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Abstract

We use the structure lattice, introduced in Part I, to undertake a systematic study of the class
S consisting of compactly generated, topologically simple, totally disconnected locally compact
groups that are nondiscrete. Given G ∈ S , we show that compact open subgroups of G involve
finitely many isomorphism types of composition factors, and do not have any soluble normal
subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and
local decomposition lattice of G are Boolean algebras. We show that the G-action on the Stone space
of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those
results, we obtain partial answers to the following key problems: Are all groups in S abstractly
simple? Can a group in S be amenable? Can a group in S be such that the contraction groups of
all of its elements are trivial?

2010 Mathematics Subject Classification: 22D05 (primary); 20E15, 20E32 (secondary)

1. Introduction

1.1. Background. The solution to Hilbert’s fifth problem [43, Theorem 4.6]
ensures that a connected locally compact group is in fact an inverse limit of Lie
groups. In particular, the general structure theory of connected locally compact
groups largely reduces to that of simple Lie groups, soluble Lie groups, and
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compact groups (which are themselves inverse limits of compact Lie groups),
and the structure of connected simple locally compact groups is thoroughly
understood.

The possibility of a structure theory of locally compact groups beyond the
connected case has become apparent over the last few decades. At least from a
local perspective, one has an immediate reduction to the case of groups that are
compactly generated, that is that admit a compact generating set: any locally
compact group G is a directed union of compactly generated open subgroups.
In particular, every connected locally compact group is compactly generated.
There is also a developing structure theory of closed normal subgroups of locally
compact groups, for which the base case is groups that are topologically simple,
that is, groups whose only closed normal subgroups are the identity subgroup and
the whole group. In contrast to topological simplicity, we say a topological group
is abstractly simple if it has no proper nontrivial normal subgroup (including
dense normal subgroups).

Results in [18] and their recent extensions in [50] suggest that, under mild
assumptions that exclude discrete groups, compactly generated topologically
simple locally compact groups play a critical role in the structure of general
locally compact groups, generalizing the status of simple Lie groups in the
structure theory of connected locally compact groups. (A complementary role,
analogous to the role of soluble Lie groups in Lie theory, could be played by
the class of elementary groups introduced by Wesolek [67].) We shall exclude
discrete simple groups from consideration, since their known behaviour precludes
any structure theory having general scope. Indeed, the impossibility of such a
theory can be given a precise mathematical formulation; see [60].

We thus arrive at the class S of nondiscrete, compactly generated,
topologically simple, totally disconnected, locally compact groups, which is
the focus of the present article. For the sake of brevity, we shall write t.d.l.c.
for totally disconnected locally compact. Many specific families of examples of
groups in S are known; see Appendix A. Our goal is to understand the general
properties of the groups in S . Some of the results presented here have been
announced in [19]; the proofs rely on general tools developed in [21]. To make
this discussion precise, let us make a list of questions about groups in S . The
answer to all of the following questions is known to be ‘no’ for every known
example of a group in S , which gives some reason to believe the answer should
be ‘no’ in general.

For all the questions below, let G ∈ S .

QUESTION 1. Can G have a proper dense normal subgroup?
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QUESTION 2. Can G have an infinite nonopen commensurated compact
subgroup?

QUESTION 3. Can G be amenable?

QUESTION 4. Can every element of G have trivial contraction group?

QUESTION 5. Can G have an open subgroup with a nontrivial abelian normal
subgroup?

Question 5 is answered negatively by Theorem A below. The first four
questions are open questions to which we obtain negative answers under more
restrictive hypotheses.

An example for Question 2 would also be an example for Question 1, since
the normal closure of an infinite nonopen commensurated compact subgroup of
G would be a proper dense normal subgroup of G. We give several equivalent
formulations of a negative answer to Question 2 in Theorems B and C below.

By the recent groundbreaking work of Juschenko and Monod [32] and its
extension due to Nekrashevych [45], there exist finitely generated infinite simple
amenable groups, so the hypothesis in Question 3 that G be nondiscrete is
important. However, we emphasize that the question whether a group G ∈ S
can be amenable is naturally linked with the investigation of the commensurated
subgroups of finitely generated infinite simple amenable groups; see Remark 3.7
below.

Question 4 is a specialization of [70, Problem 4.1], which asks if G ∈ S can
have the property that every element normalizes a compact open subgroup. By
results of Baumgartner and Willis [7], given an element g of a t.d.l.c. group
G, then g normalizes a compact open subgroup if and only if both con(g)
and con(g−1) are compact. (We refer to Section 1.7 below for the definition of
contraction groups.) Thus an example for Question 4 would also be an example
for [70, Problem 4.1].

The following basic example (a similar construction is given in [70,
Proposition 3.2]) gives some additional motivation for the focus on compactly
generated topologically simple groups in the questions above.

EXAMPLE 1.1. Let S = Sym(Z) be equipped with the permutation topology. Let
A = Alt(Z) be the group of permutations of Z that can be written as a product of
an even number of transpositions. Then A is clearly a dense normal subgroup of S.
It is well known that Alt(Z) is a simple group, which is easily seen by observing
that it is the directed union of its simple subgroups isomorphic to Alt(n) for n > 5.
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Given i ∈ Z, let σi be the 3-cycle (3i 3i + 1 3i + 2) acting on Z, and let B
be the smallest closed subgroup of S containing {σi | i ∈ Z}. We see that B is an
abelian profinite group of exponent 3. Moreover, B is commensurated by A. We
can thus construct the nondiscrete t.d.l.c. group G = 〈A, B〉, equipped with the
topology so that B is embedded as a compact open subgroup.

Now observe the following: G is topologically but not abstractly simple (since
A is a proper dense normal subgroup of G); G is locally finite, hence amenable
as an abstract group; every element of G has trivial contraction group and open
centralizer in G; the elements of B that fix every negative integer form an infinite
nonopen commensurated compact subgroup; and B is an open abelian subgroup
of G. So apart from the compact generation hypothesis, G is an example for all
five of the questions above.

1.2. Locally normal subgroups. Our approach in studying the class S is
based on the concept of locally normal subgroup, that is a subgroup whose
normalizer is open. One motivation for considering this concept is the following
classical fact (see [11, Ch. III, Section 7, Proposition 2]): if G is a p-adic Lie
group, then a subalgebra of the Qp-Lie algebra of G is an ideal if and only if it is
the Lie algebra of a compact locally normal subgroup of G. Thus compact locally
normal subgroups may be viewed as a group theoretic counterpart of ideals in Lie
theory. In a general t.d.l.c. group G, obvious examples of compact locally normal
subgroups are provided by the trivial subgroup, or by compact open subgroups;
these locally normal subgroups should be considered as trivial.

The following theorem answers Question 5.

THEOREM A (See Theorem 5.3). Let G be a compactly generated t.d.l.c. group
that is topologically characteristically simple. Suppose that G is neither discrete
nor compact. Then the following hold.

(i) No element of Gr{1} has open centralizer in G.

(ii) The only virtually soluble locally normal subgroup of G is the identity
subgroup {1}.

Part (i) in Theorem A in the case of simple groups is [5, Theorem 4.8]; Part (ii)
strengthens a result of Willis [70, Theorem 2.2].

REMARK 1.2. Independently, Wesolek [67] has given another generalization
of [70, Theorem 2.2] and [5, Theorem 4.8] by obtaining a structure theory of
second-countable t.d.l.c. groups that have a soluble open subgroup.
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Given Theorem A and the theory developed in [21], each G ∈ S admits three
canonical bounded modular lattices (in the sense of partially ordered sets) arising
from the arrangement of locally normal subgroups in G:

The structure lattice LN (G) is defined to be the set of all closed locally
normal subgroups, modulo the equivalence relation that H ∼ K if H ∩ K is
open in H and K , with ordering induced by inclusion of groups. We write 0 for
the class of the trivial group and∞ for the class of open subgroups.

The centralizer lattice LC(G) consists of all elements of LN (G) represented
by the centralizer of a locally normal subgroup.

The local decomposition lattice consists of all elements of LN (G)
represented by a direct factor of an open subgroup.

In general one has

{0,∞} ⊆ LD(G) ⊆ LC(G) ⊆ LN (G).

Note that all three lattices admit a natural action of G by conjugation, with 0 and
∞ as fixed points. A point α ∈ LN (G) is fixed by this action if and only if the
compact representatives of α are commensurated by G, in other words, for every
g ∈ G the index |K : K ∩ gK g−1

| is finite.

1.3. Fixed points in the structure lattice. Let us record three properties that,
taken together, are equivalent to abstract simplicity of a nondiscrete σ -compact
t.d.l.c. group G (see Theorem 3.9).

(S0) G has no proper open normal subgroups.

(S1) Every nontrivial normal subgroup of G contains an infinite commensurated
compact locally normal subgroup of G.

(S2) Every infinite commensurated compact subgroup of G is open.

Nondiscrete topologically simple groups clearly satisfy (S0), so G ∈ S is
abstractly simple if and only if it satisfies (S1) and (S2).

Question 2 asks, given G ∈S , if G can fail to satisfy (S2). For a given G ∈S ,
there are several equivalent formulations of this question; in particular, we see
some more necessary properties of abstractly simple groups in S . Moreover, we
can show that indeed G has property (S2) under some additional hypotheses on
G (see Corollary 5.19).

THEOREM B (See Section 5.1). Let G ∈ S . Then the following are equivalent.

(i) G satisfies (S2), that is, every infinite commensurated compact subgroup of
G is open.
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(ii) G has no fixed points other than 0 and∞ in its action on LN (G).

(iii) The only locally compact group topology that is a proper refinement of the
given topology on G is the discrete topology.

(iv) Given a nontrivial compact locally normal subgroup H of G, then there exist
g1, . . . , gn ∈ G such that

G = 〈g1 Hg−1
1 , g2 Hg−1

2 , . . . , gn Hg−1
n 〉.

We obtain further equivalent formulations if we consider the class S as a
whole. An FC-group is a topological group in which every conjugacy class has
compact closure. The assertion (iv) in the next theorem is motivated by [18,
Appendix II], and shows that Question 2 has more general significance for the
structure of t.d.l.c. groups.

THEOREM C (See Section 5.5). The following assertions are equivalent.

(i) For all G ∈ S , every infinite commensurated compact subgroup is open.

(ii) For all G ∈ S , every commensurated open FC-subgroup is compact.

(iii) For all G ∈ S , the set of compact open subgroups of G is precisely the set
of all open commensurated FC-subgroups of G.

(iv) Given a compactly generated t.d.l.c. group G and distinct subgroups N1 and
N2 that are maximal among proper closed normal subgroups of G, then
N1 N2 = G.

The next result shows that fixed points of G acting on LN (G) play an
important role in the structure of orbits of G on LN (G).

THEOREM D (See Theorem 5.2). Let G ∈ S . For each α ∈ LN (G), there exist
g1, . . . , gn ∈ G such that g1α ∨ · · · ∨ gnα is fixed by G.

The following corollary is clear.

COROLLARY E. Let G ∈ S and let H be a normal subgroup of G. Suppose
H contains an infinite compact locally normal subgroup. Then H contains an
infinite commensurated compact locally normal subgroup. In particular, if every
nontrivial normal subgroup of G contains an infinite compact locally normal
subgroup, then G satisfies (S1).
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We also show that the set of nonzero fixed points of G acting on LN (G) forms
a filter (Lemma 5.11).

1.4. A partition of the class S . The properties of the structure lattice,
centralizer lattice and local decomposition lattice lead to a partition of S into
five classes as follows:

THEOREM F (See Section 5.3). Let G ∈ S . Then G is of exactly one of the
following types:

• locally h.j.i.: We have LN (G) = {0,∞}, or equivalently, every compact open
subgroup of G is hereditarily just-infinite (h.j.i.), where a profinite group is
said to be h.j.i. if every nontrivial closed locally normal subgroup is open.

• atomic type: |LN (G)| > 2 but LC(G) = {0,∞}, there is a unique least
element of LN (G)r{0}, the action of G on LN (G) is trivial and G is not
abstractly simple.

• nonprincipal filter type (abbreviated by NPF type): The set LN (G)r{0} is a
nonprincipal filter in LN (G) and LC(G) = {0,∞}.

• (strictly) weakly decomposable: |LC(G)| > 2, but LD(G) = {0,∞}.

• locally decomposable: |LD(G)| > 2.

Moreover, the type of G is completely determined by the isomorphism type of
LN (G) as a poset. In particular, if G, H ∈ S have isomorphic open subgroups
then G and H are of the same type.

Other than locally h.j.i. groups, we do not know of any groups in S such
that there is a h.j.i. compact locally normal subgroup or there is a minimal
nonzero element of LN (G); the following puts further restrictions on the possible
structure of such groups.

THEOREM G (See Section 6.6). Let G ∈ S .

(i) Any hereditarily just-infinite compact locally normal subgroup is
commensurated by G.

(ii) Suppose there is a minimal nonzero element of α of LN (G). Then G is either
locally h.j.i. or of atomic type.

(iii) Suppose that G is of atomic type. Then there exists S ∈ S , unique up to
isomorphism, and a continuous homomorphism φ : S→ G such that S is not
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Table 1. Properties and open questions.

Property Locally h.j.i. Atomic NPF Weakly dec. Locally dec.
y LN No No ? Yes Yes

(S1) Yes? ? ? Yes Yes
(S2) Yes No ? Yes? Yes

abstractly simple Yes? No ? Yes? Yes
anisotropic No? ? ? No No
amenable No? ? ? No No

of atomic type and φ(S) is a proper dense normal subgroup of G containing
a representative of the atom of LN (G). In particular, G is not abstractly
simple.

Table 1 below summarizes the progress we have made towards answering the
first four questions given in the initial discussion. The following conventions are
used in the table. We indicate both definitive results for all G ∈ S of the given
type (‘Yes’ and ‘No’) and cases where no definitive result is known, but either
all known examples satisfy the property or all known examples fail to satisfy the
property (‘Yes?’ and ‘No?’). There are no entries in the table for which some
examples are known to satisfy the property and others are known not to satisfy
it. We recall from Section 1.3 that G ∈ S is abstractly simple if and only if
it satisfies (S1) and (S2), and that (S2) is equivalent to the property that the set
of fixed points of G acting on LN (G) is just {0,∞}. In particular, a necessary
condition for abstract simplicity is that either G is locally h.j.i. or G has faithful
action on LN (G); we denote the latter by ‘y LN ’ in the table. We say G is
anisotropic if every element of G has trivial contraction group.

Given G ∈ S , there is a natural division between the case where LC(G)
is trivial (corresponding to the first three types; an equivalent condition is that
LN (G)r{0} is closed under meets), and the case where LC(G) is nontrivial. In
the latter case we obtain stronger results, and this case also includes most known
examples. Indeed, the only known examples with trivial centralizer lattice are
linear algebraic groups over local fields, which are locally h.j.i.; thus no examples
at all are known in the atomic or NPF cases. We suspect that there does not exist
a group in S of atomic type, since by Theorem G it would admit an embedding
of a group in S of some other type as a proper dense normal subgroup. On the
other hand, it could well be the case that some of the known examples of simple
Kac–Moody groups are of NPF type. See Appendix A for a further discussion of
the known examples.
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It seems that a major challenge in advancing our understanding of the class
S is to construct simple groups with trivial centralizer lattice, or at least with
trivial local decomposition lattice, that are significantly different from the ones
we already know (see Remark 3.7 for a potential source of such examples).

1.5. Local composition factors. We next present some additional algebraic
features of compact locally normal subgroups of groups in S .

For any compactly generated t.d.l.c. group G, we observe (Proposition 4.6)
that each compact open subgroup of G/K has finitely many isomorphism types
of composition factors, where K is a compact normal subgroup that can be taken
to lie in any given identity neighbourhood. This observation confirms a conjecture
formulated in [69, Section 4] and naturally leads to the notion of the local prime
content of G/K , which is the unique finite set η = η(G/K ) of primes such that
every compact open subgroup of G/K is virtually pro-η and has an infinite pro-p
subgroup for each p ∈ η.

For groups in G ∈ S , we obtain additional control over the local prime
content of compact locally normal subgroups of G. In particular, the local prime
content of G can be recovered from any nontrivial locally normal subgroup. We
can control the presence of nonabelian composition factors of compact open
subgroups in a similar manner.

THEOREM H (See Theorem 4.14). Let G ∈ S .

(i) If a nontrivial compact locally normal subgroup of G is a pro-π group for
some set of primes π , then every compact open subgroup of G is virtually
pro-π . In particular, for all p ∈ η(G), each closed locally normal subgroup
L 6= {1} has an infinite pro-p subgroup.

(ii) If a nontrivial compact locally normal subgroup of G is prosoluble, then
every compact open subgroup of G is virtually prosoluble.

Theorem H was inspired by a result of Burger and Mozes, who obtained
a similar statement in the case of locally primitive tree automorphism groups;
see [14, Proposition 2.1.2].

1.6. Microsupported actions. An action of a group G by homeomorphisms
on a (possibly connected) topological space X is called microsupported if for
every nonempty open subset Y of X , the pointwise stabilizer of the complement
X \ Y acts nontrivially on Y . A subset V of X is called compressible if it is
nonempty and if for any nonempty open subset Y , there exists g ∈ G such
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that gV ⊂ Y . Numerous natural transformation groups, like homeomorphism
groups of various topological spaces (for example closed manifolds, the rationals,
the Cantor space, . . . ) or diffeomorphism groups of manifolds, happen to be
microsupported and to have a compressible open set. This has been exploited
repeatedly in the literature to show that many of those transformation groups
are simple or almost simple (see Epstein’s paper [26] and references therein),
or to show reconstruction theorems (see Rubin’s paper [56] and references
Therein). (In [56, Definition 2.3], the term regionally disrigid is used to qualify
what we have called a microsupported action.) A related result, known as
Higman’s simplicity criterion, valid for abstract groups, may be consulted in [9,
Proposition C10.2].

The following result, whose short and self-contained proof will be provided in
Section 6.2 below, provides a uniform explanation that the conjunction of these
two properties naturally yields simple groups. A closely related statement (with
formally stronger hypotheses) appears in [44, Proposition 4.3].

PROPOSITION I. Let G be a subgroup of the homeomorphism group of a
Hausdorff topological space X. If the G-action is microsupported and has a
compressible open set, then the intersection M of all nontrivial normal subgroups
of G is nontrivial.

If in addition the M-action admits a compressible open set, then M is simple.

It turns out that examples of transformation groups satisfying the hypotheses
of Proposition I may also be found among nondiscrete t.d.l.c. groups. The
prototypical case is provided by the action of the full automorphism group of
a regular locally finite tree T on the set of ends of T . The fact that the latter group
is almost simple was first observed by Tits [62]; we refer to Appendix A for many
other related examples of groups in S .

Our next result shows that for groups G ∈ S , all microsupported actions
on compact totally disconnected spaces are controlled by the G-action on the
centralizer lattice LC(G). Moreover, somewhat surprisingly, the existence of
a compressible open set happens to be automatic for microsupported actions.
In order to formulate precise statements, we recall that the lattices LC(G)
and LD(G) are both Boolean algebras by [21, Theorem I]. By the Stone
representation theorem, every Boolean algebra A is canonically isomorphic to
the lattice of clopen sets of a profinite space, that is a compact zero-dimensional
space, which is called the Stone space of A, denoted by S(A) and can be
constructed as the set of ultrafilters on A. We shall next see that the dynamics
of the G-action on S(LC(G)) is rich and can be exploited to shed light on the
global algebraic properties of G.
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We also need to recall basic definitions from topological dynamics. An action of
a locally compact group G on a compact space Ω by homeomorphisms is called
continuous if the corresponding homomorphism of G to the homeomorphism
group of Ω , endowed with the topology of uniform convergence, is continuous.
This implies that the G-action onΩ is continuous, that is the action map G×Ω→
Ω is continuous. The G-action on Ω is called minimal if every orbit is dense.
It is called strongly proximal if the closure of every G-orbit in the space of
probability measures on Ω , endowed with the weak-* topology, contains a Dirac
mass. Suppose that Ω is totally disconnected and let K be the kernel of the G-
action. The action is called weakly decomposable (respectively locally weakly
decomposable) if it is continuous and if for every clopen proper subset Ω ′ of Ω ,
the quotient F/K of the pointwise stabilizer F of Ω ′ is nontrivial (respectively
nondiscrete). Thus, for group actions on profinite spaces, ‘microsupported’ and
‘weakly decomposable’ are synonyms.

THEOREM J (See Section 6.7). Let G ∈ S and let Ω be the Stone space
associated with the centralizer lattice LC(G). Then:

(i) The G-action on Ω is continuous, minimal, strongly proximal and locally
weakly decomposable; moreover Ω contains a compressible clopen subset.

(ii) Given a profinite space X with a continuous G-action, the G-action on X is
microsupported if and only if there is a continuous G-equivariant surjective
map Ω → X. In particular every continuous microsupported G-action on a
profinite space is minimal, strongly proximal, locally weakly decomposable
and has a compressible open set.

Notice that Ω = S(LC(G)) is a singleton if and only if LC(G) = {0,
∞}. It should be emphasized that, although any group G belonging to S is
automatically second-countable (this follows from [33]), the centralizer lattice
for G ∈ S is not necessarily countable, so Ω is not necessarily countably based.
For example, one obtains an uncountable local decomposition lattice for t.d.l.c.
groups G such that QZ(G) = {1} and some compact open subgroup of G splits
as a direct product with infinitely many infinite factors: such a compact open
subgroup thus has uncountably many direct factors, each of which represents a
distinct class in LD(G). Examples of this kind arise as Burger–Mozes’ universal
groups acting on trees with local action prescribed by a suitable finite permutation
group (see Appendix A).

Theorem J notably implies that LC(G) 6= {0,∞} if and only if G admits
a continuous microsupported action on a profinite space containing more than
one point. Whenever this is the case, Theorem J has several consequences on
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the structure of G, which we now proceed to describe. The first one relates to
Question 3 and stems from the incompatibility between amenability and minimal
strongly proximal actions:

COROLLARY K. Let G ∈ S . Any closed cocompact amenable subgroup of G
fixes a point in Ω = S(LC(G)). In particular, if LC(G) 6= {0,∞}, then G is not
amenable, and if G contains a closed cocompact amenable subgroup, then the
G-action on Ω is transitive.

Here is another consequence of the dynamical properties highlighted in
Theorem J, obtained by a standard ping-pong argument.

COROLLARY L. Let G ∈ S be such that LC(G) 6= {0,∞}. Then G contains a
nonabelian discrete free subsemigroup.

We recall that a Polish group is a topological group whose underlying topology
is homeomorphic to a separable complete metric space. Every second-countable
locally compact group is a Polish group, but not conversely. Another consequence
of Theorem J is that we can apply results from [21] to obtain topological rigidity
results for groups in S :

COROLLARY M. Let G ∈ S . If LC(G) 6= {0,∞}, then the topology of G is the
unique σ -compact locally compact group topology on G and the unique Polish
group topology on G. In particular every automorphism of G is continuous.

If in addition G is abstractly simple (for instance if LD(G) 6= {0,∞} by
Theorem Q below), then there are exactly two locally compact group topologies
on G, namely the original one and the discrete topology.

Notice that the corresponding result does not hold for all simple Lie groups,
since the field of complex numbers admits discontinuous automorphisms; we refer
to [35] for a comprehensive statement in the case of semisimple Lie groups.

1.7. Contraction groups and abstract simplicity. Let G be topological
group. Recall that the contraction group of g is defined by

con(g) = {x ∈ G | lim
n→∞

gn xg−n
= e}.

In every known example of G ∈S , some element of G has nontrivial contraction
group; whether this is true for all G ∈ S is Question 4 above.

In simple Lie groups or in simple algebraic groups over local fields, the
contraction group of every element is known to coincide with the unipotent radical
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of some parabolic subgroup, and is thus always closed. On the other hand, recent
results indicate that many nonlinear examples of groups in S have nonclosed
contraction groups (see [6] and [40]), while in some specific cases the closedness
of contraction groups yields connections with finer algebraic structures related to
linear algebraic groups (see [17]).

As a partial answer to Question 4, we prove the following:

THEOREM N (See Section 6.6). Let G ∈ S . Then LC(G) 6= {0,∞} if and only
if G has a closed subgroup of the form R =

∏
i∈Z Ki o 〈g〉, where Ki is an infinite

compact locally normal subgroup of G and g acts by shifting indices.

COROLLARY O. Let G ∈ S . If LC(G) 6= {0,∞}, then the contraction group of
some element of G is not closed (and hence nontrivial).

In relation with the question of abstract simplicity, we observe that the
combination of Proposition I and Theorem J directly implies that a group in S
with a nontrivial centralizer lattice has a smallest dense normal subgroup which
is abstractly simple. Below, we shall obtain an alternative proof of the following
stronger statements by combining the main result of [20] with the conclusions of
Corollary O.

THEOREM P (See Section 6.8). Let G ∈ S . Suppose that at least one of the
following holds:

(i) LC(G) 6= {0,∞};

(ii) Some compact open subgroup of G is finitely generated as a profinite group.

Then G has property (S1). Consequently, G is abstractly simple if and only if
every nontrivial commensurated compact subgroup of G is open.

THEOREM Q (See Section 6.8). Let G ∈ S . Suppose that at least one of the
following holds:

(i) LD(G) 6= {0,∞};

(ii) There is a compact open subgroup U of G such that U is finitely generated
as a profinite group and [U,U ] is open in G;

(iii) Some nontrivial compact locally normal subgroup of G is finitely generated
as a profinite group and every infinite commensurated compact subgroup of
G is open.

Then G is abstractly simple.
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1.8. Abstract linearity. A locally compact group G is called linear if there
exist an integer d > 0, a locally compact field k and a continuous injective
homomorphism ϕ : G → GLd(k). The group G is called abstractly linear if the
underlying abstract group of G is linear. It has been shown in [22, Corollary 1.6]
(relying in part on the results of the present paper) that the only compactly
generated topologically simple linear locally compact groups are the finite simple
groups, the simple Lie groups and the simple algebraic groups over local fields. It
is an open question to determine whether the same result holds if one only requires
abstract linearity. In this direction, we point out the following consequence of
Theorem N.

