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0. Intreduction

In the study of ordinary differential equations, Malgrange ((Ma]) and Ramis
([R1], [R2]) established index theorem in (formal) Gevrey spaces, and the notion of
irregularity was nicely defined for the study of irregular points. In their studies, a
Newton polygon has a great advantage to describe and understand the results in
visual form. From this point of view, Miyake ((M2], [M3], [MH]) studied linear par-
tial differential operators on (formal) Gevrey spaces and proved analogous results,
and showed the validity of Newton polygon in the study of partial differential
equations (see also [Yn]).

The purpose of this paper is to extend results in [M3], where spectral proper-
ty in Gevrey spaces of a special integro-differential operator was studied, which
is induced from the Goursat problem formulated from an interior point of a side of
Newton polygon defined by (0.2) below. Precisely, we characterize Fredholm prop-
erty of the Goursat problemr by employing the theory of (finite section)
Wiener-Hopf equations, and show that such a property depends deeply on the Hil-
bert factorizability of Toeplitz symbol associated with the Gevrey index. We note
that Fredholm property of the Goursat problem in the category of local holomor-
phic functions was firstly pointed out by Leray ([L]) by an typical example of
operators, and a systematic study of such property is firstly done in this paper.

In order to illustrate our intention, we shall show a typical result which fol-
lows from Theorem 1 in Section 1.

Let P= P(t, x; D, D,) be a linear partial differential operator of finite
order with holomorphic coefficients in a neighbourhood of the origin of C, X C,,
and Reviteeit Nnveheh o, 1992,

165

https://doi.org/10.1017/50027763000005018 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005018

166 MASATAKE MIYAKE AND MASAFUMI YOSHINO

finite N i
(0.1) Pt,z;D,D,) =2 X a,,@t'D/D,
oeN j,aeN

where N denotes the set of non negative integers. For a triplet (g, 7, @) € N°, we
associate a left half line Q(o, 7, @) in a (#, v)-plane defined by

Qo,j,@:={u,0—j) ER;u<j+al
Then a Newton polygon N(P) of the operator P is defined by,
0.2) NP := ch{Q(0, j, @) ; @, () % 0),

where ch{-} denotes the convex hull.

For a given s > 0, we draw a line L, with slope k:=1/(s —1) € R U {0}
which contacts to N(P) at a vertex or on a side of N(P). We put N, := N(P) N
L and define

(0.3) N, :=A{(j, @) € N*; a,,(0) # 0, ( + a, —j) € N,}.

Now the principal part P,(D,, D,) and the Toeplitz symbol f,(2z) associated with
the Gevrey index s are defined by,

(0.4) P(D, D)= X a,,(0)DD,
(j,a)eNg
(0.5) f,(@ = . ZN @je(0)2”

We define Gevrey space 9, (R) (s, w, R > 0) as follows.

Let C[I[¢, x]] denote the set of formal power series of variables ¢, x € C,
and O(£2) the set of holomorphic functions on a domain £ < C, X C,. Then the
Gevrey space @Z,(R) is defined by the following isomorphism of Frechét spaces (cf.
Proposition 5.1 which follows),

06 Clltal 2 6@ T2 g (LY 4 1) <g),

w

where the Borel transformation is defined by

t t t 1/s
502 3 i 3w o) +1e1 <)

1,LBEN
The factorial is defined by the gamma function, 7! := I'( + 1) for » = 0.
We consider the following Goursat problem in 9, (R),

{P(t, x;D,, D)u(t, x) = f(t, x) € 9,(R),

0D w(t, ) — v(t, 2) = 0z, v(t, 2) € G.(R),
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where w(t, £) = O(£'x®) in 9 (R) means that w(t, )t 'z € 4. (R).
Now we can prove the following,

TueoREM 0. Assume N, # ¢ and (j, @) € ch {N,}, the convex hull of points in
N, o Further we assume

(0.8) f@ #0on|z|l=w, and fl_ dlog f,(2)7) = 0.

Then the Goursat problem (0.7) has the Fredholm property for sufficiently small R > 0.
Precisely, there exists Ry > 0 such that the mapping P : £ £°95(R) — G5 (R) has the
same finite dimensional kernel and cokernel for every R such that 0 < R < R,. Furth-
evmore, if one of the following conditions is satisfied, then the problem (0.7) is uniquely
solvable in 9, (R) for sufficiently small R > 0:

(i) (j, @) is an end point of ch {N,}.

