/!'e+(f,'(—1)(ih—l,,)}

n
Let /, k, n be different. Then comparing coefficients of i, i, we have, writing ) 6, = 6,
1

y'6 =0,
0,=06,+0(5&-1) (1kgn-1).
Adding this over k=1, 2, ... ,n—1, we get

60, = (n—1)0,+6 Y E—(n—1)0;
1

n—1
ie. 6 ) & =n(0—06,). Hence (4.11) is satisfied with 6, =6,. Furthermore we have
1

n n-1 n-1
Ai, = 21: O = 21: [80+0(&—1)]ix+04i, = Ooe+0 ; (&= Dy
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If now me M, then m—v(m)i,e M, and so
n—=1
Am = v(m)Ai, = v(m) {00e+9 Y (G- 1)i,‘} .
1

This proves (4.10) and completes the proof of the direct part of the lemma in the case n > 2.
In view of the agreement that ' = 0 when n = 2, we have also proved our assertion in this
case.

Now we prove the converse assertion. We have to show that, if 0, 8, satisfy (4.11), then

n—=1

Am =v(m) {00e+9 Y (é,"—l)ik} = v(m)c,
1
say, defines a homomorphism of ¢éM into ¢’M. Let « be any permutation from S. Then,
since aem = am (mod M,), we have v(aem) = v(am) = v(m). Hence

Aoem = Am.
On the other hand, for 1 £ kK < n—1 we have

&/ Am = v(m) . ,¢'c = v(im){t,c +v(O)[Y' e+ (& — D) (i —i)]}

n=1
= v(m) {909+9 ; (CL—1)ik—9(5i—1)(ik—in)+V(C)[¢'e+(éL-1)(ik—i..)]}-

n—=1
But v(c) = nfy+0 Y &—0(n—1)=0, by 4.11. Hence, as 0’ =0,
1
T&'Am = v(im)c = Am.
It follows that ag’Am = Am for all a€ S, and the proof is complete.

(4.12) THEOREM. Every extension ¢eM of My by ® is an indecomposable representation
module with the exception of the split extension.

Proof. We have to treat the case n = 2 separately. To begin with, assume that 7 > 2.

Suppose that gM is a decomposable representation module. By (4.5), we can find an
idempotent endomorphism § of ¢M into itself such that 1, 6 are linearly independent. By
(4.9) (with ¢ = ¢"), there exist elements {, 8, 6, of ® satisfying

n—1
0 Y &=n(0-0p), 6)=0 (4.13)
1
such that

om={m+v(m) {0 "il (ék—l)ik+90e} ={m+v(m)c,
1

say. Then {(i,—i,) = 6(i,—i,) = 6*(i,—i,) = (*(i,—i,), whence { is an idempotent element
of ®. Next, writing A = §—{, we have Am = v(m)c,

A%m = v(m)Ac = v(m)v(c)e =0v(m)c.
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Hence A% =0A; i.e. (6—{)* =6(5-{). Buté*=34,{*>={. Consequently
(1-20-0)5+{(1+6)=0.
However 4, 1 are linearly independent over ®. Hence
0=1-2 6>=(01-20)>=1-4{+4{>=1.
By (4.13), we have

n—1 n—1
Y &=0%Y & =nd(0—0,) end
1 1

and Y =0%y =0.0y =0. Accordingly ¢ is a coboundary and the extension eM is a split
extension. This completes the proof in the case n > 2.

It remains to prove the theorem for n = 2. Suppose that the representation module eM
is decomposable, and let M = X+ X’ be a decomposition of M into a direct sum of proper
representation submodules. Since any ®-base of M has exactly two elements, the submodules
X, X’ have bases of a single element each. Let x, x’ be such elements. Then x, x' form a

®-base for M. Put
iy—iy |= a o X
i B B x|

The 2 by 2 matrix in this equation is invertible, and the same must also be true of its determinant
af’~a'f = u, say. Applying 7,¢ to both sides of the above equation, we have

o o T,8X | = —(i,—1i,) =] -1 0 iy —i,
[ﬂ ﬂ'] r,sx'] fx(il‘iz)‘*'iz] l: 511][ iy ]
= <1 0 o o x ].
e R

Premultiplying by

we find that
Ul 1ex | =| —oa'éy—af’ —a'p —a'261—2a’ﬂ’ x .
7,6x" o2&, +20f ao'é, +ap +a'B x'

Since X, X’ are I'-submodules and their sum is direct, the 2 by 2 matrix in this relation must be
diagonal. Hence

W, = —2af, a’f = ~24f,
and so
Py = (@p' —a'P)*E, = praPE +B . a"E; =0 (mod 20).