COROLLARY R (See Section 6.6). Let G ∈ S . If LC(G) 6= {0,∞}, then G
contains a finitely generated subgroup which is not residually finite. In particular
G is not abstractly linear over any field.

2. Preliminaries

In this section we recall some definitions and results from [18], [21] and [20]
that will be used below.

2.1. Open compact subgroups and locally normal subgroups.

DEFINITION 2.1. Let G be a totally disconnected, locally compact (t.d.l.c.) group.
Write B(G) for the set of compact open subgroups of G, and let U ∈ B(G).

Let H be a subgroup of G. We say that H is commensurate to a subgroup
K 6 G if the indices [H : H ∩ K ] and [K : H ∩ K ] are both finite. Write [H ]
for the class of all subgroups K of G such that K ∩ U is commensurate with
H ∩ U . Say H and K are locally equivalent if [H ] = [K ]. There is a natural
partial ordering on local equivalence classes, given by [H ] > [K ] if H ∩ K ∩U
is commensurate with K ∩U .

A locally normal subgroup of G is a subgroup H such that NG(H) is open. The
structure lattice LN (G) of G is the set of local equivalence classes of closed
locally normal subgroups of G.

The partial order on local equivalence classes given in Definition 2.1 may be
reformulated, for α, β ∈ LN (G), as α 6 β if H 6 K for some H ∈ α and K ∈ β.

As noted in [21], the structure lattice is a modular lattice, admitting an action of
the group Aut(G) of topological group automorphisms by conjugation, and is a
local invariant of the group in that LN (G) = LN (H) for any open subgroup H
of G. If G is not discrete, there are two ‘trivial’ elements of LN (G), namely the
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class of the trivial group, which we denote 0, and the class of the compact open
subgroups, which we denote ∞. More generally the symbols 0 and ∞ will be
used to denote the minimum and maximum elements respectively of a bounded
lattice. When discussing subsets of LN (G), we regard a subset as nontrivial if it
contains an element other than 0 and∞.

2.2. Topological countability. A topological space is σ -compact if it is a
union of countably many compact subspaces; first-countable if at every point,
there is a countable base of neighbourhoods; and second-countable if there is a
countable base for the topology.

The following well-known facts (the first two of which are easily verified)
will for the most part allow us to restrict attention to totally disconnected locally
compact second-countable (t.d.l.c.s.c.) groups.

LEMMA 2.2. Let G be a t.d.l.c. group.

(i) G is second-countable if and only if it is σ -compact and first-countable.

(ii) If G is compactly generated, then G is σ -compact.

(iii) (See [33]) If G is σ -compact, then for every identity neighbourhood U in G,
there exists K ⊆ U such that K is a compact normal subgroup of G and
G/K is second-countable.

We note in particular the following.

COROLLARY 2.3. Every G ∈ S is second-countable.

There is one more lemma from [21] concerning first-countable groups that we
use frequently.

LEMMA 2.4 [21, Lemma 7.4]. Let U be a first-countable profinite group and
let K be a closed subgroup of U. Then U commensurates K if and only if U
normalizes an open subgroup of K .

2.3. Quasicentralizers.

DEFINITION 2.5. Let G be a t.d.l.c. group and let H and K be subgroups of G.
The quasicentralizer of K in H is given by

QCH (K ) :=
⋃

U∈B(G)

CH (K ∩U ),
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where B(G) is the set of compact open subgroups of G. Notice that the
quasicentralizer QCH (K ) depends only on the local equivalence class of K ; we
shall therefore use the notation

QCH ([K ]) = QCH (K ).

If the class [K ] is fixed under the conjugation action of H , then the
quasicentralizer QCH (K ) is normal in H . A typical example is provided by
the quasicentre QZ(H) of H , which is just QCH (H).

DEFINITION 2.6. Let G be a t.d.l.c. group. A closed subgroup H is C-stable in G
if QCG(H) ∩ QCG(CG(H)) is discrete. Say a t.d.l.c. group G is locally C-stable
if all closed locally normal subgroups of G are C-stable in G.

PROPOSITION 2.7 (See [21, Theorem 3.19]). Let G be a t.d.l.c. group. Then G
is locally C-stable if and only if QZ(G) is discrete and every nontrivial abelian
compact locally normal subgroup of G is contained in QZ(G).

If in addition QZ(G) = {1}, then for every closed locally normal subgroup H
of G, we have QZ(H) = {1} and QCG(H) = CG(H).

2.4. Local decomposition.

DEFINITION 2.8. Let G be a t.d.l.c. group such that QZ(G) = {1}. Define the
local decomposition lattice LD(G) of G to be the subset of LN (G) consisting
of elements [K ]where K is a closed direct factor of some compact open subgroup
of G. The complementation map onLD(G) sends [K ] to the unique α ∈ LD(G)
such that there is a representative L of α for which K ∩ L = {1} and K L is open.

DEFINITION 2.9. Let G be a locally C-stable t.d.l.c. group. Define the map ⊥ :
LN (G)→ LN (G) to be given by α 7→ [QCG(α)]. Define the centralizer lattice
LC(G) be the set {α⊥ | α ∈ LN (G)} together with the map⊥ restricted to LC(G),
partial order inherited from LN (G) and binary operations ∧c and ∨c given by:

α ∧c β = α ∧ β

α ∨c β = (α
⊥
∧ β⊥)⊥.

In general we write ∨ instead of ∨c in contexts where it is clear that we are
working inside the centralizer lattice.

THEOREM 2.10 [21, Theorems 4.5 and 5.2]. Let G be a t.d.l.c. group.
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(i) Suppose that G has trivial quasicentre. Then LD(G) is a Boolean algebra
and ⊥ induces the complementation map on LD(G).

(ii) Suppose in addition that G has no nontrivial compact abelian locally
normal subgroups. Then LC(G) is a Boolean algebra, ⊥ induces the
complementation map on LC(G) and LD(G) is a subalgebra of LC(G).

2.5. Decomposing locally compact groups into simple pieces. In this article,
we adopt the general convention that a maximal subgroup of the group G is one
that is maximal among the proper subgroups of G, and a minimal subgroup is
one that is minimal among the nontrivial subgroups of G. A similar convention
applies when discussing more restrictive classes of subgroups, such as closed
normal subgroups.

Topologically simple groups appear naturally in the upper structure of
compactly generated t.d.l.c. groups. The following is an analogue of the well-
known fact that a nontrivial finitely generated group has a simple quotient.

THEOREM 2.11 [18, Theorem A]. Let G be a compactly generated locally
compact group. Then exactly one of the following holds.

(i) G has an infinite discrete quotient.

(ii) G has a cocompact closed normal subgroup that is connected and soluble.

(iii) G has a cocompact closed normal subgroup N such that N has no infinite
discrete quotient, but N has exactly n noncompact topologically simple
quotients, where 0 < n <∞.

In particular, Theorem 2.11 provides information on maximal closed normal
subgroups of G. The following related result is concerned with minimal ones. A
version of this result was asserted as part of [18, Proposition 2.6]; however, the
statement and proof in the original published version contained an error. To avoid
confusion, we give a proof here of a corrected version of the proposition that will
be sufficient for the purposes of the present paper.

PROPOSITION 2.12. Let G be a compactly generated t.d.l.c. group which
possesses no nontrivial discrete or abelian normal subgroup, and such that there
exists an open subgroup U of G for which

⋂
g∈G gUg−1

= {1}. Then every
nontrivial closed normal subgroup of G contains a minimal one, and the set M
of minimal closed normal subgroups is finite.
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Proof. By [2] (see also Proposition 4.1 below), there is a locally finite connected
graph Γ on which G has a continuous vertex-transitive proper action. The
hypothesis that an open subgroup of G has trivial core ensures that we can choose
Γ so that G acts faithfully; the hypothesis that G has no nontrivial discrete
normal subgroup ensures that no nontrivial normal subgroup acts freely on Γ .
Fix v ∈ VΓ and write N (v) for all vertices in Γ at distance at most 1 from v.
Let A be the stabilizer of v in G and let B be the subgroup fixing pointwise the
set N (v). Note that the assumptions on the action ensure that A is a compact
subgroup of G and B is an open subgroup of A.

Let C be a family of nontrivial closed normal subgroups of G. Suppose that C is
filtering, that is, for any finite subset {K1, . . . , Kn} of C, there exists K ∈ C such
that K 6

⋂n
i=1 Ki . We claim that C has nontrivial intersection.

Let K ∈ C. Since K acts faithfully but not freely on Γ , there exist adjacent
vertices w, x ∈ VΓ and L 6 K such that L fixes x but not w. Since G acts
vertex-transitively and K is normal, by conjugating in G we can assume x = v
and take L = K ∩ A; since L does not fix w we have K ∩ A � B. In particular,
we see that K has nonempty intersection with the compact set ArB. If we let
R =

⋂
K∈C K , it now follows by compactness that R ∩ A � B, so in particular R

is nontrivial and the claim is proved.
Since C can in particular be any chain of nontrivial closed normal subgroups of

G, we conclude by Zorn’s lemma that every nontrivial closed normal subgroup of
G contains a minimal one.

It remains to suppose that the set M of minimal closed normal subgroups is
infinite and obtain a contradiction. Let F be the set of finite subsets of M. For
each F ∈ F , let MF = 〈M ∈M | M /∈ F〉. Notice that distinct minimal closed
normal subgroups of G commute; since centralizers are closed, it follows that
MF 6 CG(M) for all M ∈ F . Now C = {MF | F ∈ F} is a filtering family
of nontrivial closed normal subgroups of G, so the intersection S =

⋂
F∈F MF

is nontrivial. We see that S 6 CG(M) for all M ∈ F and all F ∈ F , so that
S 6 CG(M) for all M ∈M, and yet S is in the closed subgroup generated by the
elements of M. It follows that S is a nontrivial abelian normal subgroup of G,
giving the required contradiction.

3. Connections between topological and abstract simplicity

Our focus in this paper is on t.d.l.c. groups that have restrictions imposed on
their normal subgroups; in particular, our methods apply to the class of compactly
generated topologically simple t.d.l.c. groups. A recurring theme is the difference
between topological simplicity and abstract simplicity; indeed, as pointed out in
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the introduction, it is not known whether there are any compactly generated t.d.l.c.
groups that are topologically but not abstractly simple.

Our standard assumption is that the group we are working with is a compactly
generated, topologically simple t.d.l.c. group. However, the condition of
topological simplicity can sometimes be relaxed, and we do so where this
is convenient. In addition, in some cases results will pertain not just to the
given t.d.l.c. group, but to any sufficiently large subgroup (for instance dense
subgroups). Such results are of interest outside the theory of t.d.l.c. groups, as
there is a strong connection between dense subgroups of t.d.l.c. groups and the
theory of Hecke pairs, that is, groups with a specified commensurated subgroup.
(For a general discussion of this connection, see [49].) An example of this
connection is given by Proposition 3.6 below.

3.1. Dense embeddings into topologically simple t.d.l.c. groups.

DEFINITION 3.1. A Hecke pair of groups (Γ,∆) is a group Γ , together with a
subgroup ∆ such that g∆g−1 is commensurate with ∆ for all g ∈ Γ .

Each t.d.l.c. group G and compact open subgroup U form a Hecke pair.
Conversely, each Hecke pair (Γ,∆) canonically determines two totally
disconnected groups and compact open subgroups.

THEOREM 3.2 ([8, Theorem 7.1]; [49, Theorem 1.6]). Let (Γ,∆) be a Hecke pair
of groups. Then there are t.d.l.c. groups and homomorphisms

β∆ : Γ → Γ̂∆ and βΓ//∆ : Γ → Γ//∆

with the following properties.

(i) ∆ is the inverse image under β∆ (respectively βΓ//∆) of a compact open
subgroup U 6 Γ̂∆ (respectively U 6 Γ//∆).

(ii) Given any t.d.l.c. group H and homomorphism β : Γ → H with dense image
such that ∆ = β−1(U ) for some compact open subgroup U of H, there are
unique continuous quotient maps ψ1 : Γ̂∆ → H and ψ2 : H → Γ//∆ with
compact kernels such that the following diagram commutes.

Γ

β∆

{{
β

��

βΓ//∆

$$
Γ̂∆

ψ1

// H
ψ2

// Γ//∆.
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The maps β∆ and βΓ//∆ are called respectively the Belyaev and Schlichting
completions of the Hecke pair (Γ,∆). The Belyaev completion has the additional
property ([49, Theorem 1.5]) that any homomorphism φ : Γ → H such that the
closure of φ(∆) in H is profinite lifts to a homomorphism φ̂ : Γ̂∆→ H such that
φ = φ̂ ◦ β∆. Moreover, φ̂ is a quotient map if and only if φ(Γ ) is dense and the
closure of φ(∆) in H is open. If H has no compact normal subgroups, then Kerφ̂
contains the compact kernel of the quotient map to Γ//∆ and φ factors through
the Schlichting completion. If φ̂ is a quotient map, then φ̄ is as well, that is, H is
a quotient of Γ//∆.

The Belyaev and Schlichting completions of (Γ,∆) need not be topologically
simple even if Γ is. The Schlichting completion of the Hecke pair (PSLn(Q),
PSLn(Z)), for instance, has a closed normal subgroup isomorphic to PSLn(Qp)

for every prime p. Proposition 3.6 implies that a finite number of simple quotients
may be recovered nevertheless when Γ is finitely generated. The argument
requires, not simplicity, but only a condition on how Γ embeds into its completion
and that condition will be introduced first. The condition is based in the following
ideas, which also recur in later sections.

Let G be a topological group. The monolith Mon(G) is the intersection of
all nontrivial closed normal subgroups of G, see [18], and G is said to be
monolithic if Mon(G) > 1. If G is monolithic then its monolith is topologically
characteristically simple; conversely, if G is a topologically characteristically
simple t.d.l.c. group, then G o Aut(G) (with G embedded as an open subgroup)
is monolithic. The following consequence of Proposition 2.12 illustrates that
monolithic groups appear naturally in the structure of general t.d.l.c. groups.

COROLLARY 3.3. Let G be a compactly generated t.d.l.c. group which possesses
no nontrivial discrete, compact or abelian normal subgroup, and let M be as in
Proposition 2.12. Then for any M ∈ M, the quotient G/CG(M) has monolith
MCG(M)/CG(M) > 1.

Proof. Let N be the preimage in G of a nontrivial closed normal subgroup of
the quotient G/CG(M). Then N contains properly CG(M). In particular N does
not commute with M , and so N ∩ M is nontrivial. By the minimality of M , this
implies that N contains M . Hence N contains the closure MCG(M). Thus every
nontrivial closed normal subgroup of G/CG(M) contains the closure of the image
of M . It remains to check that M has nontrivial image in the quotient G/CG(M).
This is indeed the case, since M is nonabelian and thus is not contained in its own
centralizer.

By definition, the image of the monolith Mon(G) in any quotient of G is either
injective or trivial. Our purposes require to consider other subgroups Γ 6 G

https://doi.org/10.1017/fms.2017.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.8


Compactly generated simple groups 21

enjoying that property. We say that Γ is relatively simple in G if for every closed
normal subgroup N of G the map Γ → G/N is either injective or trivial. We say
that Γ is relatively just-infinite in G if for every closed normal subgroup N of G
the map Γ → G/N is either injective or has finite image.

Clearly, if Γ or G is topologically simple (respectively just-infinite), then Γ is
relatively simple (respectively relatively just-infinite) in G. The next proposition,
whose straightforward proof is omitted, implies that the converse need not hold.

PROPOSITION 3.4. Let Γ 6 G be relatively simple (respectively relatively just-
infinite). Then every nontrivial subgroup of Γ is relatively simple (respectively
relatively just-infinite) in G. Moreover, for every closed normal subgroup N of G,
the quotient group Γ N/N is relatively simple (respectively relatively just-infinite)
in G/N.

Since the group PSLn(Q) is simple, it is a relatively simple subgroup of its
Schlichting completion of (PSLn(Q),PSLn(Z)). Therefore, by Proposition 3.4,
so are the embeddings of the subgroups PSLn(Z[1/m]) for each m > 0 even
though they are not simple. We are interested in the general case when the group Γ
embeds as a relatively simple or relatively just-infinite subgroup of the Belyaev or
Schlichting completions of (Γ,∆); in this case the embedding has the additional
property of being dense.

LEMMA 3.5. Let G be a nondiscrete t.d.l.c. group with a dense subgroup Γ .
If Γ is relatively simple (respectively relatively just-infinite), then every discrete

quotient of G is trivial (respectively finite).

Proof. Let O be an open normal subgroup of G. Then O ∩ Γ > 1 since Γ is
dense and G is nondiscrete. Hence the image of Γ in G/O is not injective, and is
thus trivial (respectively finite). The result follows since Γ is dense, and thus has
dense image in G/O .

PROPOSITION 3.6. Let Γ be a group with an infinite commensurated subgroup
∆ < Γ of infinite index. Suppose that Γ is generated by finitely many cosets of
that subgroup (for example Γ is finitely generated).

(i) If Γ is just-infinite, then Γ embeds as a dense subgroup of some compactly
generated monolithic t.d.l.c. group G whose monolith is cocompact and a
quasiproduct of finitely many pairwise isomorphic groups in S (we refer
to [18] for the definition of a quasiproduct, a notion which will not be used
anywhere else in the present paper).
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(ii) If Γ is hereditarily just-infinite, then a finite index subgroup of Γ embeds as
a dense subgroup of some compactly generated monolithic t.d.l.c. group G
whose monolith is cocompact and belongs to S .

(iii) If Γ is simple, then Γ embeds as a dense subgroup of some group G ∈ S .

Proof. We assume that Γ is just-infinite. Then Theorem 3.2 yields a nondiscrete
t.d.l.c. group H = Γ̂∆ with a dense embedding of Γ as a relatively just-infinite
subgroup. Moreover, since Γ is generated by finitely many cosets of ∆, we
see that H is compactly generated, and since ∆ is of infinite index in Γ , the
group H is not compact. By [18, Proposition 5.2], the group H has a closed
normal subgroup Q such that the quotient H/Q is not compact, and moreover
every closed normal subgroup of H properly containing Q is cocompact (in
the terminology of [18], the group H/Q is just-noncompact). By Lemma 3.5,
the group H has no infinite discrete quotient. In particular H/Q is nondiscrete.
Since H/Q is totally disconnected and noncompact, it does not have a connected
cocompact normal subgroup either. Therefore, [18, Theorem E] ensures that
H/Q is a monolithic group whose monolith is the quasiproduct of finitely many
pairwise isomorphic groups in S . This proves (i).

Let now H1 be the finite index open normal subgroup of H containing Q which
is the kernel of the H -action on the quasifactors N1/Q, . . . , Nn/Q of the monolith
of H/Q. Since the quasifactors commute pairwise, we have Ni 6 H1 for all i .
Moreover, it follows from Corollary 3.3 that G = H1/CH1(N1) is monolithic,
whose monolith is cocompact and belongs to S . Assuming now in addition that
Γ is hereditarily just-infinite, we see that the intersection Γ1 = H1 ∩ Γ has finite
index in Γ , and is thus just-infinite and dense in H1. Therefore, Γ1 is relatively
just-infinite in H1, and thus maps injectively onto a dense subgroup of G. This
proves (ii).

Finally, in case Γ is simple, every finite quotient of Γ is trivial, which
implies that every profinite quotient of H is trivial as well. This forces the
just-noncompact group H/Q to be topologically simple and, hence, to belong
to S .

Proposition 3.6 is well illustrated by the Hecke pair (PSLn(Z[1/m]),PSLn(Z)).
It may be verified, for any m > 1, that PSLn(Z[1/m]) is generated by finitely
many cosets of PSLn(Z) and, moreover, PSLn(Z[1/m]) is embedded, for any set
of primes π , as a relatively simple subgroup in

∏
p∈π PSLn(Qp) by restricting

the embedding of the simple group PSLn(Q). This embedding of PSLn(Z[1/m])
in
∏

p∈π PSLn(Qp) is dense if and only if π is a set of prime divisors of m.
The topologically simple groups afforded by Proposition 3.6 are then the
groups PSLn(Qp), p ∈ π .
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Proposition 3.6(ii) highlights the relevance of the study of the class S to
the study of commensurated subgroups of hereditarily just-infinite groups. In
particular the investigation of S is relevant to the Margulis–Zimmer conjecture
according to which a lattice in a connected centreless simple Lie group of rank > 2
has no commensurated subgroup other than the finite or the finite index subgroups
(see [58] for a thorough discussion of that conjecture as well as partial results on
nonuniform lattices).

REMARK 3.7. Proposition 3.6 is also a potential source of new topologically
simple t.d.l.c. groups. After all, we have seen that the well-known groups
PSLn(Qp) arise in this way. Should there exist a finitely generated, simple,
amenable group with an infinite and proper commensurated subgroup, then this
construction will produce an amenable group in the class S . Similarly, should
there exist a finitely generated simple group Γ with an infinite and proper
commensurated subgroup ∆ such that every element of Γ has finite order, then
there would be an anisotropic group in the class S .

REMARK 3.8. A variation on Proposition 3.6 was recently used by Wesolek
in combination with the normal subgroup structure theory of t.d.l.c. groups to
show that in a finitely generated just-infinite branch group, every commensurated
subgroup is either finite or of finite index (see [68]).

3.2. Characterizing abstract simplicity in σ -compact t.d.l.c. groups. The
main result of this section characterizes abstract simplicity of σ -compact t.d.l.c.
groups. We return to the named properties (S1) and (S2) later in the article.

THEOREM 3.9. Let G be a nondiscrete σ -compact t.d.l.c. group. Then G is
abstractly simple if and only if it has the following three properties:

(S0) G has no proper open normal subgroups.
(S1) Every nontrivial normal subgroup of G contains an infinite commens-

urated compact locally normal subgroup of G.
(S2) Every infinite commensurated compact subgroup of G is open.
If G is abstractly simple then the following stronger version of (S2) holds:
(S2′) Suppose U is an open subgroup of G, and K is an infinite normal

subgroup of U (not necessarily closed) that is commensurated by G. Then K
has countably many cosets in G and K is an open subgroup of G.

Given a nondiscrete t.d.l.c. group G, it is obvious that (S0), (S1) and (S2)
together imply abstract simplicity of G, and that (S0) and (S1) are necessary
for abstract simplicity. The nontrivial part of the proof is to show that (S2) is
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also necessary when G is second-countable. In particular, it will follow that given
G ∈ S , then G is abstractly simple if and only if it satisfies both (S1) and (S2).

Let us first recall that by Lemma 2.4, given any first-countable profinite group
U and closed subgroup K of U , then U commensurates K if and only if U
normalizes an open subgroup of K . In other words:

LEMMA 3.10. Given a first-countable t.d.l.c. group G and a commensurated
compact subgroup K of G, then there is a finite index closed subgroup of K
that is locally normal in G. In particular, G satisfies (S2) if and only if G has no
nontrivial fixed points in its action on LN (G).

A simple observation shows that a t.d.l.c. group with property (S2) cannot have
many closed normal subgroups:

LEMMA 3.11. Let G be a t.d.l.c. group with property (S2). Then any closed
normal subgroup of G is discrete or open.

Proof. Let N be a closed normal subgroup of G and let U be a compact open
subgroup of G. The conjugation action of G on N is by automorphisms of the
locally compact group and therefore commensurates the compact open subgroup
N ∩ U . Then property (S2) implies that N ∩ U is either finite or open, thereby
yielding the desired conclusion.

In the present context, it is useful to have a notion of ‘size’ of certain subsets
of a t.d.l.c. group. Recall that infinite compact groups are homogeneous Baire
spaces, so in particular they are perfect sets and uncountable. Moreover, a closed
subgroup of a compact group that is not open has an empty interior, and therefore
has uncountably many cosets.

DEFINITION 3.12. Let G be a t.d.l.c. group and let K be a subgroup of G such
that NG(K ) is open. Say a subset X of G is K -meagre if X is contained in the
union of countably many left cosets of K and K -large if it contains a coset of a
subgroup of K of finite index. Say K is the local size of X (or X is K -sized) if X
is K -meagre and K -large.

The notions of K -meagre, K -large and K -sized are determined by the
commensurability class of K , so given α ∈ LN (G), we can define α-meagre,
α-large and α-sized to mean K -meagre, K -large and K -sized respectively, where
K is some (any) compact representative of α. Say X is locally sized if X has
local size α for some α ∈ LN (G).

We first make an easy observation that will be used without further comment.
(See also [49, Lemma 3.5].)
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LEMMA 3.13. Let G be a group, let H be a commensurated subgroup of G and
let g ∈ G. Then Hg is the union of finitely many left cosets of the finite index
subgroup H ∩ g−1 Hg of H. Similarly gH is the union of finitely many right
cosets of the finite index subgroup H ∩ gHg−1 of H.

LEMMA 3.14. Let G be a t.d.l.c.s.c. group.

(i) Let X be a locally sized subset of G. Then X is α-sized for exactly one α ∈
LN (G), which is both the least element of LN (G) for which X is α-meagre,
and the greatest element of LN (G) for which X is α-large.

(ii) Let K be a subgroup of G with open normalizer, and suppose that G =
CommG(K ). Then the product of any two K -meagre subsets of G is K -
meagre. Given a (not necessarily closed) K -meagre subgroup H of G such
that NG(H) is open, then H is contained in a K -meagre normal subgroup of
G.

(iii) Let α ∈ LN (G). Then the following are equivalent:

(a) G = StabG(α);

(b) G has an α-sized normal subgroup;

(c) Every α-meagre subgroup of G whose normalizer is open is contained
in an α-sized normal subgroup of G.