(ii) There exists ¢ > 0 such that {f,(2)2' ;| z| = ¢} is a segment.

(iii) There exists ¢ > 0 such that 0 & ch{f,(2)2’ ;| z| = c}.
Moreover, every formal solution u(t, x) € CII¢t, xl] of the problem (0.7) (if it exists)
belongs to 9, (R) for sufficiently small R > 0.

We remark that if s is an irrational, 1\0/'8 consists of an element whenever it is
not empty, and the problem (0.7) is uniquely solvable in ¥,,(R) for every w > 0
for sufficiently small R > O ((MH]). Therefore, our interest in this paper is the
case where § is a rational number and JVS includes at least two elements. We also
remark that the necessity of the condition (0.8) will be made clear in Theorem 1
in Section 1.

The proof of Theorem 0, which will be completed in Section 5, is carried out
by converting the problem to the Fredholm property of an integro-differential
operator L:= PD;’D>* on Banach space GJ(R) associated with %, (R), which is
defined in Section 1. Therefore, the main part of this paper is the study of
Fredholm property of integro-differential operators on Banach spaces of Gevrey
functions. The case of nonpositive Gevrey index will also be studied, but it is dif-
ficult to state a result for the Goursat problem in such a strict form as Theorem O.

At the end of this introduction, we give some historical background of the
problem.

From the general theory of the Goursat problem, we can prove that the Gour-
sat problem (0.7) is uniquely solvable in 4, (R) for sufficiently small R > 0 under
the following so-called spectral condition,

https://doi.org/10.1017/50027763000005018 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005018

168 MASATAKE MIYAKE AND MASAFUMI YOSHINO

(S) | @ya@ 1> 2 | a0 |0
B eN\G.a)
(See [H], [W], [M1], [M2] and [MH].)

On the other hand, some attempts to make analysis of interior points of spec-
tral radius were made by many authors for special operators after the work by
Leray ([G], [L], [Ys1], [Ys2]). Leray studied the following Goursat problem in the
category of local holomorphic functions at the origin.

(AD,D, — D} — D)u(t, x) = f(t, 2), u(t, x) = O(tx).

He proved that the problem is uniquely solvable if 2 € C\[— 2, 2]. He also stu-
died the case where A € [— 2, 2], and made clear that the solvability of the prob-
lem depends deeply on the diophantine nature of the number A. In [M3], Miyake
proved that the interval [— 2, 2] is a spectral set of an associated integro-
differential operator with the Goursat problem (see Theorem 1 and Example 1.1 in
Section 1). Yoshino made a series of studies in this direction in the category of
local holomorphic functions ([Ys1,2,3,4,5]). Leray’s example was extended by
Miyake [M3] in Gevrey spaces of positive index and also of non positive index. A
prototype of results in this paper was given there, but a condition like (0.8) was
not awared, which enables us to study general operators.

In Section 1, we shall state our results on Fredholm properties for integro-
differential operators on Banach space of Gevrey functions after some prepara-
tions. In Section 2, we shall study invertibility or norm inequalities for (finite sec-
tion) Toeplitz matrices on (finite section) weighted I space (1 < p < ), where
we shall see that how the condition (0.8) does play a crucial role in our study. In
Sections 3 and 4, we shall give the proofs of the results, and Theorem 0 will be
proved in Section 5.

1. Statement of results

Let L= L(¢, x ; D,, D,) be an integro-differential operator of finite order
with holomorphic coefficients in a neighbourhood of the origin of C, X C,, and
write it in the form,

finite v
(1.1) L=2%2 2 a,,(@»t D, D,
oeN j,aeZ
where Z denotes the set of integers. The symbol D,-1 denotes an integration from
0 to tin the variable { in the formal sense. It is the same for D;l.
The Newton polygon N(L) of the operator L is defined in the same manner as
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(0.2) for partial differential operators by replacing N by Z.
We assume that the Newton polygon N(L) has a side N, with slope k =
1/(s — 1) (s € Q) which contains the origin.

\ N, (s<1
u

7/ N
N b

NG=zD* /
AN

This assumption implies that

s+ QA —s)o+a<0if a,,x #0,

12 G4 =90+ a=01(a,,® %0 ifand only if G+ a, 0 —j) € N,.

In the case s < 1 it is assumed, a priori, that the operator has polynomial coeffi-
cients in the variable £ As a fundamental assumption, we impose the following
condition throughout this paper.

Ny N:={G, @ €ZXZ;a,,0 #0, j+a —j) EN} *¢.
We decompose the operator L as follows.