However u? is invertible. Hence ¢, €2® and the extension eM splits. The proof is now
complete.
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5. An irreducible modular representation. In this section ® will denote a field of charac-
teristic p (possibly zero). Our object is to obtain the irreducible constituents of the matrix
representation of S obtained from the representation module M,. We begin with a pre-
liminary result. The coefficient of 7 in x will be denoted by (x),.

(5.1) LeMMA. If x is any element of M, and i any element of E, then
(x)i(ni—e) e I'x.
Here e denotes the sum of the elements of E.

Proof. Let E' denote the set of all elements of E other than i, and let ¢ be any permutation
of E leaving i fixed and permuting the elements of E’ cyclically. Let

x' = z (x)uu9

ue k'

so that x = x" + (x),i, v(x) = v(x") + (x);. Then clearly

(I+o+02+ ... +0" " O)x = v(x)(e—i)+(n—1)(x);i = (x);(ni—e),

since v(x) =0. The lemma follows.

(5.2) THEOREM. If ® is a field of characteristic p not dividing n, the matrix representation
(of degree n—1) of S obtained from the representation module M is irreducible. If on the other
hand p divides n, this representation contains an irreducible constituent of degree n— 2, the remain-
ing constituent being the unit representation.

Proof. (i) Suppose firstly that p does not divide n, and let x be a non-zero element of
M,. Then, by (5.1), we have

(x);(ni—e)e I'x (for all i € E).

But (x); £ 0 for some ie E and ® is a field. Hence ni—eeI'x for some ie E. If now jis any
element of E, and t is the 2-cycle (i) then

nj—e=rt(ni—e)eIx.

Since in this case n® = ®, we get for j, ke E,
j—k=n'[(nj—e)—(nk—e)] e I'x,

where nn’ = 1. But the elements j— k& generate the ®-module M,. Hence M, = I'x; and so
x = M, for every non-zero element x of M,. The representation module M, is therefore
simple, and the corresponding matrix representation is irreducible.

(ii) Assume now that p dividesn. Thenv(e) =n.1 =0; thatis ee M, and obviously ®e
is a representation submodule of M. As such ®e is isomorphic with ®@ and so gives rise to the
unit representation. We shall show that rhe factor module My|/®e is a simple representation
module.

Let i be a fixed element of E, let E’ be the set of all elements of E other than i, and denote
by S’ the subgroup of S consisting of those permutations of § leaving i fixed. We identify
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S’ with the symmetric group on E’. Since the elements {k—i; ke E’'} form a ®-base for M,
there is a unique ®-isomorphism 6 of M, onto M’ = Y ®k, for which 8(k—i) = k for all

keE’
kin E’. We observe however that 8 is in fact an S"-homomorphism. Furthermore we have,

sincen.1=0,
B(e)=8 Y (k=)= Y k=¢e,
ke E keE

say. Hence the I''-isomorphism & carries ®e onto ®e’ (here I'" = ®(S’) is the group algebra
over ® of §" and I'" = I"). It follows that # induces a I'"-isomorphism of the factor module
M, /®e onto the factor module M’/®e’. However the number of elements of E’, namely n—1,
is not divisible by p. The I'-module M’ therefore splits into the direct sum of ®e’ and
Mj = M'n M, (cf. (2.1)), and, by the first part of this proof, M is a simple I"-module. As
M’|@e’ is then isomorphic with M, it follows that M,/®e is a simple T'-module. Hence, for
any non-zero element x of M,/®e we have

My/®e « I'x = T'x,

and so My/®e = I'x; that is My/®e is a simple [-module. The proof of the theorem is com-
plete.
We end this section by summarising our results in the case of a field ® of characteristic p.