Proof. (i) Let β, γ ∈ LN (G) and suppose that X is β-large and γ -meagre. Then,
since these properties are invariant under left translation, it may be supposed
that X contains a representative, B, of β and B is γ -meagre because X is. Hence B
is the union of countably many left cosets of B∩C , where C is any representative
of γ . Since B is a Baire space, it follows that some (and hence all) left cosets of
B∩C are open in B, and then, since B is compact, that |B : B∩C | is finite. Hence
β 6 γ and the local size α of X (if it exists) must be both the least element of
LN (G) for which X is α-meagre and the greatest element of LN (G) for which
X is α-large.

(ii) Let X and Y be K -meagre sets. Then XY is contained in the union of
countably many sets of the form x K yK for x, y ∈ G and in turn, since K is
commensurated by G, each such set is the union of finitely many left cosets of K .
Hence XY is K -meagre.

Repeating the argument, we see that the product of any finite set of K -meagre
sets is K -meagre. Now let H be a K -meagre subgroup of G such that NG(H)
is open. By second-countability, there are only countably many cosets of NG(H)
in G, hence only countably many G-conjugates of H . Hence we may make a
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countable list H1, H2, H3, . . . consisting of G-conjugates of H such that every G-
conjugate appears infinitely often. Conjugates of K -meagre sets are K -meagre,
since K is commensurated by G. In particular, we see that Hi is K -meagre for all
i . Now notice that the set

L =
⋃
i∈N

(H1 H2 . . . Hi)

is a normal subgroup of G containing H and by construction L is K -meagre.
(iii) It is clear that (c) implies (b) because α has a representative with open

normalizer and every representative of α is α-meagre; (b) implies (a) by part (i)
because the α-sized normal subgroup is also g.α-sized for every g ∈ G; and (a)
implies (c) by applying part (ii) with H any representative of α.

Proof of Theorem 3.9. Suppose G has the given properties. Let H be a nontrivial
normal subgroup of G. Then H contains a nontrivial commensurated compact
locally normal subgroup L of G by property (S1); by property (S2), L and hence
H is open, so H = G since G has no proper open normal subgroups by property
(S0).

Conversely, suppose G is abstractly simple. Then the only compact normal
subgroup of G is the trivial subgroup, so that G is second-countable by
Lemma 2.2(iii). Certainly, G contains a compact open subgroup U ; in particular
U is infinite, commensurated and locally normal. Since G is the only nontrivial
normal subgroup of G, it follows that G satisfies (S0) and (S1). Given an infinite
commensurated compact subgroup K of G, by applying Lemma 3.10, we see
that a finite index subgroup of K is open in U . Thus to prove both (S2) and (S2′),
it suffices to consider an infinite normal subgroup K of U that is commensurated
in G. In this case, by Lemma 3.14 (ii), there is a normal subgroup L of G that
contains K , such that L is K -meagre. Since G is abstractly simple, it follows
that G = L , so G is K -meagre; in other words, K has countable index in G.
The Baire Category Theorem then ensures that K is open in G, proving that G
satisfies (S2) and (S2′) as required.

Say a locally compact topological group G is unrefinable if G is nondiscrete,
and the only locally compact group topology on G that properly refines the given
topology is the discrete one. Recall the following from [21]:

LEMMA 3.15 ([21, Theorem IV] and Lemma 2.4). Let G be a first-countable
t.d.l.c. group. Then there is a natural bijection between the elements of LN (G)
that are fixed by the action of G, and refinements of the topology of G that are
locally compact and compatible with the group structure.
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It is clear that for any t.d.l.c. group G, if G is unrefinable then G has (S2). By
Lemma 3.15, the converse holds for t.d.l.c.s.c. groups. Theorem 3.9 implies that
this applies in particular to abstractly simple t.d.l.c.s.c. groups.

COROLLARY 3.16. Let G be a nondiscrete t.d.l.c.s.c. group. Then G is
unrefinable if and only if G has property (S2). In particular, every abstractly
simple t.d.l.c.s.c. group is unrefinable.

4. Some local properties of compactly generated t.d.l.c. groups

4.1. Cayley–Abels graphs. We recall the now classical construction, due
to Abels, of a family of connected locally finite graphs associated with any
compactly generated t.d.l.c. group. (See [2, Beispiel 5.2], or [42, Section 11] for
more details.)

PROPOSITION 4.1. Let G be a compactly generated t.d.l.c. group, let U be a
compact open subgroup of G, let A be a compact symmetric subset of G such that
G = 〈U, A〉 and let D be a dense symmetric subset of G.

(i) There exists a finite symmetric subset B of G such that B ⊆ D and

BU = U B = U BU = U AU.

(ii) For any subset B satisfying part (i), then G = 〈B〉U and the coset space
G/U carries the structure of a locally finite connected graph, invariant
under the natural G-action, where gU is adjacent to hU if and only if
gU 6= hU and Ug−1hU ⊆ U BU.

Proof. (i) Since AU is compact, it is contained in a union of finitely many right
cosets of U , so U AU is a union of finitely many right cosets of U ; say U AU =⋃

b∈B1
Ub for B1 finite. Similarly, U AU =

⋃
b∈B2

bU for B2 finite. Since all the
right and left cosets of U are open, we are free to choose B1 and B2 to be subsets
of D. Now set

B = B1 ∪ B−1
1 ∪ B2 ∪ B−1

2 ;

it is straightforward to verify that B has the required properties.
(ii) It is clear that the given adjacency relation is well defined, and the fact that

B = B−1 ensures that it is a symmetric relation. Moreover, given g, h, k ∈ G, we
see that U (kg)−1(kh)U = Ug−1hU , so kgU is adjacent to khU if and only if gU
is adjacent to hU , in other words, G preserves the graph structure. Since U B =
U AU and G = 〈U, A〉, we have G = 〈U, B〉; the fact that G = 〈B〉U follows
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by repeatedly applying the equation U B = BU . Given h ∈ 〈B〉, there is clearly a
path from U to hU , ensuring that the graph defined on G/U is connected.

Since G acts transitively on G/U and preserves adjacency, to see that the
graph is locally finite it is enough to see that the trivial coset U has finitely many
neighbours. Indeed, U is adjacent to gU for g ∈ GrU if and only if gU ⊆ U BU .
But U BU = BU is the union of finitely many left cosets of U , so there are only
finitely many possibilities for gU .

The graph provided by Proposition 4.1 will be called a Cayley–Abels graph
associated with (G,U ). We emphasize that its edge set depends on the set U BU .
All Cayley–Abels graphs of G are quasi-isometric.

The next lemma in turn uses this information to strengthen considerably the
observation that, if G is nondiscrete, compactly generated and topologically
simple and U is a compact open subgroup of G, then finitely many conjugates
of U suffice to generate G.

LEMMA 4.2. Let G be a compactly generated t.d.l.c. group and let L be a
(possibly nonclosed) locally normal subgroup. Suppose the abstract normal
closure D = 〈〈L〉〉 is dense in G. Then there are g1, . . . , gn in D such that
D = 〈L ∪ g1 Lg−1

1 ∪ · · · ∪ gn Lg−1
n 〉.

Proof. Let U be a compact open subgroup that normalizes L . Since D is dense
in G, by Proposition 4.1 we can find a finite set Σ ⊂ D such that G = 〈Σ〉U .
Since U normalizes L , the conjugation action of 〈Σ〉 is thus transitive on the
G-conjugacy class of L . Hence the subgroup 〈Σ ∪ L〉 of D contains the entire
conjugacy class of L , which, since D is generated by that conjugacy class, implies
that D = 〈Σ ∪ L〉. Since it belongs to D, each element of Σ is a product of a
finite number of conjugates of elements of L . We may therefore choose g1, . . . ,

gn ∈ 〈Σ〉 such thatΣ ⊂ 〈L ∪ g1 Lg−1
1 ∪· · ·∪ gn Lg−1

n 〉, and the claim follows.

4.2. Quasicentralizers of commensurated subgroups. We now prove
two related propositions. The second may be viewed as a generalization of
[5, Theorems 4.8 and 4.9].

PROPOSITION 4.3. Let G be a t.d.l.c.s.c. group, let N be a minimal closed normal
subgroup of G and let H be an infinite closed subgroup of N such that H is
commensurated by G and QZ(H) = {1}. Then the quasicentralizer QCG(H) is
a closed normal subgroup of G that intersects N trivially. In particular, if G is
monolithic and QZ(N ) = {1}, then QCG(H) = QCG(N ) = {1}.
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Proof. The hypothesis that QZ(H) = {1} ensures that H is nondiscrete.
By Lemma 2.4, there exists a compact open subgroup U of G such that H ∩ U
is locally normal in G. Since QZ(H ∩ U ) = QZ(H) = {1}, it follows from
[21, Lemma 3.8(i)] that

QCG(H ∩U ) ∩ NG(H ∩U ) = CG(H ∩U ).

In particular, since NG(H ∩ U ) is open in G and CG(H ∩ U ) is closed, we
deduce that QCG(H ∩ U ) = QCG(H) is closed in G. Making the abbreviation
Q = QCG(H)∩ N , we deduce that Q is closed. Moreover, QCG(H) is normal in
G, since G commensurates H , hence also H ∩ U . Therefore, if Q is nontrivial,
we must have Q = N by minimality of N . Recalling that H 6 N by hypothesis,
we obtain H 6 Q 6 QCG(H), so H = QCH (H) = QZ(H), which is absurd
as H is infinite and QZ(H) = {1}. From this contradiction we deduce that
QCG(H) ∩ N = {1}. The final conclusion is clear.

PROPOSITION 4.4. Let G ∈ S . Then every infinite closed subgroup that is
commensurated by G has a trivial quasicentralizer. In particular, QZ(G) = {1}.

Proof. Let H be an infinite closed subgroup that is commensurated by G. For
any compact open subgroup W of G, the compact group H ∩ W is then
also commensurated by G, and moreover we have QCG(H) = QCG(H ∩ W ).
Therefore, it suffices to prove the proposition in case H is compact, which we
assume henceforth. Invoking Lemma 2.4 as in Proposition 4.3, we may moreover
assume that H is locally normal.

Let Q = QCG(H). We see that Q is normal in G, since G fixes [H ]. Suppose
that Q 6= {1}. Then Q is dense in G, since G is topologically simple.

Let U be a compact open subgroup of G that normalizes H . Then G is
generated by U X where X is a finite subset of G which, by Proposition 4.1, may
be chosen to be a subset of Q. Since X is finite, there is an open subgroup K of
finite index in H that is centralized by X . Choose V open and normal in U such
that V ∩ H 6 K . Then L := V ∩ H is normalized by all elements of U ∪ X , and
is a nontrivial compact normal subgroup of G. Since G is topologically simple,
we conclude that G is compact, hence profinite. But the only topologically simple
profinite groups are the finite simple groups, which are discrete. As G is assumed
nondiscrete, we have a contradiction. Thus Q must be trivial as required. The final
conclusion follows by considering QCG(U ) where U is a compact open subgroup
of G, since QZ(G) = QCG(U ).

4.3. The local prime content. Cayley–Abels graphs can be applied to obtain
a restriction on the primes involved in the compact open subgroups of a compactly
generated t.d.l.c. group.
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DEFINITION 4.5. Let G be a t.d.l.c. group. The local prime content η(G) of G
is the set of primes p for which G contains an infinite pro-p subgroup.

PROPOSITION 4.6. Let G be a nondiscrete compactly generated t.d.l.c. group.
Then G has a compact normal subgroup K , which can be chosen to be a subgroup
of any given open neighbourhood of the identity, such that for every compact open
subgroup U of G, the composition factors of U K/K are of bounded order. In
particular, the set η = η(G/K ) is finite and U K/K is virtually pro-η for every
compact open subgroup U.

Proof. By Lemma 2.2 we may assume that G is second-countable. Let O be
an open neighbourhood of the identity in G. Then by van Dantzig’s theorem,
O contains a compact open subgroup V of G. Let Γ be a Cayley–Abels graph
associated to (G, V ). Let K be the kernel of the action of G on Γ . Then K =⋂

g∈G gV g−1, so K is compact and K ⊆ O . From now on we may assume K =
{1}. Vertex transitivity of the action of G on Γ implies that all vertices have the
same valency, d .

Let U be a compact open subgroup of G and consider the action of U on Γ .
Let U0 = U ∩ V and for all n > 0, let Un be the pointwise stabilizer of the n-
sphere around the base vertex v0 = V in U0. Thus the collection {Un}n>0 is a
descending chain of open normal subgroups of U0 with trivial intersection. For
each n > 0, the finite group Un/Un+1 fixes pointwise the n-sphere around v0 and
acts faithfully on the n+ 1-sphere. Since Γ is d-regular, the orbits of Un/Un+1 on
the n+1-sphere have size at most d , so every composition factor of U1 embeds in
Sym(d)m for some m and thus has order dividing d!. In particular, U1 is a pro-π
group where π is the set of primes less than d + 1. Hence η ⊆ π and is finite.
For each of the finitely many primes p ∈ πrη, the p-Sylow subgroup Pp of U1 is
finite, so there exists an open normal subgroup Vp of U1 that intersects Pp trivially.
Sylow’s theorem then implies Vp is pro-p′, and by intersecting finitely many such
open subgroups of U1, we obtain an open pro-η subgroup V , which is then also
of finite index in U . Hence U is virtually pro-η.

In order to obtain stronger results of this kind, we recall some vocabulary from
finite group theory, adapted to the profinite setting.

DEFINITION 4.7. Let G be a profinite group. For a set of primes π , the π -core
Oπ (G) is the largest normal pro-π subgroup of G, and the π -residual Oπ (G)
is the smallest closed normal subgroup of G such that G/Oπ (G) is pro-π . The
prosoluble core O∞(G) is the largest normal prosoluble subgroup of G, while
the prosoluble residual O∞(G) is the smallest closed normal subgroup of G
such that G/O∞(G) is prosoluble.
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LEMMA 4.8. Let G be a t.d.l.c. group, let U and V be compact open subgroups
of G and let π be a set of primes. Then Oπ (U ) is commensurate with Oπ (V );
similarly, O∞(U ) is commensurate with O∞(V ). Consequently

G = CommG(Oπ (U )) = CommG(O∞(U )).

Proof. Let W be an open subgroup of U∩V that is normal in V . Then Oπ (U )∩W
is pro-π and normal in W , so contained in Oπ (W ). In turn Oπ (W ) is pro-π and
normal in V , so Oπ (W ) 6 Oπ (V ). Hence Oπ (V ) contains an open subgroup of
Oπ (U ) and vice versa by symmetry. Hence Oπ (U ) is commensurate with Oπ (V ).

The proof of the analogous statement about the prosoluble residual is
the same.

Before proving the main result of this section, Theorem 4.13, we recall
an observation of Wielandt (originally made in the context of finite groups)
about the normalizers of π -residuals and prosoluble residuals (compare
[14, Lemma 2.2.3]).

LEMMA 4.9. Let G be a profinite group and let S be a subnormal subgroup of
G. Then for each set of primes π , the group Oπ (G) normalizes Oπ (S). Similarly
O∞(G) normalizes O∞(S).

Proof. Let ∗ stand for either a set of primes π , or∞, and let C be the class of pro-
π groups or the class of pro-(finite soluble) groups respectively. Let H = O∗(G)S.
Since

S/(S ∩ O∗(H)) ∼= SO∗(H)/O∗(H)

and C is closed under taking closed subgroups, we see that S/(S ∩ O∗(H)) is in
C. Hence O∗(S) 6 O∗(H). We claim that in fact O∗(S) = O∗(H).

Since S is subnormal in G, it is also subnormal in H , and there is a series

S = H0 � H1 � · · ·� Hn = H.

In order to prove the claim, observe first that, since H = O∗(G)S and since
S 6 Hi for all i , we have Hi = Hi ∩ O∗(G)S = O∗(Hi)S for all i . We now
proceed to prove the claim by induction on n. By the inductive hypothesis, we
may assume O∗(S) = O∗(Hn−1). Now O∗(Hn−1) is characteristic in Hn−1, hence
normal in Hn . Thus we have a quotient Hn/O∗(Hn−1) of Hn , which is an extension
of A = Hn/Hn−1 by B = Hn−1/O∗(Hn−1). Since Hn = O∗(Hn)S and S 6 Hn−1,
we see that A is isomorphic to a quotient of O∗(Hn), which is in C, so A ∈ C, while
B ∈ C by the definition of O∗(Hn−1). Since C is closed under extensions within
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the class of profinite groups, we have Hn/O∗(Hn−1) ∈ C, so O∗(Hn) 6 O∗(Hn−1)

and hence O∗(Hn) = O∗(Hn−1) = O∗(S).
Since Hn = H and since O∗(H) is normal in H and O∗(G) is a subgroup of

H , it follows that O∗(G) normalizes O∗(S).

It is a fact well known and frequently used that, if H and K are subgroups of G
that normalize each other and have trivial intersection, then H centralizes K . The
following lemma, recalled from [21], is the local version of this fact.

LEMMA 4.10 [21, Lemma 3.9]. Let G be a t.d.l.c. group and let H and K
be closed subgroups of G such that QZ(H) = {1} and such that |H ∩ K |,
|H : NH (K )| and |K : NK (H)| are all finite. Then H centralizes a finite index
open subgroup of K .

COROLLARY 4.11. Let G be a t.d.l.c. group and let H and K be nontrivial
compact locally normal subgroups of G such that QZ(H) = QCG(K ) = {1}.
Then H ∩ K is infinite.

Proof. Since H and K are locally normal, we see that |H : NH (K )| and
|K : NK (H)| are finite. Suppose also that H ∩ K is finite. By Lemma 4.10, H
centralizes an open subgroup of K , that is, H 6 QCG(K ). Since QCG(K ) is
trivial but H is not, we have a contradiction.

Theorems 4.13 and 4.14 are the culmination of this section. Before proceeding
to them, we record the following subsidiary fact separately.

PROPOSITION 4.12. Let G be a nontrivial compactly generated t.d.l.c. group.
Suppose that G has trivial quasicentre, no nontrivial compact normal subgroups
and no nontrivial compact abelian locally normal subgroups. Let H be a
nontrivial closed locally normal subgroup of G. Then there is a minimal closed
normal subgroup M of G such that H ∩ M is nondiscrete.

Proof. By Proposition 2.12, every nontrivial closed normal subgroup of G
contains a minimal one, and the set {M1, . . . ,Mn} of minimal closed normal
subgroups of G is finite. Proposition 2.7 ensures that QCG(Mi) = CG(Mi) for
all i . The intersection

⋂n
i=1 QCG(Mi) is thus a closed normal subgroup of G. This

intersection centralizes, and therefore does not contain, each of the nonabelian
subgroups Mi . Hence

⋂n
i=1 QCG(Mi) is trivial.

By Proposition 2.7 we have QZ(H) = {1}, so H is nondiscrete. Since⋂n
i=1 QCG(Mi) = {1}, there is i ∈ {1, . . . , n} such that QCG(Mi) does not contain

an open subgroup of H . In particular, no open subgroup of H centralizes any open
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subgroup of Mi . Given a compact open subgroup U of G, then H ′ = H ∩U and
M ′i = Mi ∩U are both compact and locally normal in G. It then follows that the
indices |H ′ : NH ′(M ′i )| and |M ′i : NM ′i (H)| are both finite, while QZ(H ′) = {1}.
By Lemma 4.10 it follows that H ′ ∩ M ′i is an infinite compact group, so H ∩ Mi

is nondiscrete.

THEOREM 4.13. Let G be a nontrivial compactly generated t.d.l.c. group.
Suppose that G has trivial quasicentre, no nontrivial compact normal subgroups
and no nontrivial compact abelian locally normal subgroups. Let {M1, . . . ,Mn}

be the set of minimal nontrivial closed normal subgroups of G (which is indeed
finite by Proposition 2.12) and let ηi = η(Mi) for 1 6 i 6 n.

Then there are nonempty subsets η∗i ⊆ ηi for 1 6 i 6 n such that given any
nontrivial compact locally normal subgroup H of G and any set of primes ξ ,
Oξ (H) is nontrivial if and only if there is some i ∈ {1, . . . , n} such that ξ ⊇ η∗i
and H ∩Mi > 1. Moreover, if ξ =

⋃n
i=1 η

∗

i , then Oξ (H) is infinite for all such H.

Proof. Recall that by Proposition 2.7, every closed locally normal subgroup of G
has trivial quasicentre.

Fix i ∈ {1, . . . , n}. Let Di be the collection of those sets, ξ , of primes such
that for some compact open subgroup U of G, the ξ -core Oξ (U ∩ Mi) is infinite.
Notice that if ξ ∈ Di , then in fact Oξ (U ∩ Mi) is infinite for every compact open
subgroup U . Let U be a compact open subgroup of G and let ξ1, ξ2 ∈Di . Then the
compact subgroups Oξ1(U ∩ Mi) and Oξ2(U ∩ Mi) are locally normal in G, and
thus both have trivial quasicentre, and Oξ1(U ∩ Mi) and Oξ2(U ∩ Mi) normalize
each other. At the same time, Oξ1(U ∩ Mi) and Oξ2(U ∩ Mi) both have a trivial
quasicentralizer in Mi by Proposition 4.3 because, as Lemma 4.8 shows, they are
commensurated in G. By applying Corollary 4.11 to the subgroups Oξ1(U ∩ Mi)

and Oξ2(U ∩ Mi) of the group Mi , it follows that

Oξ1(U ∩ Mi) ∩ Oξ2(U ∩ Mi) = Oξ1∩ξ2(U ∩ Mi)

is infinite. This shows that Di is closed under finite intersections. Moreover, Di

contains η(G), which is a finite set by Proposition 4.6. Thus the poset Di has a
smallest element η∗i ⊆ η(G), which is necessarily nonempty by the definition of
Di .

Now let H be a nontrivial compact locally normal subgroup of G, let ξ be a
set of primes and fix a compact open subgroup U < G containing H as a normal
subgroup.

Suppose there is some i such that i ∈ {1, . . . , n} such that ξ ⊇ η∗i and H∩Mi >

1. Then QCMi
(Oξ (U ∩ Mi)) is trivial, as above, and hence Oξ (U ∩ Mi) ∩ H is

infinite by Corollary 4.11. Since Oξ (U ∩ Mi) ∩ H is a normal pro-ξ subgroup
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of H , it is contained in Oξ (H) and we have thus shown that Oξ (H) is infinite.
Conversely, suppose that Oξ (H) is nontrivial. Then by Proposition 4.12, there
exists i ∈ {1, . . . , n} such that Oξ (H)∩Mi is infinite, so in particular H ∩Mi > 1.
At the same time, Oξ (H) is a characteristic subgroup of H , and hence a normal
subgroup of U , so Oξ (H) ∩ Mi is an infinite normal pro-ξ subgroup of U ∩ Mi .
Thus Oξ (U∩Mi) is infinite, in other words ξ ∈ Di , ensuring that ξ ⊇ η∗i . We have
now shown that Oξ (H) is nontrivial if and only if there is some i ∈ {1, . . . , n}
such that ξ ⊇ η∗i and H ∩ Mi > 1.

Finally, suppose that ξ =
⋃n

i=1 η
∗

i . By Proposition 4.12 there exists i ∈ {1, . . . ,
n} such that H ∩ Mi is nondiscrete. Since ξ ⊇ η∗i , the previous paragraph implies
Oξ (H) is infinite, as required.

We can prove a stronger result for locally C-stable t.d.l.c. groups that are in
S . In fact it will be seen later, in Theorem 5.3, that every group in S is locally
C-stable, so the following theorem applies to all groups in S .

THEOREM 4.14. Let G be a nontrivial compactly generated, topologically simple,
locally C-stable t.d.l.c. group. Then the following hold.

(i) Every nontrivial compact locally normal subgroup H 6 G is virtually pro-
η(G) and, if H is virtually pro-ξ for some set of prime numbers ξ , then ξ ⊇
η(G).

(ii) If G contains a nontrivial prosoluble locally normal subgroup, then every
compact open U 6 G is virtually prosoluble.

Proof. If G is discrete, all assertions are trivial. We assume henceforth that G
is nondiscrete. We then note that G satisfies the hypotheses of Theorem 4.13:
we have QZ(G) = {1} by Proposition 4.4 and the absence of nontrivial compact
abelian locally normal subgroups is ensured by Proposition 2.7.

For (i), by Theorem 4.13 there is η∗ ⊆ η(G) such that, given any nontrivial
compact locally normal subgroup H of G and any set of primes ξ , Oξ (H) is
nontrivial if and only if ξ ⊇ η∗. We have to show that η∗ = η(G); it suffices
to show that some compact open subgroup U of G is virtually pro-η∗. Set L =
Oη∗(U ).

For (ii), we take U to be a compact open subgroup and set L = O∞(U ); in this
case we may assume that L is nontrivial, and our aim is to show that U is virtually
prosoluble.

In both cases L is a nontrivial compact locally normal subgroup. From this
point onwards the proofs of (i) and (ii) are similar: let ? stand for η∗ for the proof
of (i), and∞ for the proof of (ii).
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Lemma 4.2 implies that the normal closure of L is generated by a finite set
of conjugates of L . Let thus g1, . . . , gn ∈ G be such that D = 〈L ∪ g1 Lg−1

1 ∪

· · · gn Lg−1
n 〉 is dense and normal in G. Set g0 = 1 and Ui = giUg−1

i for all i = 0,
. . . , n. Let also V0 be an open normal subgroup of U0 contained in

⋂n
i=0 Ui . For

all i > 0, define inductively a group Vi as the normal core of Vi−1 in the group Ui .
Thus Vi � Ui and for all i ∈ {0, 1, . . . , n}, we get a subnormal chain

Vn � Vn−1 � · · ·� Vi � Ui .

From Lemma 4.9, we infer that O?(Vn) is normalized by O?(Ui) for all i =
0, . . . , n. Notice that O?(Ui) = gi Lg−1

i . We deduce that O?(Vn) is normalized
by D. Since O?(Vn) is compact, its normalizer in G is closed. Therefore, O?(Vn)

is normal in G since D is dense.
Topological simplicity of G then implies that O?(Vn) is trivial. In other words

Vn is a pro-η∗ group for part (i), respectively a prosoluble group for part (ii). Since
Vn is open in U by construction, this proves that U is virtually pro-η∗ or prosoluble
respectively, as required.

5. Properties of the structure lattice

5.1. The orbit join property. Recall that S is the class of nondiscrete
compactly generated topologically simple t.d.l.c. groups. We have seen
(Theorem 3.9) that if G ∈ S is abstractly simple, then G has no nontrivial
fixed points in LN (G), and thus all G-orbits on LN (G)r{0,∞} are infinite.
However, it turns out that the orbits of G on LN (G) are still ‘compact’ in a
certain sense: each orbit has a least upper bound, which is the join of finitely
many elements of the orbit. In the case that G satisfies (S2), it follows that every
compact locally normal subgroup H of G is relatively large, in the sense that
there exists a finite set of G-conjugates of H whose product has a nonempty
interior. Even without assuming (S2), we see that in the conjugation action of
G on LN (G), the lattice LN (G)G of fixed points plays an important role. We
work here in the more general setting of Hecke pairs (G,U ) and, in this setting,
a subgroup K 6 G is bounded if it is contained in a finite number of U -cosets
and is locally normal if NG(K ) ∩U has finite index in U .

LEMMA 5.1. Let (G,U ) be a Hecke pair such that G is generated by finitely
many cosets of U. Let κ be a set of bounded locally normal subgroups which is
invariant under the U-action by conjugation, and such that G = 〈U, κ〉. Then
there is a finite set {K1, . . . , Kn} ⊆ κ which is a union of U-orbits under the
conjugation action, such that G = 〈U, K1, . . . , Kn〉. Moreover, setting V :=⋂n

i=1 NU (Ki) and L i := V ∩ Ki for all i , we have the following:
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(i) for each i , L i is a subgroup of finite index in Ki ;

(ii) L i normalizes both K j and L j for all pairs (i, j); and

(iii) L =
∏n

i=1 L i is a normal subgroup of U that is commensurated by G.

Proof. We have G = 〈U, X〉 for some finite set X where, since G = 〈U, κ〉, we
can choose X = {x1, . . . , xn} and {K1, . . . , Kn} ⊆ κ such that xi ∈ Ki . Then
G = 〈U, K1, . . . , Kn〉. Since every element of κ is locally normal, it has only
finitely many conjugates under the action of U , and so we may assume that {K1,

. . . , Kn} is a union of U -conjugacy classes by enlarging n. Set V =
⋂n

i=1 NU (Ki)

and let L i = V ∩ Ki . Clearly |Ki : L i | is finite, and L i normalizes K j and L j for
all pairs (i, j). Furthermore, the conjugation action of U preserves the set {L1,

. . . , Ln} because V is normal in U . Hence L =
∏n

i=1 L i is a normal subgroup
of U . Since L is a finite index subgroup of Ki L for each i , it follows that Ki L
commensurates L and hence that CommG(L) > 〈U, K1 L , . . . , Kn L〉 = G.

We can now prove Theorem B.

Proof of Theorem B. Every G ∈ S is first-countable by Corollary 2.3, so
conditions (i) and (ii) are equivalent by Lemma 3.10. The equivalence of (i) and
(iii) is a special case of Corollary 3.16. It only remains to show that (i) and (iv)
are equivalent.

Suppose (i) holds and let H be a nontrivial compact locally normal subgroup of
G. By Proposition 4.4, we have QZ(G) = {1}, so H must be infinite. Since G is
topologically simple, we have G = 〈〈H〉〉. Applying Lemma 5.1, we produce a set
{L1, . . . , Ld} of infinite subgroups of G, such that for all 1 6 i 6 d , there exists
gi ∈ G such that L i 6 gi Hg−1

i , and such that L =
∏n

i=1 L i is a commensurated
compact locally normal subgroup of G. Since G has (S2), in fact L is an open
subgroup of G. Since L 6 〈gi Hg−1

i | 1 6 i 6 d〉, we have L 6 H , so that H is
open. In particular G = 〈〈H〉〉. Assertion (iv) now follows from Lemma 4.2.

Conversely, suppose (iv) holds and let H be an infinite commensurated compact
subgroup of G. Then by Lemma 3.10, there is a finite index subgroup K of H that
is locally normal in G. By (iv), there exist g1, . . . , gn ∈ G such that G is generated
by X =

⋃n
i=1 gi K g−1

i . Since H is commensurated in G, K is also commensurated,
and we see that X is K -meagre. Since X generates G it follows by Lemma 3.14
that G is K -meagre, and hence |G : K | is countable. The Baire Category Theorem
then implies that K is open in G, so H is open in G. Thus (iv) implies (i).

Lemma 5.1 also leads to a version of Theorem D.
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THEOREM 5.2. Let G be in S . Then, for each α ∈ LN (G), there is a unique
smallest fixed point, α∗ ∈ LN (G)G , that is greater than or equal to α. Moreover,
there is a finite subset {g1, . . . , gn} of G such that α∗ =

∨n
i=1 giα.

Proof. Choose a compact locally normal subgroup K of G such that [K ] = α

and let U be a compact open subgroup of G. Then G = 〈U, κ〉, where κ is the
G-conjugacy class of K . Since NG(K ) is open, U acts on κ by conjugation with
finite orbits, and the compactness of K guarantees that |M : M ∩ U | < ∞ for
all M ∈ κ . The conditions of Lemma 5.1 are therefore satisfied and so there is
a finite subset {K1, . . . , Kn} ⊆ κ and finite index subgroups L i of Ki such that
L =

∏n
i=1 L i is a normal subgroup of U that is commensurated by G. In the

present setting, the subgroups L i provided by Lemma 5.1 are closed and so L is
compact. Now γ = [L] is fixed by the conjugation action of G on LN (G) and
we can express γ as

γ =

n∨
i=1

[L i ] =

n∨
i=1

[Ki ] =

n∨
i=1

giα,

where g1, . . . , gn are elements of G such that Ki = gi K g−1
i .

Suppose that β ∈ LN (G)G with β > α. Then β = giβ > giα for all i = 1,
. . . , n and so β > γ . Hence γ is the unique minimal element of the set {β ∈
LN (G)G

| β > α}.

5.2. On the nonexistence of virtually abelian locally normal subgroups.
We would like to investigate (topologically) simple t.d.l.c. groups by means
of the Boolean algebras defined in [21], as we have better control over their
structure than we do for the structure lattice as a whole. Recall that to ensure
the centralizer and local decomposition lattices are indeed Boolean algebras,
we needed to assume certain local properties concerning centralizers of locally
normal subgroups, the strongest of which was that G should not have any
nontrivial compact abelian locally normal subgroups. Fortunately, this last
condition turns out to be true for a class of groups that includes every nondiscrete
compactly generated topologically simple t.d.l.c. group.

For the sake of clarity, we shall first state and prove the absence of virtually
abelian locally normal subgroups in groups belonging to the class S . We then
generalize this to the framework of Hecke pairs.

THEOREM 5.3. Let G ∈ S . Then QZ(G) = {1} and G has no nontrivial
virtually soluble locally normal subgroups. In particular G is locally C-stable
by Proposition 2.7.
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In particular, we recover [70, Theorem 2.2], which asserts that the compact
open subgroups of G cannot be soluble.

REMARK 5.4. Example 1.1 from the introduction (see also [70]) shows that
there are nondiscrete topologically simple t.d.l.c. groups whose compact open
subgroups are virtually abelian, so the condition of compact generation is
essential in Theorem 5.3.

Proof of Theorem 5.3. That QZ(G) = {1} has already been proved in
Proposition 4.4. We now suppose there is a nontrivial virtually soluble
locally normal subgroup K of G, in order to derive a contradiction. Then K
is nondiscrete, since QZ(G) = {1}, so by intersecting K with a sufficiently small
compact open subgroup, we may assume that K is soluble with compact closure.
By passing to the last nontrivial term in the derived series, we may also assume
that K is abelian. Then K is also an abelian locally normal subgroup, so we
may assume that K is closed, hence compact. By Lemma 5.1, the group G has
a commensurated compact locally normal subgroup L of the form L =

∏n
i=1 L i ,

where the L i are locally normal, abelian (in fact they are each conjugate to
an open subgroup of K ), and normal in L . By Fitting’s theorem, it follows
that L is nilpotent; in particular Z(L) > 1. On the other hand L is an infinite,
compact, commensurated, locally normal subgroup of G, and thus has a trivial
quasicentralizer by Proposition 4.4. This is a contradiction.

We have now proved Theorem A; we can now also deduce Theorem H from
Theorem 4.14, since the only missing ingredient was the fact that all groups in S
are locally C-stable.

The conclusion of Theorem 5.3 may be extended to compactly generated
topologically characteristically simple t.d.l.c. groups.

LEMMA 5.5 (See for instance [53, Lemma 8.2.3]). Let G be a profinite group
that is topologically characteristically simple. Then G is a direct product of finite
simple groups. In particular, QZ(G) is dense in G.

PROPOSITION 5.6. Let G be a compactly generated, topologically
characteristically simple t.d.l.c. group. Then exactly one of the following holds:

(i) G is finite.

(ii) G is countably infinite and discrete.

(iii) G is an infinite profinite group and QZ(G) is dense.

(iv) G is locally C-stable and QZ(G) = {1}.
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Proof. If G is compact (which is to say that G is profinite, since we have assumed
G is totally disconnected), it follows that QZ(G) is dense by Lemma 5.5. If G is
infinite and discrete, then it is finitely generated, hence countable. From now on
we may assume G is neither compact nor discrete.

By [18, Corollary D], there is a finite set of topologically simple closed normal
subgroups {M1, . . . ,Mn}, such that the product

∏n
i=1 Mi is a dense subgroup of

G, and Mi ∩ Mj = {1} for i and j distinct. Let Ci = CG(Mi); note that Ci

contains Mj for all j 6= i . We claim that Z(G) = {1}: otherwise, G would be
abelian and the Mi would have to be cyclic of prime order, but then G would itself
be finite and hence discrete, a case we have already removed. Thus Mi ∩Ci = {1}
for 1 6 i 6 n. It follows that G/Ci is topologically simple, since every nontrivial
closed normal subgroup of G/Ci has nontrivial intersection with Mi Ci/Ci and
is therefore dense in G/Ci . Thus G/Ci is a locally C-stable t.d.l.c. group with
trivial quasicentre by Theorem 5.3. Since the properties of being quasicentral and
being abelian locally normal pass to quotients, it follows that Ci contains QZ(G)
and all abelian locally normal subgroups of G for all i . Since K =

⋂n
i=1 Ci is a

characteristic subgroup of G, it is trivial. We conclude that the quasicentre and all
abelian locally normal subgroups of G are trivial, hence G is locally C-stable by
Proposition 2.7.

In the case of an arbitrary compactly generated t.d.l.c. group G, as a result of
Theorem 5.3, there is an interesting interaction between the [A]-regular radical
of G, denoted by R[A](G) (see [21, Theorem III]) and the quotients of G occurring
in Theorem 2.11 (which was borrowed from [18, Theorem A]).

COROLLARY 5.7. Let G be a compactly generated t.d.l.c. group.

(i) Let N be a cocompact normal subgroup of G and R be a closed normal
subgroup of N such that N/R is nondiscrete and topologically simple. Then
N ∩ R[A](G) 6 R. Defining N2 = NR[A](G) and R2 = {g ∈ N2 | ∀h ∈ N :
[g, h] ∈ R}, we have:

(a) N2/R[A](G) is a cocompact normal subgroup of G/R[A](G);

(b) R2 is a closed normal subgroup of N2 which contains R[A](G);

(c) N2/R2 is nondiscrete, topologically simple and isomorphic to a
quotient of N2/R[A](G); and

(d) the homomorphism φ : N/R → N2/R2 given by φ(gR) = gR2 is
injective and has dense image.

All nondiscrete simple quotients of cocompact normal subgroups of G are
thus accounted for by the quotient G/R[A](G).
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(ii) Suppose G is noncompact and [A]-regular (that is G = R[A](G)). Then G
has an infinite discrete quotient.

Proof. (i) Since N is cocompact in G, it is compactly generated, and hence
so is the topologically simple quotient N/R. From Theorem 5.3, we deduce
that R[A](N/R) = {1}, so R[A](N ) 6 R by [21, Theorem 6.11]. By [21,
Proposition 6.15], we have R[A](G)∩ N 6 R[A](N ), and hence N ∩ R[A](G) 6 R.

Let N2 = NR[A](G) and R2 = {g ∈ N2 | ∀h ∈ N : [g, h] ∈ R}. Clearly N2

is normal in G. Moreover N2 is cocompact in G, since it contains N , and so
N2/R[A](G) is a cocompact normal subgroup of G/R[A](G). Note that R2 is a
closed subgroup of N2, since it is the set of all g ∈ N2 such that gR ∈ CG/R(N/R).
We have [N ,R[A](G)] 6 N ∩ R[A](G) 6 R, and so R[A](G) 6 R2. Since R is
normal in N , we see that R2 is normalized by N and thus R2 is normal in N2,
so φ is a well-defined homomorphism; the fact that R[A](G) 6 R2 ensures that
φ has dense image and that N2/R2 is isomorphic to a quotient of N2/R[A](G).
Since the centre of N/R is trivial, we see that N ∩ R2 = R, and hence that the
homomorphism φ is injective. Since φ is continuous and injective and N/R is
nondiscrete, it follows that N2/R2 is not discrete.

It remains to show that N2/R2 is topologically simple. Let K/R2 be a proper
closed normal subgroup of N2/R2. Then K does not contain N , and it follows
that φ−1(K/R2) is a proper closed normal subgroup of N/R and, by topological
simplicity of N/R, must be equal to {1}. Thus K/R2 and N R2/R2 are normal
subgroups of N2/R2 with trivial intersection. We conclude that K/R2 centralizes
N R2/R2, that is, [g, h] ∈ R2 for all g ∈ K and h ∈ N . Since [g, h] ∈ N as well
in this case, in fact [g, h] ∈ N ∩ R2 = R and so K 6 R2. Thus K/R2 = {1}, as
required.

(ii) Follows from (i) and Theorem 2.11.

We now proceed to generalize Theorem 5.3 to the abstract framework of Hecke
pairs.

THEOREM 5.8. Let (G,U ) be a Hecke pair such that U < G and such that U is
infinite. Suppose that G is generated by finitely many cosets of U, and also that
G = 〈U, N 〉 for any nontrivial normal subgroup N of G.

Then the following assertions hold for any nontrivial subgroup K of U such
that NU (K ) has finite index in U:

(i) K is not virtually soluble.

(ii) If K is commensurated by G, then CG(K ) = {1}.
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Proof. Let K be a nontrivial subgroup of U such that |U : NU (K )| is finite.
Let us first prove (ii) in case K is infinite. Suppose for a contradiction that

C = CG(K ) > {1}. Then G is generated by U together with a finite set {g1Cg−1
1 ,

. . . , gnCg−1
n } of conjugates of C , and without loss of generality we may assume

that g1 = 1. Moreover U has finite orbits on the set of conjugates of K , since
NU (K ) is a commensurated subgroup of G that has finite index in U . Hence we
may take {g1 K g−1

1 , . . . , gn K g−1
n } to be a U -invariant set. Consequently the group

L =
⋂n

i=1 gi K g−1
i is normal in G, since it is normalized by U and centralized

by 〈g1Cg−1
1 , . . . , gnCg−1

n 〉. Since L 6 U (because L 6 g1 K g−1
1 = K 6 U ),

we conclude that L = {1}, so K cannot have been an infinite commensurated
subgroup of G. This proves (ii) in the case where K is infinite.

If K is finite, we see that L = CU (K ) has finite index in U and is thus an
infinite commensurated subgroup of G. What we have just proved ensures that
CG(L) = {1}, so that K = {1}, a contradiction. This completes the proof of (ii).

This implies that CG(V ) = {1} for every subgroup V of G that is commensurate
with U .

We now prove (i), and assume thus that K is virtually soluble. The fact that
CG(V ) = {1} for every finite index subgroup V of U ensures that CU (K )
has infinite index in NU (K ) and hence that K must be infinite. Moreover, the
hypotheses imply that U has trivial core in G. In particular U is residually finite,
so there is an injective map π : U → Û from U to its profinite completion. We
see that π(K ) has a soluble closed subgroup of finite index; by a compactness
argument, there exists an open normal subgroup W of Û such that π(K ) ∩ W
is soluble. The group K ′ = π−1(W ) ∩ K is then a soluble subgroup of finite
index in K , such that K ′ is normalized by NU (K ). Therefore, in order to prove
(i), we may assume henceforth that K is soluble and derive a contradiction. By
replacing K with the last nontrivial term of its derived series, we may indeed
assume that K is abelian. We have G = 〈U, κ〉 where κ is the set of G-conjugates
of K . By Lemma 5.1, there is a set {L1, . . . , Ln} of subgroups of G, each a finite
index subgroup of a conjugate of K , such that L i and L j normalize each other
for all pairs (i, j) and L =

∏n
i=1 L i is an infinite normal subgroup of U that

is commensurated by G. Now each L i is abelian, so L is nilpotent by Fitting’s
theorem, and hence CG(L) > Z(L) > 1. This is impossible, as we have already
shown that any infinite normal subgroup of U that is commensurated by G must
have a trivial centralizer.

It is straightforward to deduce Theorem 5.3 above from Theorem 5.8, thereby
providing an alternative proof of the former. The following particularization
of Theorem 5.8, whose proof is straightforward, is another special case of
independent interest:
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COROLLARY 5.9. Let G be a finitely generated simple group with an infinite
commensurated subgroup U. Then CG(U ) = {1}, and U does not have any
virtually soluble normal subgroups except for the trivial group.

5.3. Five possible types of structure lattice. Our aim in this subsection is
to prove Theorem F. We first make an easy observation about the structure of
LN (G)r{0}.

An upper subset of a poset X is a subset Y such that for all y ∈ Y and x ∈ X ,
if y 6 x then x ∈ Y . A filter of a lattice is an upper subset that is also closed
under meets.

LEMMA 5.10. Let G be a nondiscrete locally C-stable t.d.l.c. group and let F :=
LN (G)r{0}. Then F is closed under meets if and only if LC(G) = {0,∞}.

Proof. F is clearly an upper subset of LN (G), so it is a filter if and only if it is
closed under meets.

If LC(G) is nontrivial, then there exists an infinite compact locally normal
subgroup K of G such that CG(K ) is infinite. Then α = [K ] and β = [CG(K )]
are elements of F such that [K ]∧[CG(K )] = [Z(K )] = 0, recalling that G has no
nondiscrete abelian locally normal subgroups by Proposition 2.7. Thus F is not
closed under meets. Conversely, if there exist α, β ∈ F such that α ∧ β = 0, then
we have 0< β 6 α⊥ <∞, so α⊥ is an element of LC(G) other than 0 and∞.

We now show that for G ∈ S , the set of nonzero fixed points of G acting on
LN (G) forms a filter, even if LC(G) is nontrivial.

LEMMA 5.11. Let G be a nondiscrete t.d.l.c.s.c. group.

(i) If G is topologically simple, then LN (G)Gr{0} is an upper subset of
LN (G).

(ii) If G is monolithic, locally C-stable and has trivial quasicentre, then
LN (G)Gr{0} is closed under meets.

Hence if G is topologically simple and locally C-stable, then LN (G)Gr{0} is a
filter on LN (G).

Proof. Let F = LN (G)Gr{0}.
(i) Let K be a compact locally normal subgroup of G such that [K ] ∈ F . Then

G acts on the set R of elements of LN (G) above [K ]; the kernel R of this action
is closed and normal in G. Moreover R contains K , since for every β > [K ], there
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is a representative L of β containing K . Hence R > 〈〈K 〉〉. Since G is topologically
simple, we conclude that R = G, so G acts trivially on R. Thus β > [K ] implies
β ∈ F .

(ii) Note that the hypotheses ensure QZ(H) = {1} for every nontrivial closed
locally normal subgroup H of G by Proposition 2.7. We suppose that α, β ∈ F
are such that α ∧ β = 0; it suffices to derive a contradiction.

Let M be the monolith of G and let µ = [M] ∈ LN (G). Then µ ∈ LN (G)G ,
so γ ∧µ ∈ LN (G)G for all γ ∈ F . Moreover we have γ ∧µ > 0 for all γ ∈ F ,
since otherwise M would have a nontrivial quasicentralizer in G, contradicting
Proposition 4.3. In particular, we infer that α ∧ µ and β ∧ µ both belong to F .
Since α ∧ β = 0, there are infinite compact subgroups K and L of M such that
K ∈ α ∧ µ, L ∈ β ∧ µ, K and L normalize each other and K ∩ L = {1}, so
L 6 CM(K ). The desired contradiction follows by Proposition 4.3. In particular
α ∧ β > 0, so α ∧ β ∈ F .

We immediately derive an important property of the action of G on LC(G).

COROLLARY 5.12. Let G be a topologically simple, locally C-stable t.d.l.c.s.c.
group. Then LC(G)G

= {0,∞}.

Proof. Let α ∈ LC(G)G and suppose that α 6∈ {0,∞}. Since the map
⊥: LC(G) → LC(G) is invariant under the G-action, it follows that α⊥ is
also fixed by G; at the same time, α⊥ 6∈ {0,∞}. Thus α and α⊥ are nonzero
elements of LN (G)G . It follows from Lemma 5.11(ii) that α ∧ α⊥ > 0; however,
α ∧ α⊥ = 0 by Theorem 2.10.

Theorem F is now straightforward to prove.

Proof of Theorem F. It is clear that the five types are mutually exclusive.
Let G ∈ S . Since G is nondiscrete, we have |LN (G)| > 2. By Theorem 5.3,

we have QZ(G) = {1} and G has no nontrivial abelian locally normal subgroup,
so LC(G) and LD(G) are Boolean algebras by Theorem 2.10.

Suppose |LN (G)| = 2. Then LN (G) = {0,∞}, so every compact locally
normal subgroup of G is finite or open. Moreover, G has no nontrivial finite
locally normal subgroups since QZ(G) = {1}. In particular, given any compact
open subgroup U of G, then every nontrivial closed locally normal subgroup of U
is open, in other words U is h.j.i. Thus G is locally h.j.i. From now on we assume
|LN (G)| > 2.

Suppose that LC(G) = {0,∞}. Then F is a filter by Lemma 5.10. If F is a
principal filter then the least element of F must be fixed by G, by uniqueness;
consequently by Lemma 5.11, G acts trivially on F and hence on LN (G).
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The fact that G has nontrivial fixed points on LN (G) ensures that G does not
satisfy (S2), so by Theorem 3.9, G is not abstractly simple. Thus G is of atomic
type in this case. If instead F is a nonprincipal filter, then G is of NPF type.

Suppose that LC(G) is nontrivial. If LD(G) = {0,∞} then G is weakly
decomposable, otherwise G is locally decomposable.

Given the list of types, it is clear that we can recover the type of G from the
isomorphism type of the poset LN (G).

5.4. Dense normal subgroups of topologically simple groups. In this
subsection, G is a nondiscrete t.d.l.c.s.c. group. Recall that LN (G)G is the set
of fixed points of the action of G on LN (G), in other words the set of local
equivalence classes of commensurated compact locally normal subgroups of G.
Evidently LN (G)G is a sublattice of LN (G) and contains both 0 and ∞. By
Theorem 3.9, if G is abstractly simple then LN (G)G

= {0,∞}. Thus if G is
topologically simple, the existence of a nontrivial element of LN (G)G implies
the existence of a proper dense normal subgroup of G. However, we do not know
if such a nontrivial fixed point can exist. Our goal in this subsection and the next
is to obtain restrictions on this situation by describing the structure of the dense
normal subgroups that could arise, leading in particular to Theorem C.

Before stating our results, we recall some terminology and results that will be
used in this subsection and the next.

LEMMA 5.13. Let G be a t.d.l.c. group and let µ be a commensurability class
(or subset of a commensurability class) of compact subgroups of G. Let K ∈
µ and consider CommG(K ). Then there is a unique group topology T(µ) on
CommG(K ) such that the inclusion L → CommG(K ) is continuous and open,
for every compact subgroup L of G commensurate with K . Moreover, the group
CommG(K ) and the topology are uniquely determined by the pair (G, µ).

Proof. Without loss of generality, we assume that µ consists of all compact
subgroups of G commensurate with K . Note that given L ∈ µ, then
CommG(K ) = CommG(L), so in particular L 6 CommG(K ), and the subgroup
CommG(K ) of G is uniquely determined by (G, µ). We define T(µ) to be
the topology generated by the left cosets of elements of µ; observe that the
inclusion L → CommG(K ) is then continuous and open, for every L ∈ µ. Given
Lemma 3.13, it is clear that CommG(K ) acts by homeomorphisms on itself by
left and right translation. Given g ∈ CommG(K ) and L ∈ µ, the preimage of
gL under the map (x, y) 7→ xy−1 is a union of sets of the form (gLh, Lh) for
h ∈ CommG(K ); such sets are open by the fact that left and right translation are
homeomorphisms. Thus T(µ) is a group topology.
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The uniqueness of the topology follows from the general observation that a
group topology is uniquely determined by its restriction to a neighbourhood of
the identity, which in this case is determined by the topology of K .

DEFINITION 5.14. Let G be a t.d.l.c. group and let µ be a commensurability
class (or subset of a commensurability class) of compact subgroups of G. The
localization G(µ) of G at µ is the topological group (CommG(K ),T(µ)), where K
is any element of µ.

Starting with a first-countable t.d.l.c. group G, one sees that the t.d.l.c. groups
with the same group structure as G but a finer topology are precisely the groups
G(µ), where µ is a G-invariant commensurability class of compact subgroups
of G. Indeed, we recall by Lemma 2.4 that it suffices to consider G-invariant
commensurability classes of compact locally normal subgroups of G.

DEFINITION 5.15. Following Abels [1], we say that a locally compact group G is
compactly presented if there is a surjective homomorphism θ : FX → G, where
FX is the abstract free group on the set X , so that θ(X) is compact in G and the
kernel of θ is generated by words in the alphabet X ∪ X−1 of bounded length.