(i) If p is not a factor of n we have n® = @ and so (by (3.5)) all the extensions of M, by
are equivalent to the extension M. Furthermore M, itself is a simple representation module
and so M o M, > 0 is a composition series for M.

(i) If p is a factor of n we have n® = 0, and there are *‘ plenty ** of extensions of M, by ®,
all of which (with the exception of the split extension) are indecomposable representation
modules. The module M, is indecomposable but not simple. In fact we have a composition
series

EMoMyo®Peo0

for each of the modules eM.

Note that our analysis has yielded an irreducible modular representation for each sym-
metric group, of degree n—1 orn—2. In point of fact we get another irreducible representation
(except when p = 2) by constructing the  associated > representation, i.e. by changing the
sign of every matrix representing an odd permutation.

6. In this final section we investigate the symmetric group S on an infinite set E. The
results will be simpler than in the finite case.

(6.1) LemMA. Let @ be any commutative ring and M a free ®-module with base an infinite
set E. Then the only endomorphisms of the representation module M of the restricted symmetric
group S on E are multiplications by elements of ®.

Proof. Let 6 be any endomorphism of M, and for each ie E write

jeE
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where the coefficients 6(i, j) are almost all zero. If a€ S then ad = da; i.e. a~1a = 5. Hence
for each ie E we have

Y 6, )j=di=a"0ai=a"t Y S(ui,k)k= Y &(ai, k).a 'k
JjeE ke E keE
Comparing coefficients of j, we get
6(i, j) = 6(xi, oj) (6.2)

for all i, je E and allaeS. Since 6(i, ) = 0 for almost all j and E is infinite, we can find j;,
different from i, such that §(i, j;) = 0. If now i # j, there exists a permutation « in S such that

(@ =i, a(j)=j.
Using such a permutation in (6.2), we get

6(i,))=0 whenever i#j.

Once more, if i, i’ are any elements of E and « any permutation carrying i to i’, equation (6.2)
gives

8@, i) =463 i" = ¢,
say. We have thus proved that 8i = ¢i for all i€ E, and so dm = ¢m for all me M. This
completes the proof.

(6.2) THEOREM. The natural representation module M of an infinite symmetric group is
indecomposable over any commutative ring.

This follows at once from (6.1) and (4.5).

Again let v: M — @ be defined by

(5,6)= 3,00
ieE iceE
and let M, be the kernel of v. As before M, is a representation submodule of M. We prove

(6.3) THEOREM. If'® is any field then the representation module M, of the infinite symmetric
group S is simple.

Proof. Let I' = ®(S) be the group algebra of S over ®. We must show that M, = I'x
for every non-zero element x of M,. The coefficient of i in x will be denoted by (x);. Let D
denote the (finite) non-empty subset of E consisting of all i in E such that (x); # 0, and let 4
be the number of elements of D. Choose a fixed element, say u, of D. Note that necessarily
d 2 2 because D is non-empty and z (x); = 0. If D' is the set of elements of D other than u,

and o is a cycle on D’ leaving all other elements fixed, then easily

(l4+0+0*+ ... +0 Hx = {ZD’(X),}{ Y. }+(d 1)(x),u —(x)u<du— Y i )

ieD

As (x), # O and @ is a field, we conclude that du — Z i belongs to I'x. We have thus proved:
ieD

https://doi.org/10.1017/52040618500034468 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500034468

136 H. K. FARAHAT
6.4 If x= ) (x)ii e My and (x);#0 (all icD), then, for any ueD, we have

ieD

du— ) ielx,

ieD
whered=| D |.

Now to complete the proof, let x # 0 be as above, and let a, b be any two distinct elements
of E. The proof will be complete if we show that b —a e I'x, because the elements b — a generate
M, as ®-module. Let K be any subset of E having exactly d—1 elements and disjoint from
{a, b} Since d2 2, Kis non-empty. Choose an element k of K. Put

A= Ku{a}, B=Ku{b};
thus | A | = | B| = d and there exist permutations a, § in S such that
ou =%k, pu=k, aD=A, BD=B.

Applying (6.4) to ax in place of x, we conclude that dk— Y ieTax = I'x. In the same way

ied

we have dk— ) ieT'x, and therefore their difference ) i— Y i =b—aalso belongs to I'x.
ieB ieB ied
This completes the proof.
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