Many well-known properties of finitely presented discrete groups carry over
to compactly presented locally compact groups (see [24, Ch. 8] for a detailed
account). A sufficient condition for G to be compactly presented is that G admits
some continuous, proper cocompact action on a simply connected proper geodesic
metric space (see [24, Corollary 8.A.9]). In particular any centreless simple Lie
group G is compactly presented, since the coset space G/K modulo a maximal
compact subgroup K is contractible.

LEMMA 5.16 [24, Proposition 8.A.10]. Let ϕ : G̃→ G be a continuous surjective
homomorphism of locally compact groups, whose kernel Ker(ϕ) is discrete. If
G is compactly presented and G̃ is compactly generated, then Ker(ϕ) is finitely
generated as a normal subgroup of G̃.

Let α ∈ LN (G)Gr{0}, let L be a compact locally normal representative of α
and let D = 〈〈L〉〉, equipped with the T(α)-subspace topology. Then D is a T(α)-
open subgroup of G. Moreover, equipping the direct product G × D with the
product topology, then by [21, Proposition 7.9], the map

G × D→ D; (g, d) 7→ g dg−1

is continuous. This ensures that the natural semidirect product D o G is a
topological group when equipped with the product topology, which allows us to
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analyse the structure of the embedding D ↪→ G, especially when D is dense in
G (as is certainly the case if G is topologically simple).

PROPOSITION 5.17. Let G be a nondiscrete t.d.l.c.s.c. group and L be an infinite
commensurated compact locally normal subgroup of G. Let α = [L] and D =
〈〈L〉〉 be the abstract normal closure of L in G, equipped with the T(α)-subspace
topology. Let ψ : D → G be the natural inclusion map and let U be a compact
open subgroup of NG(L) containing L. Suppose that D is dense in G.

Then there is a t.d.l.c. group G̃, a closed continuous injective homomorphism
ι : D→ G̃, and a quotient homomorphism π : G̃ → G such that

(1) ψ = π ◦ ι;

(2) ι(D) is a closed cocompact normal subgroup of G̃, with G̃/ι(D) ∼= U/L;

(3) Ker(π) is discrete and centralizes ι(D);

(4) Every element of Ker(π) lies in a finite conjugacy class of G̃;

(5) G̃ = ι(D)Ker(π);

(6) If Ker(π) or U/L is virtually abelian, then D > [G,G].

Proof. Form Go
= DoU where U acts on D by conjugation, and equip Go with

the product topology. By [21, Proposition 7.9], the action of U on D is continuous,
so that Go is a topological group. There is also a natural inclusion ι1 : D → Go,
which is a closed embedding with cocompact image.

Given a subgroup K of U , let

∆K := {(k−1, k) ∈ Go
| k ∈ K ∩ D}.

The set∆K is a subgroup of Go that centralizes ι1(D), and if ψ−1(K ) is compact,
then ∆K is compact. If K is normal in U , it follows further that ∆K is normal in
Go. In particular, the set ∆L is a compact normal subgroup of Go.

We now set
G̃ := Go/∆L

and let ρ : Go
→ G̃ be the usual projection. Note that ρ is a quotient map with

compact kernel, so it is a closed map. Set ι := ρ ◦ ι1; it is immediately clear that
ι is continuous and injective. Moreover, ι is a closed map, since ι1 and ρ are both
closed. Thus ι is a closed embedding.

The homomorphism π : G̃ → G is defined by

π ((d, u)∆L) = ψ(d)u.
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The image of π is dense and contains the open subgroup U of G, hence the
map is surjective. It is easy to check this map is also continuous. Since D and
G are second-countable, so are Go and G̃. By [3, Corollary to Theorem 8], a
continuous surjective homomorphism between second-countable locally compact
groups is open. Therefore, the homomorphism π is open, hence a quotient map,
and G isomorphic to the quotient G̃/Ker(π). Setting Ũ := ρ(U ), the group Ũ
is a compact open subgroup of G̃ since ρ(U ) = ρ(U∆L) and since the group
U∆L = L oU is open in Go. Furthermore, Ũ ∩ Ker(π) = {1}, hence Ker(π) is
discrete.

We now check the desired properties hold of G̃, ι and π . Part (1) is immediate.
That ι(D) is cocompact follows since ρ induces a continuous surjective map
Go/ι1(D)→ G̃/ι(D). We thus have verified (2).

The kernel of π is exactly K := ∆U/∆L . In particular, we see that K is discrete.
The group ∆U is centralized by ι1(D), hence K is centralized by ι(D), verifying
(3). We conclude that CG̃(K ) is cocompact in G̃. On the other hand, K is a discrete
normal subgroup of G̃, so CG̃(x) is open in G̃ for every x ∈ K . Consequently, for
every x ∈ K , then CG̃(x) is both cocompact and open, so it has finite index in G̃,
verifying (4).

Since π is a quotient map and ψ(D) is dense in G, we see that π−1(ψ(D)) is
dense in G̃. In other words, ι(D)Ker(π) is dense in G̃, verifying (5).

We see from properties (2) and (5) that Ker(π) is isomorphic to a dense
subgroup of U/L , so Ker(π) is virtually abelian if and only if U/L is virtually
abelian. Suppose that U/L is virtually abelian, in other words, there exists a
compact open subgroup V of U such that L 6 V and V/L is abelian. We now
perform the same construction of G̃ as before, with V in place of U . Now since
V/L is abelian, property (2) ensures that G̃/ι(D) is abelian, so ι(D) contains the
derived group of G; since G = π(G̃), it follows that D = π(ι(D)) > [G,G],
proving (6).

If G is compactly presented, we obtain a stronger form of Proposition 5.17.

PROPOSITION 5.18. Retain the hypotheses of Proposition 5.17, and assume in
addition that G is compactly presented. Then D > [G,G]. Moreover, there is a
t.d.l.c. group G̃, a closed continuous injective homomorphism ι : D → G̃, and a
quotient homomorphism π : G̃ → G such that the conditions in Proposition 5.17
hold, and in addition:

(1) Ker(π) commutes with a finite index subgroup of G̃ that contains ι(D);

(2) Both Ker(π) and U/L are centre-by-finite, finite-by-abelian and
topologically finitely generated.
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Proof. We retain the construction and notation of Proposition 5.17.
We have assumed that G is compactly presented. In particular, G is compactly

generated, so D is compactly generated by Lemma 4.2. Since ι1(D) is cocompact
in G̃, it follows that G̃ is compactly generated. We can now apply Lemma 5.16 to
conclude that Ker(π) = 〈〈X〉〉 for a finite subset X of G. By Proposition 5.17(4),
each element of X only has finitely many G̃-conjugates, so Ker(π) = 〈Y 〉 for a
finite set Y . Let C =

⋂
y∈Y CG̃(y), so that C centralizes Ker(π). Then C is closed

in G̃ (since every centralizer is closed) and of finite index (since each element of
Y has a finite conjugacy class); also C contains ι(D) by Proposition 5.17(3). Thus
(1) holds.

It follows that C is open in G̃ and Cι(D)/ι(D) is an open subgroup of G̃/ι(D)
of finite index. By property (5), the image of Ker(π) in G̃/ι(D) is dense, so
Cι(D)/ι(D) has a dense centralizer in G̃/ι(D); consequently, it is central in
G̃/ι(D). Thus G̃/ι(D) is centre-by-finite; since G̃/ι(D) ∼= U/L , it follows that
U/L is centre-by-finite. Since Ker(π) has dense image in G̃/ι(D), it follows
that G̃/ι(D) is topologically finitely generated, so U/L is topologically finitely
generated.

By a classical result of Schur [57] (see also [55] for a short proof of a stronger
result), every centre-by-finite group is finite-by-abelian. Thus Ker(π) and U/L
are also finite-by-abelian. Thus (2) holds.

Since Ker(π) is virtually abelian, it follows from Proposition 5.17(6) that D >
[G,G].

We can now establish a particular circumstance in which there are no nontrivial
fixed points in the structure lattice of G.

COROLLARY 5.19. Let G ∈ S . Assume that G is compactly presented. If G
is abstractly perfect, or if some compact open subgroup U of G is such that
U/[U,U ] is finite, then LN (G)G

= {0,∞}.

Proof. Let α ∈ LN (G)Gr{0}, let L be a compact locally normal representative
of α and let D = 〈〈L〉〉. Then by Proposition 5.18, we have D > [G,G] and U/L
is finite-by-abelian. If G = [G,G], it follows that D = G. Hence G is L-meagre
by Lemma 3.14; in other words, the index of L in G is countable. By the Baire
Category Theorem, it follows that L is open in G. If U/[U,U ] is finite, then U/L
must be finite, so L is open in U and hence in G. In either case, L is open in G,
so α = ∞. This proves that LN (G)G

= {0,∞} under the given hypotheses.

Given G ∈S and D as in Proposition 5.17, it is not known if D can be a proper
subgroup of G; assuming D is a proper subgroup, it is not even clear whether or
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not D ∈ S . However, we can show that the closure in the T(α)-topology of the
derived group of D belongs to the class S .

PROPOSITION 5.20. Let G ∈ S , let α ∈ LN (G)Gr{0}, let L be a compact
locally normal representative of α, and let D = 〈〈L〉〉 be the abstract normal
closure of L in G, equipped with the T(α)-subspace topology. Let S = [D, D],
where the closure is taken with respect to the topology of D. Then S ∈ S .
Moreover, S = 〈〈M〉〉 for some infinite commensurated compact locally normal
subgroup M of G contained in L, and the topologies T(α) and T(β) coincide on S,
where β = [M].

Proof. Form the semidirect product Go
= D o G, equipped with the product

topology. As observed before Proposition 5.17, Go is a topological group. In
particular, given any T(α)-closed subgroup K of D such that NG(K ) is dense in G,
then K o {1} is a closed subgroup of Go that is normalized by a dense subgroup
of {1}o G, hence K o {1} is normalized by all of {1}o G (since the normalizer
of any closed subgroup is closed), and so K is normal in G.

By Theorem 5.3, the group G has no nontrivial virtually abelian locally normal
subgroups. Consequently, both L and [L , L] are nontrivial, hence non-(virtually
abelian). This ensures that S > [L , L] is nondiscrete. We now claim that any
closed subgroup K of D that is normalized by S = [D, D] must satisfy K > S.
This will ensure in particular that S is topologically simple.

Let K be a closed subgroup of D such that S 6 ND(K ). Since S is a closed
normal subgroup of D, we deduce from the first paragraph of the proof above that
S is normal in G. Since S is nontrivial and G is topologically simple, it follows
that S itself is dense in G. In turn, this means that K is normalized by a dense
subgroup of G, so using again the first paragraph above, we infer that K is normal
in G, and hence K is dense in G.

In Go, both K ∗ := K o {1} and ∆K := {(k−1, k) ∈ Go
| k ∈ K } are closed

normal subgroups. Since K is dense in G, we observe that K ∗∆K is a dense
normal subgroup of Go. Moreover, ∆K centralizes D∗ := D o {1}. Thus in the
quotient Go/K ∗, we see that D∗/K ∗ is a subgroup with dense centralizer, so
it is central in Go/K ∗. In particular, D∗/K ∗ is abelian. Since D∗/K ∗ ∼= D/K ,
it follows that D/K is abelian, that is, [D, D] 6 K . Since K is closed by
assumption, in fact S 6 K , and the claim is proven.

Let M be a compact subgroup of S relatively open for the T(α)-topology, and
such that M 6 L . Then S = 〈〈M〉〉, since S is topologically simple. Moreover,
since M is relatively T(α)-open, it follows that the topologies T(α) and T(β) coincide
on S, where β = [M]. Since the conjugation action of G respects the topology
of D, and hence also the topology of its closed subgroup S, we see that M is
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commensurated in G. By Lemma 2.4, by replacing M with a finite index open
subgroup of M , we may ensure that M is locally normal in G. Finally, we
conclude from Lemma 4.2 that S is compactly generated. Thus S is in S .

Suppose that there is a compact open subgroup U of G that is topologically
finitely generated. In this case, we can use a special case of far-reaching results
due to Nikolov and Segal [48] (the proof of which relies on the classification
of the finite simple groups) to restrict the structure of dense normal subgroups
of G, and hence that of commensurated compact locally normal subgroups. (We
attribute the next result to Nikolov–Segal as it is easily derived from the results in
[48], although not explicitly stated there in this form. The derivation is included
for clarity.)

THEOREM 5.21 (Nikolov–Segal). Let P be a topologically finitely generated
profinite group having finitely many isomorphism types of composition factors.
Then any dense normal subgroup of P contains the derived group [P, P], which
is closed in P.

Proof. Following [48], we denote by P0 the intersection of all open normal
subgroups T of P such that there is a nonabelian finite simple group S for
which P/T is isomorphic to some subgroup of Aut(S) containing Inn(S). The
hypothesis that P has finitely many types of composition factors then imposes a
bound on |P : T | for such open subgroups T . We recall [53, Proposition 2.5.1]
that a topologically finitely generated profinite group has only finitely many open
subgroups of a given index; thus P0 is open in P .

Let now N be a dense normal subgroup of P . We proceed as in the discussion
preceding [48, Corollary 1.8]. Since N is dense and P0 is open in P , the image
of N in P/P0 is onto, and the image of N in P/[P, P] is dense. Using the fact
that P is topologically finitely generated, we may then find a finite set of elements
y1, . . . , yr ∈ N such that P0〈y1, . . . , yr 〉 = [P, P]〈y1, . . . , yr 〉 = P . Invoking [48,
Theorem 1.7], we then infer that [P0, P] is entirely contained in N . Therefore,
[P, P] = [N P0, P] 6 N [P0, P]N 6 N , hence [P, P] is entirely contained in N ,
as desired.

The fact that [P, P] is closed follows from [48, Corollary 5.9].

We recall from Proposition 4.6 that if G is a compactly generated t.d.l.c. group
whose only compact normal subgroup is the trivial one, then every compact
open subgroup of G has finitely many isomorphism types of composition factors.
The hypotheses of Theorem 5.21 are thus naturally satisfied in that context.
We point out the following consequence, part of which was first noticed in
a conversation with Nikolay Nikolov several years ago (see the unpublished
preprint [47, Proposition 4]).
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COROLLARY 5.22. Let G be a t.d.l.c.s.c. group. Let U be a compact open
subgroup of G, and suppose that U is topologically finitely generated with finitely
many types of composition factors.

(i) Let D be a dense normal subgroup of G. Then D > [U,U ].

(ii) Let L be a commensurated compact subgroup of G, and suppose that D =
〈〈L〉〉 is dense in G and L is normal in U. Then L ∩ [U,U ] has finite index in
[U,U ] and D > [G,G].

(iii) Suppose G is topologically simple. If G is not compactly generated, assume
also that U is nonabelian. Then [G,G] = 〈〈[U,U ]〉〉 is the unique smallest
dense normal subgroup of G. If [U,U ] has finite index in U or G = [G,G],
then G has no proper dense normal subgroups.

Proof. Let now D be a dense normal subgroup of G. Then D ∩ U is a dense
normal subgroup of U , so part (i) follows by Theorem 5.21.

Now suppose that D = 〈〈L〉〉, where L is a commensurated compact subgroup
of G that is normal in U . By part (i), we see that [U,U ] 6 D. Moreover, D
is L-meagre by Lemma 3.14, so [U,U ] is L-meagre. Since [U,U ] is closed by
Theorem 5.21, in fact [U,U ] is contained in the union of finitely many cosets
of L .

In particular, we see that U/L is virtually abelian, so D > [G,G] by
Proposition 5.17, finishing the proof of (ii).

Suppose G is topologically simple. If G is compactly generated, then U cannot
be abelian by Theorem 5.3. Thus the locally normal subgroup L = [U,U ] is
nontrivial. By part (i), the group D = 〈〈L〉〉 is contained in every dense normal
subgroup of G; moreover, since G is topologically simple, D is dense in G, so it
is the unique smallest dense normal subgroup of G. By part (ii), we have D > [G,
G]; clearly D 6 [G,G], so in fact D = [G,G]. If G = [G,G] then D = G;
alternatively, if [U,U ] has finite index in U , then D is open and dense in G, so
D = G. In either case, the minimality of D ensures that there are no proper dense
normal subgroups of G, so G is abstractly simple.

5.5. Commensurated open subgroups. We have seen in Proposition 5.20
how if there is a nontrivial, nonopen commensurated compact locally normal
subgroup in a group G ∈S , it would give rise to another group S ∈S embedded
in G as a dense normal subgroup. The intersection of S with the compact open
subgroups of G would then be commensurated noncompact open subgroups
of S. Using Proposition 5.17, we can constrain the possible structure of these
commensurated open subgroups, leading to a proof of Theorem C. Recall that
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an FC-group is a topological group in which every conjugacy class has compact
closure.

LEMMA 5.23. Let G be a t.d.l.c.s.c. group, let U < G be a compact open
subgroup and L be a nontrivial closed normal subgroup of U which is
commensurated by G. Let D = 〈〈L〉〉 and set α = [L]; suppose D is dense
in G. Then, with respect to the topology T(α), the subgroup D ∩ U < D is open,
FC, and commensurated by D.

Proof. It is clear that D ∩ U is T(α)-open. Since G commensurates U , it follows
that D commensurates D ∩ U . We observe that if π is the quotient map given in
Proposition 5.17, then the construction of π given in the proof ensures that the
quotient (D ∩ U )/L is isomorphic to Ker(π) as an abstract group. In particular,
by Proposition 5.17(3), (D ∩U )/L is a group all of whose conjugacy classes are
finite. Since L is compact, this implies that D ∩ U is indeed FC with respect to
T(α).

We now show that, conversely, an open commensurated FC-subgroup of a
group G ∈ S naturally yields another group in S that admits nontrivial fixed
points in its structure lattice. In order to do so, we need a few basic facts on FC-
groups, due to Ušakov. We recall that a subgroup of a locally compact group is
called locally elliptic if it is the directed union of its compact subgroups.

PROPOSITION 5.24. Let G be a locally compact FC-group.

(i) G is the directed union of its compactly generated closed normal subgroups.

(ii) The set of compact subgroups of G is a directed set (for the relation of
inclusion), so that its union R is a closed characteristic locally elliptic
subgroup of G such that G/R is torsion-free abelian. In particular G is
amenable.

(iii) If G is compactly generated, then R is compact.

Proof. It is clear from the definition that every element is contained in a
compactly generated closed normal subgroup. The fact that the collection of all
those subgroups is directed (for the relation of inclusion) is straightforward. This
proves (i). The assertions (ii) and (iii) are proved in [65]. An alternative (and easier
to find) reference is [66].

LEMMA 5.25. Let G ∈ S . Let O < G be an open FC-subgroup which is
commensurated by G. Then there exist a group H ∈ S , a continuous injective
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homomorphism with dense image ϕ : G → H, and a nontrivial commensurated
compact locally normal subgroup M < G such that ϕ(O) is a compact open
subgroup of H and ϕ(M) is a commensurated compact locally normal subgroup
of H.

Proof. Since O is nondiscrete and closed in G, it contains a nontrivial element
which generates a cyclic subgroup with compact closure. By Proposition 5.24, this
compact subgroup is contained in a closed, compactly generated normal subgroup
of O , say P . By construction, the largest compact subgroup of P afforded by
Proposition 5.24, say R, is nontrivial, and normal in O .

By hypothesis (G, O) is a Hecke pair. By Theorem 3.2 and Proposition 3.6,
there exists a group H ∈ S and a homomorphism ϕ : G → H with dense
image such that V = ϕ(O) is a compact open subgroup of H . Since O is open,
the homomorphism ϕ is continuous. Since moreover H is nontrivial and G is
topologically simple, it follows that ϕ is injective.

Now K = ϕ(R) is a nontrivial compact subgroup of V normalized by ϕ(O).
Therefore, K is a nontrivial compact locally normal subgroup of H . Since ϕ(G)
is dense in H , it acts transitively on the conjugacy class of K . In particular ϕ(G)
contains the normal closure 〈〈K 〉〉 of K in H . By Lemma 5.1, there is a finite set
{K1, . . . , Kn} of conjugates of K in H and for each i , an open subgroup L i 6 Ki

such that the product L = L1 . . . Ln is a closed normal subgroup of V which is
commensurated by H . Since L is contained in 〈〈K 〉〉, it is also contained in ϕ(G).
Let M = ϕ−1(L). Then M is indeed compact in G (because it is a finite product
of compact subgroups of G). Since L is normal in V and commensurated by H , it
follows that M is normalized by O and commensurated by G, so that M is indeed
a commensurated compact locally normal subgroup of G.

We can now prove Theorem C.

Proof of Theorem C. Assume that (i) holds and that G ∈ S possesses an open
commensurated FC-subgroup O . We apply Lemma 5.25, which affords a group
H ∈S , a dense embedding ϕ : G→ H and a nontrivial commensurated compact
locally normal subgroup M < G such that ϕ(M) is a commensurated compact
locally normal subgroup of H . By (i) the group ϕ(M) must be open in H , so
that ϕ(O) is open with compact closure. Therefore, ϕ(O) is compact. If U <

O is a compact open subgroup of O , it has countable index, so that ϕ(U ) is a
closed subgroup of countable index in the compact group ϕ(O). That index must
therefore be finite. Since ϕ is injective, we infer that U has finite index in O , so
that O is indeed compact. Since every compact open subgroup of G ∈ S is a
commensurated FC-subgroup of G, we infer that (i) implies (iii).

That (iii) implies (ii) is clear.
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Assume that (ii) holds and let G ∈S with an infinite commensurated compact
subgroup. By Lemma 2.4, the commensurability class of that compact subgroup
has a closed locally normal representative L . By Proposition 5.20, there is an
infinite commensurated compact locally normal subgroup M 6 L whose abstract
normal closure S = 〈〈M〉〉 in G, endowed with the topology T(β) with β = [M],
belongs to the class S . Let U < G be a compact open subgroup containing M
as a normal subgroup. By Lemma 5.23, the subgroup S ∩U is a commensurated
subgroup of S which is open and FC with respect to the topology T(β). It then
follows by applying (ii) to the group S ∈ S that S ∩ U is T(β)-compact. Since
M 6 S∩U is T(β)-open by definition of the latter topology, it follows that [S∩U :
M] is finite. Since S ∩ U is dense in U , it follows that M has finite index in U ,
and so M is open in G. Thus (ii) implies (i), completing the proof that (i), (ii) and
(iii) are equivalent.

It remains to show the equivalence of (i) and (iv). Suppose (i) holds and let
G be a compactly generated t.d.l.c. group with distinct closed normal subgroups
N1 and N2 that are maximal among proper closed normal subgroups of G. Note
that N1 N2 is a normal subgroup of G; by the maximality of N1 and N2, we see
that N1 N2 is dense in G. If N1 N2 is open in G, then it is also closed and hence
N1 N2 = G. Thus to show N1 N2 = G, we need only show that N1 N2 is open. The
quotients G/N1 and G/N2 are compactly generated and topologically simple; we
may assume that N1 and N2 are not open, and thus G/N1,G/N2 ∈ S . We now
have a continuous injective homomorphism with dense image from N1/(N1 ∩

N2) to S2 := G/N2 given by g(N1 ∩ N2) 7→ gN2. Since N1 is normal in G,
any compact open subgroup K of N1 is commensurated in G, and thus K2 :=

K N2/N2 is commensurated in S2. Since QZ(S2) = {1} by Theorem 5.3, N1 N2/N2

is nondiscrete and thus K2 is infinite. By (i), it follows that K2 is open in S2, so
N1 N2 is open in G. Hence G = N1 N2, proving (iv).

On the other hand, suppose now that (i) does not hold: that is, there is G ∈ S
and L 6 G such that L is infinite, commensurated and not open in G. We
now construct a counterexample to (iv). By Lemma 2.4 we may assume that
L is locally normal in G. Let D = 〈〈L〉〉 be the abstract normal closure of
L in G. Applying Proposition 5.20, there is an infinite commensurated locally
normal subgroup M of G such that M 6 L , the group S := 〈〈M〉〉 is compactly
generated and topologically simple in the T[M]-topology and [D, D] 6 S 6 D.
By Lemma 3.14, D and hence S is a proper subgroup of G. Equip S with the T[M]-
topology and form the semidirect product H := SoG with the product topology
as in the discussion before Proposition 5.17. Then H is a compactly generated
t.d.l.c. group with (at least) two distinct surjective continuous homomorphisms
π1, π2 : H → G, given by φ1(s, g) = g and φ2(s, g) = sg. The kernels
N1 := Ker(π1) = S o {1} and N2 := Ker(π2) = {(s−1, s) | s ∈ S} are then
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distinct subgroups of H that are maximal among proper closed normal subgroups
of H . However, N1 N2 = So S 6= SoG, so N1 N2 is a proper subgroup of H . We
have our desired counterexample to (iv), completing the proof that (i) and (iv) are
equivalent.

REMARK 5.26. Since FC-groups are {locally elliptic}-by-{torsion-free abelian}
by Proposition 5.24, one may wonder whether an alternative version of assertion
(ii) in Theorem C could be true: could it be that for all G ∈ S , every
commensurated locally elliptic open subgroup of G is compact? The answer turns
out to be negative in this case. Indeed, there are examples of groups G ∈S which
act continuously but nonproperly by automorphisms on regular locally finite trees
(see [37]). The stabilizer of a vertex in G is then an open, but noncompact, locally
elliptic subgroup, which is commensurated by G.

6. Dynamics of conjugation of locally normal subgroups

The conjugation action of a t.d.l.c. group G on its closed locally normal
subgroups has an interesting dynamical property under the conditions that G
is compactly generated and locally C-stable, has an identity neighbourhood
containing no nontrivial compact normal subgroups, and acts faithfully on the
Boolean algebra LC(G). We begin this section with the relevant definitions and
results for actions of groups on general Boolean algebras, A, and profinite spaces,
Ω , before proceeding the case when A is LC(G) and Ω is the corresponding
Stone space.

6.1. Rigid stabilizers. Let A be a Boolean algebra. Then by the Stone
representation theorem, A defines a profinite space (that is, a compact zero-
dimensional space), the Stone space S(A) of A, whose points are the ultrafilters
of A and the topology is generated by subsets of the form {p ∈S(A) | α ∈ p}with
α ∈ A. Conversely, given a profinite space X, the set A(X) of clopen subsets of
X form a Boolean algebra. This correspondence produces a natural isomorphism
between Aut(A) and Aut(S(A)). In practice we often find it convenient to abuse
notation and treat elements of A as subsets of S(A), identifying α ∈ A with the
clopen set

S(α) := {p ∈ S(A) | α ∈ p} ∈ A(S(A)).

The expressions ‘α ∈ p’ and ‘p ∈ α’ for α ∈ A and p ∈ S(A) can therefore be
taken to be synonymous.

Given a group G acting on a set X and x ∈ X , we write Gx for the stabilizer
{g ∈ G | gx = x}.
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DEFINITION 6.1. Let G be a topological group acting on a set A. Say that the
action of G on A is smooth if every point stabilizer is open. In particular, for
every compact open subgroup U of G, the orbits of U on A are all finite.

The following lemma shows the relevance of smooth actions for t.d.l.c. groups:

LEMMA 6.2 [21, Lemma 5.11]. Let G be a t.d.l.c. group, let X be a profinite
space and A a Boolean algebra.

(i) If G acts on X by homeomorphisms, and if the G-action is continuous with
respect to the topology of uniform convergence, then the corresponding G-
action on the Boolean algebra of clopen subsets of X is smooth.

(ii) If G acts on A by automorphisms, and if the G-action is smooth, then
the corresponding G-action on the Stone space S(A) is continuous with
respect to the topology of uniform convergence. In particular, the action map
(g, x) 7→ gx is a continuous map from G ×S(A) to S(A).

DEFINITION 6.3. Let G be a group acting on a set Z . Given a subset υ ⊆ Z , the
rigid stabilizer of υ is the subgroup

ristG(υ) := {g ∈ G | gz = z ∀z ∈ Zrυ}.

Notice that if A is a subalgebra of LC(G) or of LD(G), then QCG(α) 6
ristG(α

⊥) for all α ∈ A. We emphasize that, in the notation ristG(α
⊥), we have

relied on the (abusive) convention explained above to identify an element of a
Boolean algebra with the corresponding subset of the associated Stone space
under the Stone correspondence. In particular, every nonzero element of A has
an infinite rigid stabilizer in G. Moreover ristG(υ) is a closed subgroup of G
for any υ ⊆ S(A), since ristG(υ) can be expressed as an intersection of point
stabilizers, each of which is closed by the fact that the action of G is continuous.

DEFINITION 6.4. Let G be a t.d.l.c. group acting on a Boolean algebra A with
kernel K . Say that the action is weakly decomposable if it is smooth and the
quotient group ristG(α)/K is nontrivial for every α ∈ Ar{0}. Say the action is
locally weakly decomposable if moreover ristG(α)/K is nondiscrete for every
α ∈ Ar{0}.

When G acts faithfully and has trivial quasicentre, which will often be the case,
then a faithful action is weakly decomposable if and only if it is locally weakly
decomposable: ristG(α) is a normal subgroup of StabG(α), which is open in G,
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so that ristG(α) would be in the quasicentre of G if it were discrete. Under these
conditions, the weakly decomposable condition also ensures that ristG(α) is not
locally equivalent to ristG(β) for any two distinct elements α, β ∈ A.

In view of Lemma 6.2, the definition of weak decomposability of the action
of G on a Boolean algebra given in Definition 6.4 is equivalent with the definition
of weak decomposability of the action of G on a profinite space given before
Theorem J.

PROPOSITION 6.5. Let G be a t.d.l.c. group, X be a profinite space and A a
Boolean algebra.

(i) A continuous action of G on X by homeomorphisms is (locally) weakly
decomposable if and only if the corresponding G-action on the Boolean
algebra of clopen subsets of X is (locally) weakly decomposable.

(ii) A smooth action of G on A by automorphisms is (locally) weakly
decomposable if and only if the corresponding G-action on the Stone
space S(A) is (locally) weakly decomposable.

We recall the following result from [21], which shows that locally weakly
decomposable actions appear naturally in the context of the centralizer or local
decomposition lattices.

PROPOSITION 6.6 (See [21, Proposition 5.16]). Let G be a locally C-stable t.d.l.c.
group such that QZ(G) = {1} and let A be a G-invariant subalgebra of LC(G).
Then the G-action on A is locally weakly decomposable as soon as it is faithful.
More precisely, if the G-action is faithful, then for each α ∈ A we have

ristG(α) = QCG(QCG((α)) = CG(QCG(α)) = QCG(α
⊥) and α = [ristG(α)],

where QCG(α) denotes the quasicentralizer of any compact representative of α.

We close this subsection with an auxiliary assertion which will be used several
times in the sequel. We use the following terminology. Let A be a Boolean algebra.
A partition P of α ∈ A is a finite subset of A such that the join of P is α and
the meet of any two distinct elements of P is 0; a partition of A is just a partition
of∞ in A. A partition P1 is called finer than (or a refinement of) a partition P2,
written P1 6 P2, if for every α1 ∈ P1, there exists α2 ∈ P2 with α1 6 α2.

LEMMA 6.7. Let A be a Boolean algebra and G be a t.d.l.c. group endowed with
a smooth faithful action on A by automorphisms. For all compact open subgroups
V 6 U 6 G, there exists a U-invariant partition C of A such that

⋂
γ∈C Uγ 6 V .
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Proof. Let T be the collection of all U -invariant partitions of A. Since the G-
action is smooth, every U -orbit on A is finite. In particular, any finite set of
partitions of A has a common refinement that is U -invariant. In particular T is a
directed set and

⋃
T generates A.

Suppose now for a contradiction that for each C ∈ T , there exists zC ∈
⋂

γ∈C Uγ

with zC 6∈ V . Since U is compact and V is open, the net (zC)C∈T has a subnet
(zC)C∈T̃ converging to some z ∈ UrV , where T̃ is a final subset of the directed
set T .

We now consider an arbitrary element α ∈A. By the first paragraph of the proof
above, there exists P ∈ T̃ which contains a partition of α. Therefore, C contains
a partition of α for every partition C 6 P . In particular, we have zC ∈

⋂
γ∈C Uγ 6

Uα for all C ∈ T with C 6 P . Therefore, z = limC∈T̃ zC is contained in Uα. It
follows that z is an element of UrV acting trivially on A. This contradicts the
hypothesis that the G-action on A is faithful.

6.2. A simplicity criterion. We now give the proof of the simplicity criterion
from Proposition I. It relies on the following subsidiary fact.

LEMMA 6.8. Let A, N be subgroups of a group G. Assume that N is normal, and
contains an element t ∈ N such that [A, t At−1

] = {1}. Then N contains [A, A].

Proof. Let a, b, c ∈ A. Since a and b commute with tct−1, we have [a, b] =
[a, btct−1

]. Setting c = b−1, we infer that [a, b] = [a, [b, t]], which belongs to N
since N is normal.

Proof of Proposition I. We must show that the monolith of G (viewed as a
discrete group) is nontrivial.

We first show that the rigid stabilizer of any nonempty open set U ⊆ X is
nonabelian. Since the G-action is microsupported, we already know that the rigid
stabilizer ristG(U ) is nontrivial. Pick g ∈ ristG(U ) and x ∈ X with gx 6= x . Since
X is Hausdorff, there exists a neighbourhood V of x contained in U such that
gV ∩V = ∅. The rigid stabilizer ristG(V ) is nontrivial and contained in ristG(U ).
Moreover the respective supports of ristG(V ) and gristG(V )g−1

= ristG(gV ) are
disjoint, so that the commutator [g, ristG(V )] is nontrivial. In particular ristG(U )
is nonabelian.

Let now O be a nonempty open compressible subset of X . The previous
paragraph implies that ristG(O) is nonabelian. Let N be any nontrivial normal
subgroup of G. Then we may find an element t ∈ N and a nonempty open subset
V of X such that tV ∩ V = ∅. Since O is compressible there exists g ∈ G
such that Q = gO ⊂ V . In particular we have [ristG(Q), tristG(Q)t−1

] = 1.
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By Lemma 6.8, the group N contains [ristG(Q), ristG(Q)], hence also [ristG(O),
ristG(O)] = g−1

[ristG(Q), ristG(Q)]g. Therefore, the monolith Mon(G) contains
[ristG(O), ristG(O)] and is thus nontrivial.

What we have just established implies moreover that the Mon(G)-action on
X is microsupported. If we assume in addition that Mon(G) has a nonempty
compressible open set, then the first part of the proof implies that Mon(Mon(G))
is nontrivial. Since the monolith is a characteristic subgroup, it follows that
Mon(Mon(G)) is a nontrivial normal subgroup of G, which must thus contain
Mon(G). In other words we have Mon(Mon(G)) = Mon(G), which means
precisely that Mon(G) is simple.

6.3. Minorizing actions on Boolean algebras. Recall, forΩ a topological G-
space, the following definition from the introduction. Let ω ∈ Ω a subset F ⊂ Ω
is compressible to the point ω if there is a basis of neighbourhoods (Vi) of ω ∈Ω
such that for each Vi , there is g ∈ G with gF ⊂ Vi . We say that F is compressible
if for every nonempty open set O in Ω , there is g ∈ G with gF ⊂ O . Note that
F is compressible if and only if it is compressible to every point. Moreover, if
F is compressible to the point ω and if the G-orbit of ω is dense, then F is
compressible.

In this subsection we introduce the closely related concept of a minorizing
action, which will play a critical role in obtaining structural properties of groups
in S with nontrivial centralizer lattice.

DEFINITION 6.9. Let A be a poset with least element 0 and let G be a group
acting on A by automorphisms. Say a subset A′ of A is minorizing if for all
α ∈ Ar{0} there is some β ∈ A′ such that 0 < β < α. (We emphasize that the
inequality is understood to be strict. In particular that if A has a minorizing set,
then it cannot have any atoms.) Say A′ is minorizing under the action of G if⋃

α∈A′ Gα is minorizing. We say the action of G on A is minorizing (of degree
d ∈ N) if there is a finite minorizing set for the action (and the minimum number
of elements in such a set is d).

The following lemma shows the relationship between minorizing elements of
the Boolean algebra and compressible subsets of the Stone space.

LEMMA 6.10. Let G be a group of homeomorphisms of the profinite spaceΩ , let
α be a nonempty clopen subset of Ω and let A be the Boolean algebra of clopen
subsets of Ω . Let X be the set (possibly empty) of points ω ∈ Ω such that α is G-
compressible to ω. Then X is a closed G-invariant set; moreover, α is minorizing
for the action of G on A if and only if X = Ω .

https://doi.org/10.1017/fms.2017.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.8


P.-E. Caprace, C. D. Reid and G. A. Willis 60

Proof. Suppose ω ∈ X and let (Vi) be a base of neighbourhoods of ω. For each
i , there is some gi ∈ G such that giα ⊆ Vi . Now let g ∈ G. Since g is a
homeomorphism, the net (gVi) forms a base of neighbourhoods of gω, and clearly
we have ggiα ⊆ gVi . Thus α is G-compressible to gω, so X is G-invariant.

Suppose ω 6∈ X . Then by the definition of X , there is some neighbourhood O of
ω that does not contain any G-image of α. We see that in fact α is not compressible
to ω′ for any ω′ ∈ O . Thus ΩrX is open, in other words X is closed.

Suppose X = Ω and let β ∈ Ar{0}. Then β is a nonempty open subset of Ω ,
so β is a neighbourhood of some point ω ∈ β. Hence there exists g ∈ G such that
gα ⊂ β. Hence the G-orbit of α is minorizing in A.

Conversely, suppose that Gα is minorizing in A. Since Ω is a profinite space,
for every point ω ∈Ω there is a base of neighbourhoods of ω consisting of clopen
sets. For every such clopen set β, there exists g ∈ G such that gα < β. Thus α is
G-compressible to every point in Ω .

In the case of minorizing actions on Boolean algebras, we can obtain a
canonical structure in the Stone space that accounts for the degree of the
minorizing action.

LEMMA 6.11. Let G be a group with a minorizing action of degree d on the
Boolean algebra A.

(i) Let U be the set of minimal nonempty G-invariant open subsets of S(A).
Then |U | = d, and every G-invariant subset of S(A) with a nonempty
interior contains some element of U .

(ii) If d = 1, then the union of the dense orbits of G on S(A) is a nonempty
(hence dense) open set. If d > 1, there are no dense orbits of G on S(A).

Proof. (i) Let G be a group with a minorizing action on the Boolean algebra
A and let {α1, . . . , αd} be a minorizing set for the action of minimal size. For
each 1 6 i 6 d , let υi be the union of all G-translates of αi in S(A). We claim
that U = {υ1, . . . , υd}.

Suppose that B ⊆S(A) has a nonempty interior. Then there is β ∈A contained
in B and the minorizing property implies that there are i ∈ {1, . . . , d} and g ∈ G
such that gαi 6 β. If B is also G-invariant, it hence follows that υi is contained
in B. Once it is shown that the sets {υ1, . . . , υd} are pairwise disjoint, it will
follow that every minimal open G-invariant subset of S(A) is one of the sets υi ,
and conversely. Let us suppose for a contradiction that υi ∩ υj 6= ∅. Then, by
definition of υi and υj , there are gi , g j ∈ G such that giαi∩g jαj 6= ∅. Since giαi∩

g jαj is open, there are k ∈ {1, . . . , d} and g ∈ G such that gαk ⊆ giαi ∩ g jαj .
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Hence the set obtained by removing αi and αj from {α1, . . . , αd} and including αk

is minorizing for the action of G. That contradicts minimality of the set unless
i = j = k. Hence the elements of {υ1, . . . , υd} are pairwise disjoint and this set
is equal to U .

(ii) Suppose d = 1. Then U = {υ1} and for any open set α in S(A) and any
point p ∈ υ1, there exists g ∈ G with gp ∈ α by the definition of υ1. Therefore,
the G-orbit of every element of υ1 is dense. Since υ1 is open and nonempty, no
element outside υ1 can have a dense orbit.

Suppose now that d > 1. Then υ1 and υ2 are disjoint by the above, and both are
nonempty and G-invariant. Therefore no element can have a dense orbit.

6.4. Skewering automorphisms of Boolean algebras. The minorizing
property ensures the existence of skewering elements, defined as follows.

DEFINITION 6.12. Let A be a poset and let g be an automorphism of A. Say g
is skewering if there is some α ∈ A such that gα < α. Again, we emphasize that
the inequality is understood to be strict.

LEMMA 6.13. Let A be a poset with least element 0 and let G be a group acting
on A, such that the action is minorizing. Let C be a finite minorizing set under the
action of G such that |C| is minimized. Then for each α ∈ C and 0 < β 6 α, there
is g ∈ G such that gα < β. In particular, there are elements of G whose action
on A is skewering.

Proof. By definition, there is some γ ∈ C and g ∈ G such that 0 < gγ < β. We
must have γ = α because Cr{α} would be a minorizing set otherwise.

Before the next proposition, let us recall some terminology.
Given an automorphism f of G, the contraction group con( f ) of f on G is

given by
con( f ) = {u ∈ G | f n(u)→ 1 as n→+∞}.

One sees that con( f ) is a subgroup of G, although not necessarily a closed
subgroup. Given an element g ∈ G, we define con(g) to be the contraction group
of the automorphism induced by left conjugation.

We define the Tits core of a totally disconnected, locally compact group G to
be the subgroup

G†
:= 〈con(g) | g ∈ G〉.

The nub nub( f ) of an automorphism f of a t.d.l.c. group G is the largest
compact f -invariant subgroup N of G such that f does not stabilize any proper
open subgroup of N ; see [71] for more details.
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PROPOSITION 6.14. Let G be a t.d.l.c. group acting faithfully on a Boolean
algebra A such that the action is locally weakly decomposable. Let U be a
compact open subgroup of G. Suppose that there is some α ∈ A and g ∈ G
such that gα < α; let β = αrgα.

(i) There is a natural number n0 and a closed subset κ of α satisfying the
following properties: We have gn0β ⊂ κ , the group ristU (κ) is nontrivial
and moreover

g ristU (κ)g−1
× ristU (gn0β) 6 ristU (κ).

In particular
{
gnristU (κ)g−n

}
n>0 is a strictly decreasing sequence of

compact subgroups of U. Moreover
⋂

n>0 gnristU (κ)g−n
= 1 and con(g)

contains the group ristU (κ).

(ii) There is a closed subgroup of G of the form

〈L0, g〉 ∼=
∏
i∈Z

L i o 〈g〉,

where L i = gi ristW (β)g−i for some compact open subgroup W . In particular,
nub(g) contains the direct product

∏
i∈Z L i , and hence con(g) is not closed.

Proof. (i) Let V = U ∩ g−1Ug. The action of U on A is faithful and smooth. By
Lemma 6.7, there is a U -invariant partition C of A such that

⋂
γ∈C Uγ 6 V .

By hypothesis we have gα < α. Therefore, for each γ ∈ C we have either: (a)
gnα > γ for all n > 0; or (b) there is n0 > 0 such that gnα 6> γ for all n > n0.
Choose a fixed n0 sufficiently large that either (a) or (b) holds for every γ ∈ C.

Let ξ be the interior of
⋂

n∈Z gnα in the Stone space S(A). Then the set

κ := gn0αrξ

is closed. Since gξ = ξ , we have gκ ⊂ κ . Furthermore κrgκ = gn0αrgn0+1α =

gn0β, so gκ ∪ gn0β ⊆ κ . In particular ristU (κ) contains ristU (gκ) × ristU (gn0β)

as a subgroup and hence is nontrivial (and even nondiscrete) since the G-action
on A is locally weakly decomposable. Moreover, given γ ∈ C, either (a) holds, in
which case γ ⊆ ξ , or else (b) does, in which case γ 6⊆ gn0α. Both cases imply that
κ 6⊇ γ and hence that ristU (κ) fixes some p ∈ γ . Then ristU (κ) fixes γ because
C is a U -invariant partition and, hence, the distinct U -translates of γ are disjoint.
Therefore, we have ristU (κ) 6

⋂
γ∈C Uγ 6 V . In particular g ristU (κ)g−1 6 U

and hence g ristU (κ)g−1 6 ristU (gκ). Therefore, g ristU (κ)g−1
× ristU (gn0β) 6

ristU (κ) as claimed.
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Let R =
⋂

n>0 gnristU (κ)g−n . Note that every point that is not fixed by R
is contained in

⋂
n>0 gnκ . By construction, the intersection

⋂
n>0 gnκ has an

empty interior, so the set of fixed points of R is dense in S(A). Since R acts
by homeomorphisms on S(A), the action of R on S(A) must be trivial. Since
the action of G on S(A) is faithful, we have R = {1} as claimed. Finally,
since (gnristU (κ)g−n)n>0 is a descending chain of compact subgroups with trivial
intersection, we have ristU (κ) 6 con(g).

(ii) By part (i), we have con(g) > ristU (gn0β) = gn0 ristU ′(β)g−n0 , where U ′ =
g−n0Ugn0 . Since con(g) is normalized by g, we infer that ristU ′(β) 6 con(g).
Next observe that the conditions that gα < α and β = αrgα are equivalent to
g−1α⊥ < α⊥ and g−1β = α⊥rg−1α⊥. Therefore, the argument of part (i) may be
applied to g−1 to conclude that

ristW (β) 6 con(g) ∩ con(g−1),

where W = g−n0Ugn0 ∩ gn′0Ug−n′0 for some suitable n′0 > 0. This implies that
every identity neighbourhood in G contains all but finitely many 〈g〉-conjugates
of ristW (β).

Let L i = gi ristW (β)g−i for each i ∈ Z and let K = 〈
⋃

i∈Z L i 〉. Note that for
any distinct i and j , the sets giβ and g jβ are disjoint, hence the groups L i and
L j commute. Moreover each L i is compact, and every identity neighbourhood of
G contains all but finitely many L i . It follows that K is compact as well, and
that moreover the natural homomorphism

⊕
i∈Z L i → K extends to a continuous

homomorphism φ :
∏

i∈Z L i → K . The image of φ is closed and dense in K ,
hence φ is surjective. The kernel N of φ commutes with each of the factors L i ,
and is therefore contained in the centre of

∏
i∈Z L i . However, the fact that G has

a faithful locally weakly decomposable action ensures that G is locally C-stable
(see [21, Theorem 5.18]); hence each of the groups L i must have trivial centre, so∏

i∈Z L i also has trivial centre. Hence N = {1}, so φ is an isomorphism of profinite
groups. Since K is compact and g acts on K by shifting the factors of the direct
product, it is clear that g does not normalize any proper open subgroup of K , so
K 6 nub(g). We conclude that con(g) is not closed by [7, Theorem 3.32].

It remains to show that 〈K , g〉 ∼= K o 〈g〉 is a closed subgroup of G. Notice
that 〈g〉 is a discrete subgroup of G, since otherwise 〈g〉would be compact, which
implies that g normalizes a basis of identity neighbourhoods in G and, hence, that
con(g) is trivial. Let now H = 〈K , g〉 and notice that K is a compact normal
subgroup of H . The image of 〈g〉 in the quotient H/K is dense since 〈K ∪ g〉
is dense in H . Since 〈g〉 is discrete and torsion-free, it intersects every compact
open subgroup trivially. This implies that H/K is discrete and generated by the
image of 〈g〉. Thus K is open in H . Therefore, we have H = 〈K , g〉 and H is
indeed closed.
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The fact, seen in the proof, that con(g) > ristW (β) for some compact open
subgroup W implies the following.

COROLLARY 6.15. Let G be a t.d.l.c. group acting faithfully on a Boolean
algebra A, such that the action is locally weakly decomposable. Suppose that
there is some α ∈ A and g ∈ G such that gα < α; let β = αrgα. Then the Tits
core G† contains ristU (β) for some compact open subgroup U of G.

The existence of a minorizing locally weakly decomposable action of G
imposes some restrictions on the algebraic structure of G.

PROPOSITION 6.16. Let G be a t.d.l.c. group acting faithfully on a Boolean
algebra A, such that the action is locally weakly decomposable, and let Γ be
a subgroup of G. Suppose that the action of Γ on A is minorizing of degree d.
Then Γ contains a free submonoid on 2 generators that is discrete in G.

Proof. Fix a minorizing set C = {α1, . . . , αd} under the action of Γ of smallest
possible size. Let α = α1. Then there exists g ∈ Γ such that gα < α by
Lemma 6.13. Moreover, there is h ∈ Γ such that hα < αrgα. Let S be the
submonoid of G generated by g and h; we claim that S is freely generated by g
and h and that |S ∩ xGα| 6 1 for all x ∈ G. If it happened that either S were
not freely generated or |S ∩ xGα| > 1, there would be elements x and y of S
such that xα = yα, where x and y are represented as distinct strings s and t
respectively in the alphabet {g, h}. By deleting matching prefixes, we can ensure
that the leftmost letters of s and t are different, say s = gs ′ and t = ht ′. But then
xα 6 gα and yα 6 hα, so xα ∧ yα 6 gα ∧ hα = 0, contradicting that xα = yα.
Thus S is free on 2 generators, and it is discrete in G because {xGα | x ∈ G} is
an open partition of G.

6.5. Minorizing weakly decomposable actions. The aim of this section will
be to prove Theorem 6.19, which gives a sufficient condition for a compactly
generated t.d.l.c. group to have a minorizing action on its centralizer lattice. This
condition is in particular satisfied by all groups in S with nontrivial centralizer
lattice.

We start by assembling some subsidiary lemmas which will be needed for the
proof.

LEMMA 6.17. Let G be a group acting on a set Ω and let Φ ⊆ Ψ be subsets of
Ω . Let X be a symmetric subset of G such that G = 〈X,StabG(Ψ )〉. Suppose that⋃

{yΦ | y ∈ G, yΦ ⊆ Ψ } ⊆
⋂
x∈X

x−1Ψ.

Then yΦ ⊆ Ψ for all y ∈ G.
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Proof. Let l be the word length function on G with respect to X ∪ StabG(Ψ ).
Suppose there is some y ∈ G such that yΦ 6⊆ Ψ ; assume l(y) is minimal. Then
y = xz where l(x) = 1 and l(z) < l(y). The minimality of l(y) ensures x 6∈
StabG(Ψ ), so x ∈ X . Moreover zΦ ⊆ Ψ , so zΦ ⊆ x−1Ψ by hypothesis; but then
yΦ ⊆ Ψ , a contradiction.

LEMMA 6.18. Let G be a t.d.l.c. group acting faithfully on a Boolean algebra A
such that the action is locally weakly decomposable and let Γ be a subgroup of G.
Suppose the action of Γ has a minorizing set C of size n and no minorizing sets
of smaller size. Then there is a subset D of Ar{0} of size n, such that for each
δ ∈ D there is γ ∈ C with δ 6 γ , and satisfying moreover the following property:
For all compact open subgroups U, V of G and γ ∈ Ar{0}, there exist y ∈ Γ
and δ ∈ D such that yristU (δ)y−1 is a subgroup of ristV (γ ) of infinite index.

Proof. By Lemma 6.13, for each α ∈ C there is gα ∈ Γ such that gαα < α. For
each α ∈ C choose n0 as in Proposition 6.14 and set

δα = gn0
α (αrgαα) and D = {δα | α ∈ C}.

By construction |D| 6 n and D is minorizing under the action of Γ on A. We
infer that D cannot have fewer than n elements, and so |D| = n.

Fix γ ∈ Ar{0}. We must show that, for all compact open subgroups U and V
of G, there are y ∈ Γ and δ ∈ D such that y ristU (δ)y

−1
< ristV (γ ). To begin, fix

x ∈ Γ and α ∈ C such that xα < γ , and let K := x ristU (α)x−1
∩ V , so that K is

an open subgroup of x ristU (α)x−1. Then, since x ristU (α)x−1
= ristxU x−1(xα) <

ristxU x−1(γ ), we see that K 6 ristV (γ ).
By Proposition 6.14 there is a closed subset κ of α such that δα ⊆ κ and

such that {xgn
αristU (κ)g−n

α x−1
}n>0 is a descending chain of closed subgroups

of x ristU (α)x−1 with trivial intersection. Hence, xgn
αristU (δα)g−n

α x−1 6 K for
some n by a standard compactness argument. Setting y := xgn

α, it follows
that yristU (δα)y−1 6 ristV (γ ). The index [ristV (γ ) : yristU (δα)y−1

] is infinite
because yδα = xgn

αδα 6 xα < γ . The claimed minorizing property of
{ristU (δ) | δ ∈ D} is thus verified.

THEOREM 6.19. Let G be a nontrivial locally C-stable compactly generated
t.d.l.c. group and let A ⊆ LC(G) be a G-invariant subalgebra. Suppose that
G acts faithfully on A and that some open subgroup of G has trivial core. Then
the set of minimal closed normal subgroups of G is finite; we denote it by M =

{M1, . . . ,Md}. Moreover, the following assertions hold, where for each 1 6 i 6 d,
the symbol υi denotes the complement of the fixed-point set of Mi on S(A).
(i) The G-action on A is minorizing of degree d. Indeed, there is a set of d

elements in A that is minorizing for the G-action on LC(G). Moreover,
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the set {υ1, . . . , υd} coincides with the set U of all minimal nonempty G-
invariant open subsets of S(A), as in Lemma 6.11. In particular, the sets υi

are pairwise disjoint.

(ii) Suppose that A contains the fixed points of the action of G on LC(G). Let
αi = [Mi ]

⊥
2
∈ LC(G) for 1 6 i 6 d. Then αi = υi , αi ∈ A and {α1, . . . , αd}

generates the subalgebra of fixed points of G on LC(G).

(iii) For each i ∈ {1, . . . , d} there is an infinite compact subgroup L i of Mi

which is locally normal in G and such that: for every nontrivial closed
locally normal subgroup K of G, there are i ∈ {1, . . . , d} and g ∈ G such
that gL i g−1 is a subgroup of K with infinite index.

Proof. Let us first note that any discrete normal subgroup of G would act trivially
on A, so in fact G has no nontrivial discrete normal subgroups. The locally C-
stable condition then ensures that G has no nontrivial abelian normal subgroups
by Proposition 2.7. The hypotheses ensure that there is a compact open subgroup
U of G such that

⋂
g∈G gUg−1

= {1}. We can thus apply Proposition 2.12, so
that G indeed has only finitely many minimal closed normal subgroups, such that
every nontrivial closed normal subgroup contains a minimal one.

(i) We first aim to show that the action of G on A is minorizing.
Since G is compactly generated, we have G = 〈U, X〉 for a finite set X ; we may

assume X = X−1. Let V =
⋂

x∈X x−1U x . By Lemma 6.7, there is a U -invariant
partition C of A such that

⋂
γ∈C Uγ 6 V .

Let β ∈ LC(G)r{0}. Since U has trivial core in G and ristU (β) is
nontrivial, there must exist g ∈ G such that ristU (β) is not contained in
g−1Ug, or equivalently, U does not contain every G-conjugate of ristU (β).
The contrapositive of Lemma 6.17 with Ψ = U and Φ = ristU (β) then ensures
the existence of g ∈ G such that g ristU (β)g−1 is contained in U but not V . For
this g, there is some γ ∈ C such that g ristU (β)g−1, and hence ristU (gβ), does
not stabilize γ . Since ristU (gβ) fixes (gβ)⊥ pointwise and the partition C of A is
U -invariant, we must have γ ∩ (gβ)⊥ = ∅ = hγ ∩ (gβ)⊥ where h ∈ ristU (gβ)
and hγ = γ ′ for some γ ′ ∈ C different from γ . Hence γ < gβ and, since β was
arbitrary, we have shown that

⋃
γ∈C Gγ is a minorizing subset of LC(G).

Since G is minorizing of some finite degree, we can now appeal to Lemma 6.11.
Specifically, to show that the action is minorizing of degree d , it suffices to prove
that {υ1, . . . , υd} is the set of minimal open invariant subsets of S(A) as claimed.
By definition, the subsets {υ1, . . . , υd} of S(A) are open and G-invariant. We
need to show that they are pairwise disjoint, and that every nonempty open G-
invariant subset of S(A) contains some υi .
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Suppose υi ∩υj is nonempty for some distinct i, j ∈ {1, . . . , d}; say p ∈ υi ∩υj .
There is then gi ∈ Mi , g j ∈ Mj and an open neighbourhood δ of p contained
in S(A), such that both giδ and g jδ are disjoint from δ. In particular, both
gi ristG(δ)g−1

i and g j ristG(δ)g−1
j have support disjoint from that of ristG(δ) and

therefore commute with ristG(δ) (since the action is faithful). By Lemma 6.8,
we conclude that both Mi and Mj contain the derived group of ristG(δ). Since
Mi ∩ Mj = {1}, it follows that ristG(δ) is abelian; since G is locally C-stable it
then follows by Proposition 2.7 that ristG(δ) is trivial. This is impossible, since
the action of G on A is weakly decomposable. Thus the elements of {υ1, . . . , υd}

are pairwise disjoint.
On the other hand, if υ is a nonempty open G-invariant subset of S(A), then

ristG(υ) is a closed normal subgroup of G, which is nontrivial since α ⊆ υ for
some α ∈ Ar{0}. Hence ristG(υ) contains one of the minimal closed normal
subgroups, Mi , and it follows that υ ⊇ υi .

(ii) For 1 6 i 6 d , set αi = [Mi ]
⊥

2 . Certainly αi is a fixed point of the action of
G on LC(G), so by hypothesis αi ∈ A. Since distinct elements of M commute,
we have [Mi ]

⊥ > [Mj ], and so [Mi ] 6 [Mi ]
⊥

2
6 [Mj ]

⊥ for any two distinct
elements Mi and Mj ofM. Thus {α1, . . . , αd} is a pairwise disjoint set of elements
of A. By Proposition 6.6, some open subgroup of Mi is contained in ristG(αi).
Since Mi is nondiscrete, ristG(αi)∩Mi > {1}. Since ristG(αi) is closed and normal
in G and Mi is a nondiscrete minimal nontrivial closed normal subgroup of G, we
must in fact have Mi 6 ristG(αi). In particular, it follows that υi ⊆ αi .

Since the complement of
⋃d

i=1 υi is G-invariant and does not contain any υi ,
it is nowhere dense in S(A) by (i). Therefore, the open set αirυi , which is
contained in the complement of

⋃d
i=1 υi , must be empty. This confirms that υi

is indeed dense in αi for each i . Let A′ be the set of fixed points for the action
of G on LC(G). Then αi ∈A′ for all i by construction and A′ ⊆A by hypothesis.
Given β ∈ A′r{0}, it follows from part (i) that υi ⊆ β for some i ∈ {1, . . . , d}.
Since β is closed and υi is dense in αi , in fact β > αi . Since A′ is a subalgebra of
A, we conclude that A′ is the subalgebra generated by {α1, . . . , αd}.

(iii) Let D = {δ1, . . . , δd} be as in Lemma 6.18 (with Γ = G). Since D
is a minorizing set for the G-action, we must have δi ⊆ υi for all i (up to
renumbering). For each i ∈ {1, . . . , d}, set L i = [ristU (δi), ristU (δi)]. Note that
L i is infinite by virtue of the fact that G is locally C-stable. The quasicentre of L i

is a discrete, hence finite, locally normal subgroup of G. It must thus be trivial by
Proposition 2.7.

Let K be a nontrivial closed locally normal subgroup of G. Then there is a
compact open subgroup V of G containing K as a closed normal subgroup. Since
the G-action on A is faithful, there is a point p ∈ S(A) which is not fixed by
K . Therefore, there exist k ∈ K and a sufficiently small clopen neighbourhood
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γ ∈ A of p such that γ and kγ are disjoint. In particular the groups ristV (γ )

and k ristV (γ )k−1 commute. It then follows from Lemma 6.8 that K contains the
derived subgroup of ristV (γ ). By Lemma 6.18, there is g ∈ G and i ∈ {1, . . . , d}
such that g ristU (δi)g−1 is contained in ristV (γ ), whence K contains gL i g−1. The
construction ensures that the index of gL i g−1 in K is infinite because kgL i g−1k−1

is infinite, is contained in K and intersects trivially with gL i g−1.
Let 1 6 i 6 d . Since Mi is a nontrivial closed locally normal subgroup of G,

we have gL j g < Mi for some g ∈ G and 1 6 j 6 d; since Mi is normal, L j < Mi .
Given that δj ⊆ υj and L j fixes every point outside of δj , we see that L j∩Mi = {1}
unless i = j . Thus we must have L i < Mi .

6.6. Properties of simple t.d.l.c. groups. We now focus on consequences of
Theorem 6.19 for the structure of groups in S . For clarity we highlight the special
case of Theorem 6.19 when G ∈ S .

COROLLARY 6.20. Let G ∈ S and let A = LC(G) or A = LD(G). Assume
that |A| > 2. Then G has a minorizing orbit on A. Moreover, there is an infinite
compact locally normal subgroup L of G with the following property: for every
nontrivial closed locally normal subgroup K of G, there exists g ∈ G such that
gLg−1 is a subgroup of K of infinite index.

Proof. In view of Corollary 5.12, the G-action on A is faithful. Since G is
topologically simple, we are in the situation of Theorem 6.19 where the number
of minimal closed normal subgroups is 1. The conclusions are now immediate
from Theorem 6.19.

REMARK 6.21. For the conclusion of Corollary 6.20, in general L cannot be
chosen to be a rigid stabilizer of the action of G on LC(G), as demonstrated by
the following example. Let T be the regular tree of degree d > 6, let G be the
simple group Aut(T )+ generated by edge stabilizers in G. Let e ∈ ET and let L
be the fixator of the set of vertices closer to t (e) than o(e). Then certainly G ∈S ,
LC(G) is nontrivial, and both L and K := [L , L] are infinite nonopen compact
locally normal subgroups of G. Indeed, considered as an element of LC(G), then
[L] is minorizing under the action of G. However, for all v ∈ V T , the permutation
induced by Kv on the neighbours of v is even, whereas elements of L can induce
odd permutations on the neighbours of infinitely many vertices. Thus L is not
conjugate in G to a subgroup of K ; indeed, there does not exist g ∈ G such that
[gLg−1

] 6 [K ]. Since [L] is minorizing in LC(G), the same argument shows that
gMg−1 � K for all g ∈ G, where M is any compact representative of any given
nonzero element of LC(G).
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We can prove a stronger version of Theorem B(iv) given G ∈S with property
(S2), if we make the additional assumption that LC(G) is nontrivial. In this case
we obtain two global invariants of the group G that control the ‘size’ of locally
normal subgroups up to conjugation.

COROLLARY 6.22. Let G ∈ S be such that |LC(G)| > 2. Suppose that every
infinite commensurated compact subgroup of G is open (this is automatic if G
is abstractly simple, see Theorem 3.9). Then there are natural numbers m and n
and an open subgroup U of G such that the following holds, for every nontrivial
closed locally normal subgroup K of G:

(i) There is a set {g1, . . . , gm} of m elements of G such that the (not necessarily
direct) product

∏m
i=1 gi K g−1

i contains U;

(ii) There is a set {h1, . . . , hn} of n elements of G such that

G = 〈hi K h−1
i | 1 6 i 6 n〉.

Proof. Let L be the compact locally normal subgroup of G given by
Corollary 6.20.

By Theorem 5.2, there is a finite set {g1, . . . , gm} of G such that the product∏m
i=1 gi Lg−1

i contains a nontrivial commensurated compact locally normal
subgroup U of G. Then U is open by hypothesis. Since G is compactly generated
and topologically simple and U is open, G is generated by finitely many
conjugates of U ; since U is contained in a subgroup generated by finitely many
conjugates of L , finitely many conjugates of L will also suffice to generate G. In
other words,

G = 〈hi Lh−1
i | 1 6 i 6 n〉

for some finite set {h1, . . . , hn}.
We have now proved (i) and (ii) for a specific compact locally normal subgroup

L . But in fact the choice of L simultaneously provides a solution for all nontrivial
compact locally normal subgroups K : given such a K we have r−1 Lr 6 K for
some r ∈ G, in other words, L 6 r Kr−1, and therefore

∏m
i=1 gir Kr−1g−1

i contains
U and {hir Kr−1h−1

i | 1 6 i 6 n} generates G. Thus the group U and the numbers
m and n can be chosen independently of the choice of K .

We can now also prove Theorems G and N.

Proof of Theorem G. Let G ∈ S and let α ∈ LN (G). We suppose that α is a
minimal nonzero element of LN (G), in other words α is a minimal element of
F := LN (G)r{0}; this will clearly be the case if α has a h.j.i. representative.
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Suppose LC(G) is nontrivial. Then by Corollary 6.20, every infinite compact
locally normal subgroup K of G contains an infinite closed locally normal
subgroup L of G, such that L has infinite index in K . In particular, there cannot be
any minimal nonzero element of LN (G), contradicting the existence of α. Thus
LC(G) is trivial and F is a filter by Lemma 5.10. Since α is minimal in F , we see
that in fact F is a principal filter, with α the unique least element of F . If α =∞
then LN (G) = {0,∞}, so G is locally h.j.i.; otherwise, we see from Theorem F
that G is of atomic type. Thus (ii) is proved. Theorem F also ensures that G acts
trivially on LN (G); part (i) follows immediately.

From now on we may suppose that G is of atomic type. It remains to show
that there exists a continuous homomorphism φ : S → G such that S ∈ S , S is
not of atomic type and φ(S) is a proper dense normal subgroup of G. Consider
a compact representative K of α. Since α < ∞, we see that K is not open in G.
However, α is fixed by G, so K is commensurated in G. Proposition 5.20 then
provides a continuous homomorphism φ : S → G such that S ∈ S and φ(S) is
normal in G. Moreover, φ(S) = 〈〈M〉〉G for some infinite compact locally normal
subgroup M of G. We see from the construction of S that 0 < [M] 6 α, so by the
minimality of α, in fact M is a representative of α. We see that M has countable
index in φ(S), but uncountable index in G, so φ(S) < G. In particular, G is not
abstractly simple.

Suppose LN (S) has an atom β. Then the same argument as for G shows
that β is unique, and thus the commensurability class of φ(K ) is preserved by
conjugation in G, where K is any compact representative of β. By Lemma 3.10
we can find a compact locally normal representative L of β such that φ(L) is
locally normal in G. Minimality of α then ensures [φ(L)] = α, which in turn
implies that L is open in S, and hence β is the greatest element of LN (S). In
this case LN (S) = {0,∞}, so S is locally h.j.i.; in particular, S is not of atomic
type.

Proof of Theorem N and Corollary O. If there is a subgroup R =
∏

i∈Z Ki o 〈g〉
of the form described, it is clear that LC(G) is nontrivial, since for instance the
centralizer of the factor K0 is neither open nor discrete.

Conversely, suppose LC(G) 6= {0,∞}. By Corollary 6.20, G has a minorizing
orbit on LC(G); in particular, there exists α ∈ LC(G) and g ∈ G such that gα < α.
Hence by Proposition 6.14, there is a closed subgroup R of G of the required form.
Proposition 6.14 also ensures that con(g) is not closed.

Proof of Corollary R. Consider the subgroup R =
∏

i∈Z Ki o 〈g〉 afforded by
Theorem N. Since K0 is an infinite locally normal subgroup of G, it is nonabelian
by Theorem A. Choose any two elements a, b ∈ K0 which do not commute. Then
the group Γ = 〈g, a, b〉 is isomorphic to the wreath product 〈a, b〉 o Z. Since 〈a,
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b〉 is not abelian, that wreath product is not redisually finite by [30]. A well-
known theorem of Mal’cev [38] ensures that finitely generated linear groups are
residually finite. The result follows.

6.7. Minimality and strong proximality. Recall that the action of a group G
on a compact space Ω is minimal if every orbit is dense. It is called proximal
if every pair {η, ξ} ⊂ Ω is compressible to some ω ∈ Ω (see Section 6.3 for
the definition of compressibility), and strongly proximal if for any probability
measure µ on Ω , the G-orbit Gµ contains Dirac measures in its closure in
the space of probability measures on Ω . Our aim in this section is to establish
minimality and strong proximality for the action of G on S(LC(G)) in the case
that G ∈ S , which will lead to proofs of Theorem J and its corollaries.

Let us first consider dense orbits in S(LC(G)).

THEOREM 6.23. Let G be a topologically simple, locally C-stable t.d.l.c.s.c.
group. Suppose A is a G-invariant subalgebra of LC(G) for which |A| > 2.
Then:

(i) The action of G on S(A) has a dense orbit; indeed, every orbit ω of G on
S(A) is either a singleton or dense in S(A).

(ii) If G is compactly generated, then the action of G on S(A) is minimal.

(iii) Suppose that A is countable. If G is abstractly simple, then the action of G
on S(A) is minimal.

Proof. Since G is locally C-stable, QZ(G) is discrete. The existence of a
nontrivial subalgebra of LC(G) ensures that G is not discrete; since G is
topologically simple, it follows that QZ(G) = {1}. By Corollary 5.12, the
action of G on A is faithful, with AG

= {0,∞}. The action is locally weakly
decomposable by Proposition 6.6.

(i) The action of G on S(A) is faithful because the action on A is faithful. Let
ω be an orbit of G such that |ω| > 1; such an orbit exists since the action of G on
S(A) is nontrivial. Since G is topologically simple, G acts faithfully on ω and
hence ristG(S(A)rω) = {1}. Since the G-action is weakly decomposable, we
conclude that ω is dense.

For the proof of parts (ii) and (iii), let κ be the set of fixed points of G acting
on S(A). The fact that G acts nontrivially on S(A) ensures that κ is not dense.

(ii) Let β ∈ A be such that β > 0 and β ∩ κ = ∅; such a β exists because κ is
not dense. Considering β as an element of LN (G), by Theorem 5.2 there exists a
finite subset {g1, . . . , gn} of G such that γ =

∨n
i=1 giβ is fixed by G. Thus γ ⊥ is
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a fixed point of the action of G on LC(G); since clearly γ > 0, we have γ ⊥ <∞
and hence γ ⊥ = 0. We now observe that the set {g1β, . . . , gnβ} has a least upper
bound δ in A, since A is a lattice. Since A is a subset of LN (G) we have γ 6 δ,
so δ⊥ 6 γ ⊥ = 0. Thus δ = ∞. At the same time, since κ is G-invariant, we have
giβ ∩ κ = ∅ for all i , so δ ∩ κ = ∅, and hence κ = ∅. We conclude by part (i)
that every orbit of G on S(A) is dense, in other words the action is minimal.

(iii) We prove this part in contrapositive form. Suppose that the action of G on
S(A) is not minimal, that is, not all G-orbits are dense. By part (i), κ is nonempty.
Using this fact, we can exhibit a proper nontrivial normal subgroup of G to show
that G is not abstractly simple. Define

N =
⋃

α∈A,α∩κ=∅

ristG(α), (6.1)

a directed union of subgroups of G that is normal because κ is G-invariant and
nontrivial because the G-action is weakly decomposable. Thus N is a dense
normal subgroup of G; it remains to show that N 6= G.

Let U be a compact open subgroup of G and suppose N > U . Since A is
countable, (6.1) is a countable directed union of closed sets. The Baire Category
Theorem then implies that there is α ∈ A intersecting κ trivially and such that
ristU (α) is open in U .

Since α ∩ κ = ∅ we have α 6= ∞ and so α⊥ > 0. In other words, taking K
to be a compact representative of α, then CG(K ) is nondiscrete since [CG(K )] =
α⊥ by Proposition 6.6. Then faithfulness of the action of G on A implies that
ristU (α)∩ ristU (α

⊥) = {1}; since ristU (α) is open in U , it follows that ristG(α
⊥) is

discrete. This is absurd as we clearly have CG(K ) 6 ristG(α
⊥). We conclude that

N 6> U and hence that N 6= G as claimed.

We now give a sufficient condition for an action to be strongly proximal.

PROPOSITION 6.24. Let G be a topologically simple locally compact group
acting continuously by homeomorphisms on a profinite space Ω . Assume that the
action is minimal and locally weakly decomposable, and that there is a nonempty
compressible open subset. Then the G-action is strongly proximal.

Proof. Every nonempty open subset contains a nonempty clopen subset.
Moreover, by minimality every G-orbit visits every nonempty clopen subset.
Therefore, our hypotheses imply that every point of Ω admits a compressible
clopen neighbourhood.

By [12, Theorem 4.5] (see also [39, Proposition VI.1.6] for the special case
when Ω is metrizable), an action of a group on a compact space is strongly
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proximal as soon as that action is minimal, proximal and contains a compressible
open set. Therefore, in order to prove the proposition, it suffices to show that every
pair {η, ξ} inΩ is compressible. Given any pair {η, ξ}, and let α be a compressible
clopen neighbourhood of η.

Let N be the subgroup of G generated by
⋃

g∈G ristG(gα). Then N is a
nontrivial normal subgroup of G, which is thus dense. Since every G-orbit on Ω
is dense, so is every N -orbit. In particular there is some g ∈ N such that gξ ∈ α.
Among all the g ∈ N with gξ ∈ α, we choose one of minimal word length with
respect to the generating set

⋃
g∈G ristG(gα). Write g = rn . . . r1 as a product of

elements ri ∈ ristG(αi), where αi belongs to the G-orbit of α. Set g j = rj . . . r1

for all j = {1, . . . , n} and set g0 = 1. By the minimality of n, we have g j−1ξ ∈ αj

for all j > 0, since otherwise we would have g jξ = g j−1ξ and hence

rn . . . rj+1g j−1ξ = gξ ∈ α,

which contradicts the minimality of n.
Now we distinguish two cases. Assume first that η 6∈ αj for all j ∈ {1, . . . , n}.

It then follows that rj fixes η for all j , and hence so does g. Therefore, we have
g({η, ξ}) = {η, g.ξ} ⊂ α. Since α is compressible, this implies that the pair {η, ξ}
is also compressible, and we are done.

Assume next that there is some j > 0 such that η ∈ αj ; in this case, let i =
min{ j > 0 | η ∈ αj }. Thus rj fixes η for all j < i , and hence gi−1η = η. In
particular gi−1η ∈ αi . Moreover, we have seen above that gi−1ξ ∈ αi . Therefore,
gi−1({η, ξ}) ⊂ αi , and hence {η, ξ} is compressible because αi is so.

Thus every pair inΩ is compressible, and the G-action is indeed proximal.

Proof of Theorem J. By Theorem A and Proposition 2.7, the group G is locally C-
stable. Therefore, the hypotheses of Theorem 6.23 are fulfilled. The G-action on
Ω = S(LC(G)) is continuous by Lemma 6.2. It is locally weakly decomposable
by Proposition 6.6 (in particular it is smooth), and minimal by Theorem 6.23(ii).
Moreover, by Corollary 6.20 there is a minorizing G-orbit in LC(G). This implies
that the corresponding clopen subset of Ω is compressible by Lemma 6.10. The
strong proximality follows from Proposition 6.24.

This proves (i). Since G is locally C-stable with trivial quasicentre, the assertion
(ii) follows from (i) together with [21, Theorem II(ii)].

Proof of Corollary L. Follows from Theorem J and Proposition 6.16.

Proof of Corollary M. If LC(G) is nontrivial, then the G-action on LC(G) is
nontrivial by Theorem J, hence faithful since G is topologically simple. The
uniqueness of the topology on G among σ -compact locally compact topologies
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follows from [21, Corollary 7.6]. Indeed, the same argument shows that the
topology of G is the only Polish topology compatible with the group structure.

Recall that fixed points in the structure lattice correspond to conjugation-
invariant commensurability classes of compact locally normal subgroups. If in
addition G is abstractly simple, then the only fixed points of G in the structure
lattice are the trivial ones by Theorem 3.9; the desired statement therefore also
follows from [21, Corollary 7.6].

We recall that strong proximality may be viewed as an antipodal condition to
amenability. In fact we have the following result due to Furstenberg.

PROPOSITION 6.25. Let G be a locally compact group admitting a closed
amenable subgroup A such that G/A is compact. Let also Ω be a compact G-
space which is minimal and strongly proximal. Then A fixes a point inΩ , and the
G-action on Ω is transitive.

Proof. By [27, Proposition 4.4], for every compact G-space Z such that the G-
action on Z is minimal and strongly proximal, there is a unique G-equivariant
continuous map ψ : G/A → Z . Since the G-action on Z is minimal, it follows
that the continuous map ψ must be surjective. The image of the trivial coset under
ψ is a G-fixed point in Z , and the transitivity of G on G/A implies the transitivity
on Z .

Corollary K now follows immediately from Theorem J and Proposition 6.25.

REMARK 6.26. Let G be a compactly generated, topologically simple t.d.l.c.
group and suppose |LC(G)| > 2. It seems plausible that every nontrivial orbit of
G on LC(G) is minorizing. This would imply that, for every closed subset X 6=
S(LC(G)), there is a net {gi} ⊂ G such that limi gi X is a singleton. By definition,
this means that the action of G on S(LC(G)) is extremely proximal. That
condition implies in particular that G contains nonabelian discrete free subgroups
by [29, Theorem 3.4]. In light of the results we have so far, an equivalent
formulation of the property ‘every nontrivial orbit of G on LC(G) is minorizing’
in the present context is the following:

Let K be a compact locally normal subgroup of G such that K > 1. Then there
is some g ∈ G such that [CG(K ),CG(gK g−1)] = {1}.

6.8. Abstract simplicity. Our main aim in this subsection is to complete the
proofs of Theorems P and Q. We start by recalling the main result from [20].

https://doi.org/10.1017/fms.2017.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.8


Compactly generated simple groups 75

THEOREM 6.27 [20, Theorem 1.1]. Let G be a t.d.l.c. group and let D be a dense
subgroup of G such that G† 6 NG(D). Then G† 6 D. In particular, every dense
subnormal subgroup of G contains the Tits core of G.

Proof of Theorem P. Suppose case (i) holds. By Corollary 6.20, the group G has
a minorizing orbit on LC(G). By Corollary 6.15, the Tits core G† contains K =
ristU (β) for some compact open subgroup U < G and some nonzero β ∈ LC(G).
Therefore, G† also contains an infinite commensurated compact locally normal
subgroup L by Lemma 5.1. Since G† is contained in every dense normal subgroup
of G by Theorem 6.27, we infer that every dense normal subgroup contains the
infinite commensurated compact locally normal subgroup L . Hence property (S1)
holds.

Suppose case (ii) holds, that is, there is a topologically finitely generated
compact open subgroup U of G. We recall that by Proposition 4.6, the
composition factors of U are of bounded order. Now, given a dense normal
subgroup N of G, the intersection N ∩ U is a dense normal subgroup of U ,
and must thus contain the closed subgroup [U,U ] by Theorem 5.21. Notice that
[U,U ] is infinite by Theorem A, and thus represents a nonzero element of the
structure lattice. By Lemma 5.1, it follows that N contains a representative of a
nonzero G-fixed point in LN (G). Thus G has property (S1).

The conclusion about abstract simplicity follows by Theorem 3.9.

We next obtain a sufficient condition for the Tits core of a t.d.l.c. group to be
open, which we can use to prove that a large class of topologically simple groups
are in fact abstractly simple via the following consequence of Theorem 6.27.

COROLLARY 6.28. Let G be a nondiscrete topologically simple t.d.l.c. group
such that G† is open in G. Then G = G† and G is abstractly simple.

Proof. We see that G† is a nontrivial closed normal subgroup of G, so G = G† by
topological simplicity. Now given any nontrivial normal subgroup N of G, then
N is dense in G by topological simplicity, so N > G† by Theorem 6.27 and hence
N = G. Thus G is abstractly simple.

PROPOSITION 6.29. Let G be a locally C-stable t.d.l.c. group with QZ(G) = {1}
and let A be a subalgebra of LD(G). Suppose that the action of G on S(A) is
faithful and minimal, and that gα < α for some g ∈ G and α ∈ A. Then G† is
open in G.

Proof. Let β = αrgα. By Corollary 6.15 we have ristU (β) 6 G† for some
compact open subgroup U of G. The minimality of the G-action on S(A) implies
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that
⋃

g∈G gβ = S(A). Moreover the compactness of S(A) implies that in fact
S(A) =

⋃n
i=1 giβ for some finite set {g1, . . . , gn}. Hence∞ =

∨n
i=1 giβ. Recall

that γ = [ristV (γ )] for all compact open subgroups V and all γ ∈ LD(G) (see
Proposition 6.6). Since the join in LD(G) corresponds to taking products of
representatives, we see that

〈gi ristU (β)g−1
i | 1 6 i 6 n〉

is an open subgroup of G. Since G† contains this subgroup, it is open too.

Proof of Theorem Q. In all cases, G is locally C-stable by Theorem 5.3.
Suppose case (i) holds, that is, LD(G) 6= {0,∞}. Since G ∈ S , the action

of G on LD(G) is faithful by Corollary 5.12. By Theorem 6.23(ii), the action
of G on S(LD(G)) is faithful and minimal. Moreover it has a minorizing orbit
by Corollary 6.20. In particular, there exists g ∈ G and α ∈ LD(G) such that
gα < α.

It has thus been shown that G satisfies the hypotheses of Proposition 6.29.
Hence G† is open in G, whence G†

= G and G is abstractly simple by
Corollary 6.28.

Suppose case (ii) holds and let U be a compact open subgroup U of G such
that U is finitely generated as a profinite group and [U,U ] is open in G. In fact
[U,U ] = [U,U ] by Theorem 5.21, so [U,U ] is open in G. We conclude with a
similar argument as in the proof of Theorem P: any dense normal subgroup N of
G must contain [U,U ] by Theorem 5.21, and hence N is open in G. Since N is
dense, we have N = G. Thus G has no proper dense normal subgroups; since G
is topologically simple by hypothesis, it follows that G is abstractly simple.

Finally, suppose case (iii) holds, that is, LN (G)G
= {0,∞} and some

nontrivial compact locally normal subgroup K of G is topologically finitely
generated. It follows that every compact representative of α = [K ] is topologically
finitely generated, and indeed every representative of β ∈ LN (G) is topologically
finitely generated whenever β can be represented as a finite join of G-conjugates
of α. Thus by Theorem 5.2, there must be a nontrivial compact locally normal
subgroup L that is topologically finitely generated and commensurated by
G. Since we assume that G does not have any nontrivial fixed point in the
structure lattice, we infer that L is open in G. Thus G is abstractly simple by
Theorem P(ii).

REMARK 6.30. The local decomposition lattice is a sublattice of the structure
lattice. In particular, the least upper bound operation in LD(G) satisfies

[H1] ∨ [H2] = [H1 H2].
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This identity plays a crucial role in Proposition 6.29. By contrast, in LC(G)
we have only that [H1] ∨ [H2] = [H1 H2]

⊥
2 , so for groups G ∈ S of weakly

decomposable type, the strategy employed in Proposition 6.29 is not sufficient to
show that G† is open. Indeed, in this case we do not know if G† is necessarily
open (although it is certainly nontrivial).
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Appendix A. Known sources of examples

Until very recently, the only known results on the class S focused on specific
families of examples studied with the help of the extra structure provided by the
very construction of these families. Although the purpose of this paper is to lay the
foundations of a study of general groups in S , for reference we list the sources
of examples of particular groups in S that we are aware of at the time of writing.

• Isotropic semialgebraic groups over non-Archimedean local fields. Let k
be a non-Archimedean local field, and G be an algebraic group defined over
k. Assume that G is noncommutative, almost k-simple and k-isotropic. The
group G(k), endowed with the Hausdorff topology induced by k, is a compactly
generated t.d.l.c. group (see [39, Corollary I.2.3.5]). Let G(k)+ be the normal
subgroup of G(k) generated by the unipotent radicals of k-defined parabolic
subgroups. Then G(k)+ is a closed cocompact subgroup of G(k) by [10,
Section 6.14], and the quotient of G(k)+ by its centre Z is abstractly simple
by the main result of [61]. In particular G(k)+/Z belongs to the class S .
All of these simple algebraic groups have been classified by Tits [63]; each
of them acts properly and cocompactly on a locally finite Euclidean building
constructed by Bruhat and Tits [13]. We also remark that if k is a p-adic field,
then the simple group G(k)+/Z also carries the structure of a p-adic Lie group.
Conversely, every compactly generated topologically simple p-adic Lie group
is of that form. (Every topologically simple p-adic Lie group whose adjoint
representation is nontrivial is isomorphic to a p-adic simple algebraic group of
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the form G(k)+/Z , and is thus compactly generated, see [23, Proposition 6.5]
(we emphasize that analytic p-adic groups are implicitly assumed to be linear
in the latter reference). It is however not known whether a topologically
simple p-adic Lie group can have a trivial adjoint representation (or even be
one-dimensional, hence locally isomorphic to Zp). A topologically simple p-
adic Lie group whose adjoint representation is trivial must have an abelian
Lie algebra and, hence, be locally abelian. Therefore, it cannot be compactly
generated by Theorem A.) More generally, it follows from [22, Corollary 1.4]
that simple algebraic groups are the only members of the class S that are
(locally) linear over a local field.

• Complete Kac–Moody groups of indecomposable type over finite fields.
These groups are constructed as completions of minimal Kac–Moody groups
over finite fields defined by Tits [64], with respect to a suitable topology. The
resulting locally compact groups are topologically simple and act properly and
cocompactly on a locally finite building that need be neither Euclidean nor
hyperbolic, see [51]. In fact, all of these groups are abstractly simple by the
main result of [40]. These groups also contain nonabelian discrete free groups,
and so are nonamenable. Some variations of this construction are possible,
see [52].

• Groups of tree automorphisms with Tits’ property (P). A simplicity
criterion for groups acting on trees has been given by Tits [62] and can be used
to produce many examples. Some concrete examples have been constructed
and studied in the groundbreaking work by Burger and Mozes [14]. The
article [14] also contains a wealth of results on the structure of t.d.l.c. groups
acting on trees, which have provided an important source of inspiration of
the present work. A recent variation on the Burger–Mozes constructions is
due to Smith [59]. Smith’s construction takes as an input a pair of transitive
permutation groups that are both generated by their stabilizers; one of them is
required to be finite, and the other is to be compactly generated of countable
degree with finite subdegrees. The output is a group in S acting on a biregular
tree, with one class of vertices of finite degree and the other of infinite degree.
By varying the infinite permutation group in the input, Smith obtains the first
construction of uncountably many pairwise nonisomorphic group in S .

• Other groups of tree automorphisms. Tits’ property (P) has been generalized
by Banks et al. [4] and Le Boudec [37] to construct new examples of groups
in S ; the groups in [37] act continuously but nonproperly on locally finite
trees. Another simplicity criterion was developed by Möller and Vonk [41],
although the present authors are not aware of any new examples arising from
this criterion.
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• Groups of tree spheromorphisms. The prototypical examples in this family
are the groups of tree spheromorphisms introduced by Neretin [46]: there is
one such group for each regular locally finite tree T of degree d > 3, with
isomorphism type depending on d . Their simplicity is due to Kapoudjian [34].
Some variations have been constructed by Barnea et al. [5] and Caprace and
De Medts [16].

• Groups acting on CAT(0) cube complexes. The aforementioned Tits’
simplicity criterion for groups acting on trees can be generalized for groups
acting on higher-dimensional CAT(0) cube complexes; examples have been
obtained by Haglund and Paulin [31], Lazarovich [36] and Caprace [15]. A
very general construction, incorporating many previous examples in this class
and also generalizing the work of Burger–Mozes and Smith, was recently
obtained by De Medts et al. [25].

Recall that we have divided the class S into five types, according to properties
of the structure, centralizer and local decomposition lattices. We summarize here
the division of the known examples among the five types.

It is known that simple algebraic groups over local fields do not admit any
nontrivial compact locally normal subgroup, since each of their compact open
subgroups is h.j.i. (see [54]). It is unknown whether Kac–Moody groups of
compact hyperbolic type can be locally h.j.i. groups. However, in every other
known example of groups in S , the existence of a nontrivial compact locally
normal subgroup has been observed. The type of the simple Kac–Moody groups
is not known in general, although certainly they cannot be of atomic type, as they
are all abstractly simple by [40].

Several families of groups in S acting on higher-dimensional CAT(0) cube
complexes have been discovered. For all known groups in these families, there
exist nondiscrete fixators of wings in the sense of [15] and their complements;
this property in turn implies that the centralizer lattice is nontrivial, so these
examples are either weakly or locally decomposable. For the examples in [15],
a characterization is given of which of these examples are locally decomposable,
from which it can be seen that not all examples are locally decomposable. In fact,
as far as the present authors are aware, the nonlocally decomposable examples
in [15] (and potentially some of their generalizations in [25]) are the only known
examples of groups G in S with LD(G) trivial but LC(G) nontrivial.

Once the examples of algebraic groups, Kac–Moody groups, and groups
acting on higher-dimensional CAT(0) cube complexes are excluded, all
remaining examples mentioned in this appendix are easily seen to be of
locally decomposable type, that is, such that the local decomposition lattice
is nontrivial. Many of these examples are obtained by using variations of Tits’
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simplicity criterion from [62]. That criterion, and its abstract version provided by
Proposition I, is quite flexible and it is very likely that more examples of groups
in S may be constructed by exploiting them. However, the ‘wildness’ which is
inherent in the flexibility of this type of construction should be contrasted by the
fact that the resulting groups in S will always be of weakly decomposable type,
and thus fall into the subfamily for which the tools developed in the present paper
are most powerful.

REMARK Appendix A.1. Although most known examples are known to have
nontrivial centralizer lattice, it is generally hard to determine if a given Boolean
algebra in the centralizer lattice is actually the whole of LC(G) or LD(G), or
merely a subalgebra. As far as the authors are aware, there are only two situations
where LC(G) or LD(G) is nontrivial and has been completely determined:

(i) If a compact open subgroup of G is a branch group, we can appeal to a result
of Garrido [28] to conclude that, given any branch action of a compact open
subgroup U of G on a rooted tree T , then LD(U ), and hence LD(G), is
generated by the rigid stabilizers of U acting on T , or equivalently the rigid
stabilizers of U acting on the boundary of T . In other words, in this situation
the profinite spaces S(LD(G)) and ∂T are G-equivariantly isomorphic. This
description covers Neretin’s tree spheromorphism groups and the known
examples of groups acting on locally finite trees with Tits’ property (P), and
in these examples we see that LD(G) is G-equivariantly isomorphic to the
algebra of clopen subsets of the space ∂T .

(ii) If G 6 Aut(T ), where T is a locally finite tree, such that G is topologically
simple and acts transitively on ∂T , then either LC(G) = {0,∞} or
S(LC(G)) is G-equivariantly isomorphic to ∂T : see Theorem Appendix
B.2(i) below.

Appendix B. Locally primitive groups of tree automorphisms

A group G of permutations of a set X is quasiprimitive if every nontrivial
normal subgroup of G acts transitively on X .

A group G of automorphisms of a locally finite tree T is locally quasiprimitive
if for every vertex v, the finite permutation group induced by the action of the
stabilizer Gv on the set E(v) of edges emanating from v, is quasiprimitive.

Groups of tree automorphisms provide an important source of examples of
groups in the class S . The fundamental work of Burger and Mozes [14] has
shown that the case where the action is locally quasiprimitive is especially rich
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and interesting. The goal of this appendix is to illustrate our results by specializing
to that class. We first show that the only fixed points in the structure lattice are the
trivial ones.

PROPOSITION Appendix B.1. Let T be a locally finite tree and G 6 Aut(T )
be a closed edge-transitive subgroup which is locally quasiprimitive. If G is
topologically simple, then LN (G)G

= {0,∞}.

Proof. Let α ∈ LN (G)Gr{0} be a nonzero fixed point of G in the structure
lattice. Let e be an edge of T . By Lemma 2.4, the compact open subgroup
Ge contains a closed normal subgroup L which is a representative of α. Since
G acts properly and cocompactly on a tree, it is compactly presented by [24,
Corollary 8.A.9]. Therefore, the last assertion of Proposition 5.17 ensures that the
quotient Ge/L is a topologically finitely generated, finite-by-abelian, profinite
group. In particular it has a unique maximal finite subgroup. Let K denote the
preimage in Ge of the maximal finite subgroup of Ge/L . Thus K is a closed
normal subgroup of Ge representing α, and Ge/K is torsion-free. Moreover it
follows from the construction that K is the unique maximal closed subgroup of
Ge representing α.

Let v1 and v2 be the two adjacent vertices that share the edge e. The compact
subgroup K cannot be normal both in Gv1 and Gv2 , since it would then be normal
in 〈Gv1 ∪ Gv2〉 = G. Upon renaming v1 and v2, we assume henceforth that K is
not normal in Gv1 . Let M1 be the (abstract) normal closure of K in Gv1 . By [21,
Corollary 7.13] we have [M1] = [K ] = α. Note that K is contained in M1 ∩ Ge.
Since M1 ∩ Ge is commensurate with K , and since K is the unique maximal
closed subgroup of Ge representing α, we infer that M1 ∩ Ge = K .

Since M1 is normal in Gv1 while K is not, it follows from the equality M1 ∩Ge

= K that M1 acts nontrivially on the set of edges E(v1) emanating from v1. By
hypothesis the Gv1 -action on E(v1) is quasiprimitive, hence M1 is transitive on
E(v1).

Now we distinguish two cases. Assume first that K is not normal in Gv2 . We
then denote the (abstract) normal closure of K in Gv2 by M2. The same arguments
as above show that M2 ∩ Ge = K and that M2 is transitive on E(v2). It follows
that M1 ∩ M2 = K , and that T is equivariantly isomorphic to the Bass–Serre tree
of the amalgamated product M1 ∗K M2. In particular the group D = 〈M1 ∪ M2〉

acts properly and edge-transitively on T , and is thus closed in G. Since D is
edge-transitive, it acts transitively on the G-conjugacy class of K . Therefore, D
coincides with the normal closure of K in G. Since G is topologically simple, it
follows that D = G. Thus M1 = Gv1 and M2 = Gv2 , and both are open in G, so
that α = ∞.
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Consider next the case when K is normal in Gv2 . We enumerate all the vertices
at distance 1 from v2 by w1 = v1, w2, . . . , wd , and for each i we set ei = {wi ,

v2}. Since Gv2 is transitive on E(v2) = {e1, . . . , ed} by hypothesis, it follows that
K is contained as a closed normal subgroup in Gei , and is the unique maximal
closed subgroup of Gei representing α. For each i = 1, . . . , d , we denote by Mi

the normal closure of K in Gwi . We claim that Mi ∩ Gei = K and that Mi is
transitive on E(wi) for all i . Indeed, this has already been established for i = 1,
and the claim for i > 1 follows from the transitivity of Gv2 on E(v2). Noting
that Mi ∩ Mj = K for all i 6= j in {1, . . . , d}, we see that T coincides with the
Bass–Serre tree of the amalgamated product M1 ∗K M2 ∗K · · · ∗K Md (viewed
as the fundamental group of a finite tree of groups, the finite tree in question
being isomorphic to the star S = e1 ∪ · · · ∪ ed). It follows that the group D =
〈M1 ∪ · · · ∪ Md〉 acts properly on T with the star S as a fundamental domain. In
particular D is closed in G, and D is transitive on the G-conjugacy class of K . As
in the previous case, this implies that D is normal, hence open in G, so that K is
of countable index in G. Therefore, K is open and α = ∞.

We emphasize that, under the hypothesis that G is locally quasiprimitive, it
follows from [14, Proposition 1.2.1] that G is topologically simple as soon as it
has no nontrivial discrete normal subgroup, and no proper open normal subgroup
of finite index.

We next turn to the case where G is doubly transitive on the set of ends ∂T .
This implies that G is locally 2-transitive, hence locally primitive. In fact, if G 6
Aut(T ) is closed, noncompact and transitive on ∂T , then it is 2-transitive on ∂T
and locally 2-transitive: see [14, Lemma. 3.1.1].

THEOREM Appendix B.2. Let T be an infinite locally finite tree and G 6 Aut(T )
be a closed subgroup which is topologically simple and acts transitively on the set
of ends ∂T . Then:

(i) The Stone space S(LC(G)) is either trivial, or equivariantly homeomorphic
to ∂T . In particular LC(G) is either trivial or countable.

(ii) LC(G) 6= {0,∞} if and only if the pointwise stabilizer of some half-tree is
nontrivial.

(iii) If LC(G) 6= {0,∞}, then G is abstractly simple.

Proof. (i) Since T is infinite and locally finite, the set of ends ∂T is nonempty.
Let ξ ∈ ∂T and P = Gξ be the stabilizer of ξ . Then the set of elliptic elements of
P is an open normal subgroup P0 of P , which is locally elliptic, and the quotient
P/P0 is cyclic. In particular P is amenable. The canonical equivariant bijection
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G/P → ∂T is continuous, and must therefore be a homeomorphism by [3,
Theorem 8]. It follows that G/P is compact. Moreover P is a maximal subgroup
of G since the G-action on G/P is doubly transitive (by [14, Lemma 3.1.1]),
hence primitive. Therefore, by Proposition 6.25, every compact G-space which
is minimal and strongly proximal either is isomorphic to G/P ∼= ∂T , or is a
singleton. In particular, this applies to the Stone space S(LC(G)) by Theorem J.
This proves (i).

(ii) Given any pair of half-trees H1, H2 in T , there is an element g ∈ G mapping
H1 properly inside H2. The ‘if’ part follows easily from that observation. Assume
conversely that LC(G) is nontrivial. Then S(LC(G)) can be identified with ∂T
by (i). Since the G-action on S(LC(G)) is locally weakly decomposable by
Theorem J, it follows that the pointwise stabilizer in G of any nonempty proper
clopen subset of ∂T is nontrivial. The conclusion follows, since the pointwise
stabilizer of a nonempty proper clopen subset of ∂T fixes pointwise a half-tree of
T .

(iii) Upon replacing T by a minimal G-invariant subtree, and discarding the
vertices of degree 2, we may assume that the G-action on T is edge-transitive.
By [14, Lemma 3.1.1], the G-action on ∂T is 2-transitive, and the G-action on T
is locally 2-transitive, hence locally quasiprimitive. The conclusion then follows
from Proposition Appendix B.1 and Theorem P.

In particular, in this case we can solve the problem posed by Remark 6.26.

COROLLARY Appendix B.3. Let T be an infinite locally finite tree and G 6
Aut(T ) be a closed subgroup that is topologically simple and acts transitively on
the set of ends ∂T . Then every orbit of G on LC(G)r{0,∞} is minorizing.

Proof. We may assume that LC(G) is nontrivial. Then by Theorem Appendix
B.2(i), the Stone space S(LC(G)) is G-equivariantly homeomorphic to ∂T ; in
other words, we may identify LC(G) with the Boolean algebra A of clopen
subsets of ∂T . Given a directed edge e in T , let Se be the half-tree of vertices
closer to o(e) than to t (e). Then the set αe of ends of Se is an element of A;
moreover, it is easily seen that the set

H := {αe | e ∈ ET }

is minorizing in A. Now [14, Lemma. 3.1.1] implies that G is transitive on
undirected edges of T ; since G is topologically simple, G preserves the natural
bipartition of the vertices. Hence G has exactly two orbits of the directed edges
of T , so that e and e′ lie in the same orbit if and only if o(e) and o(e′) lie in the
same part of the bipartition. We see that for any two edges e, e′, there exists g ∈ G
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such that the undirected edges of ge and e′ are distinct, and either o(e′) = t (ge)
or there is an edge e′′ from o(e′) to t (ge). In either case we see that Sge ⊂ Se′ and
hence gαe < αe′ . Thus Gαe is minorizing in H, and hence in A, for all e ∈ ET .
In particular, since (αe)

⊥
= αe, we obtain an element α ∈ LC(G) such that both

α and α⊥ are minorizing under the G-action. Given β, γ ∈ LC(G)r{0,∞}, there
exist g, h ∈ G such that g−1α⊥ < β⊥ and hα < γ ; these two inequalities imply
that hgβ < γ . Hence every orbit of G on LC(G)r{0,∞} is minorizing.

Index

[A]-regular radical, 39

abstractly linear, 14

abstractly simple, 2, 13

action
locally weakly decomposable, 11
minimal, 11
strongly proximal, 11

algebraic group, 77

amenable, 12

B(G), 14

C-stable, 16

Cayley–Abels graph, 28

centralizer lattice, 5, 16

commensurate, 14

compactly generated, 2

compactly presented, 45

compressible, 9

compressible to a point, 59

con(g), 12, 61

contraction group, 12, 61

η(G), 30

extremely proximal, 74

FC-group, 6, 52

filter, 42
free subsemigroup, 12

G(µ), 45

Hecke pair, 19
hereditarily just-infinite, 7
Higman’s simplicity criterion, 10
h.j.i., 7

just-infinite
relatively, 21

just-noncompact, 22

Kac–Moody group, 78

large, 24
LC(G), 5, 16
LD(G), 5, 16
linear, 14
LN (G), 5
local decomposition lattice, 5, 16
local prime content, 30
local size, 24
localization, 45
localized topology, 45
locally C-stable, 16
locally elliptic subgroup, 52

https://doi.org/10.1017/fms.2017.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.8


Compactly generated simple groups 85

locally equivalent, 14

locally normal subgroup, 4, 14
trivial, 4

locally sized, 24

locally weakly decomposable action,
11

Margulis–Zimmer conjecture, 23

maximal, 17

meagre, 24

microsupported, 9

minimal, 17

minimal action, 11, 71

minorizing, 59
degree, 59
set, 59

Mon(G), 20

monolith, 20

monolithic, 20

O∞(G), 30

O∞(G), 30

Oπ (G), 30

Oπ (G), 30

p-adic Lie group, 4, 77

partition, 57
refinement of a, 57

π -core, 30

π -residual, 30

Polish group, 12

profinite space, 10, 55

prosoluble core, 30

prosoluble residual, 30

proximal action, 71

QCH (K ), 15
quasicentralizer, 15
quasicentre, 16
quasiprimitive, 80

locally quasiprimitive, 80
quasiproduct, 21
QZ(G), 16

R[A](G), 39
refinement, 57
relatively simple, 21
rigid stabilizer, 56
ristG(υ), 56

S , 2
(S0), 5
(S1), 5
(S2), 5
simple

relatively, 21
topologically, 2

K -sized, 24
skewering element, 61
smooth action, 56
Stone space, 10, 55
strongly proximal action, 11, 71
structure lattice, 5, 14

fixed points in, 6

t.d.l.c.s.c., 15
t.d.l.c., 2
Tits core, 61
topologically simple, 2
tree, 78

https://doi.org/10.1017/fms.2017.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.8


P.-E. Caprace, C. D. Reid and G. A. Willis 86

unrefinable, 26

upper subset, 42

weakly decomposable, 11
locally, 11

References
[1] H. Abels, ‘Kompakt definierbare topologische Gruppen’, Math. Ann. 197 (1972), 221–233.
[2] H. Abels, ‘Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen’,

Math. Z. 135 (1974), 325–361.
[3] R. Arens, ‘Topologies for homeomorphism groups’, Amer. J. Math. 68 (1946), 593–610.
[4] C. Banks, M. Elder and G. A. Willis, ‘Simple groups of automorphisms of trees determined

by their actions on finite subtrees’, J. Group Theory 18(2) (2015), 235–261.
[5] Y. Barnea, M. Ershov and T. Weigel, ‘Abstract commensurators of profinite groups’, Trans.

Amer. Math. Soc. 363(10) (2011), 5381–5417.
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