(1.3) L=1L,D, D)+ L\t x;D, D)+ Lt z;D, D),
where

(j, @) ENg

L,= 2. aoja(O)D,jD; (the principal part),
L=

Z aﬂia(x) th;D:! ana(O) =Qoro > 1,

si+(1-s)o+a=0

finite O i
L,= > Agq(t, 2t D/D,.

si+(1-s)o+a<0

We shall study the Fredholm property and the bijectivity of the following map-
pings on Banach spaces,
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L:G,(R)— G,(R) (s, w, R>0),
L:G,(R;n)— Gy(R;n) (s<0,w,R>0,n€EN).

Throughout this paper, a bounded operator L on a Banach space X is said to
be a Fredholm operator if it is a Fredholm operator with an index O, that is, L has
the same finite dimensional kernel and cokernel.

We define Banach spaces G, (R) and G,(R ; n) as follows.

DEFINITION.  Let U(t, 2) = 2, en Upst'x’ /118! € CIIt, £]]. Then we define:
i) Ul o) € GyR) (s> 0) <

X Rsl+ﬁ
(1.4) IUI = = Uyl gr < -

1L,BeN

def

i) Ut,x) € Go(R;n) (s<0)

1 (nl-%—(n+1),3)!]<Oo
tpst+e ((n— s)l+ np)!

15 Uk, :=inf{c;lU,l<C

The Toeplitz symbol f(2) of the operator L (associated with the above map-
ping) is defined by

(1.6) f@:i= T a0z €Clg 27,

G, el s

where Clz, z™'] denotes the set of polynomials of z and z .
When f(2) # 0 on a circle K, := {z € C;|z| = w}, we denote by I,(f) the
winding number of f(2) at the origin with respect to the circle K,

1.7 L =g dlogf@).

T 2m

Now our results are stated as follows.

TueoreM 1 (The case s > 0). (i) Suppose the following condition,
H), f(@ #0on K,, and I,(f) =0.

Then there exists a positive constant R, such that L is a Fredholm operator on
G, (R) for every 0 < R < R,. Furthermore if we define an ideal M’'[N] of CL[¢, x]]
by

MIN) :={U(t, ) € Cllt, 211; Uy =0 for sl+ B <N},
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and G,(R)IN1:= G,(R) N M'[N], then L is bijective on M N1 and also
on G, (R)[N] for sufficiently large N and small R > 0. Therefore, L is bijective on
Cllt, 211 /G, (R) for sufficiently small R > 0.

(i) Suppose L, = 0 in the decomposition (1.3). Then L is a Fredholm operator on
G, (R) for some R > 0 if and only if the condition (H),, is satisfied. Furthermore, the
resolvent set of the operator Ly on G, (R) is imvariant on R > 0, which we denote by
o(L,), and we have

(1.8) oLy = U o(L; G,(R)),
R>0
where (L ; G (R)) denotes the resolvent set of the operator L on G, (R).

Remark 1.1. If s = 1 in the above theorem, we may assume that the coeffi-
cients of the operator belong to U sy G, (R) (cf. Lemma 4.2).

Remark 1.2. 1In course of the proof, we will see that A € C belongs to the re-
solvent set of L on G, (R) (for sufficiently small R > 0) if one of the following
conditions is satisfied:

(i) f(2) is a polynomial of z or z”* and (H), is satisfied for f(2) — A.

(ii) {f(2) ;z€ K.} is a segment for some ¢ > 0 and (H), is satisfied for
f(2) — A. In this case, by Szegd’s theorem stated in Section 2, 6,(L,), the set of
eigenvalues of L, on G, (R), is invariant for w > 0 and is densely distributed on
this segment.

(iii) 2 € ch{f(2) ;z € K} for some ¢ > 0 and (H),, is satisfied for f(z) — A.
Furthermore the set of eigenvalues, which is included in a domain {2 € C; (H),
is satisfied for f(2) — A}, consists of finite points.

THEOREM 2 (The case s < 0). Let assume (H),, is satisfied for ¢ = ¢ and
¢ =", Then there exist R, >0 and n, € N such that L is a bijection on
G,(R ;n) for 0 < R < R, and n = ny. Precisely, it holds that

U U ol;G(R;n)
R>0 neN

(1.9)
>{ieC ,f(Z) — A satisfies (H)cw for ¢ = es_l and ¢ = es(s-—l)}’

where (L ; G, (R ; n)) denotes the vesolvent set of L on G, (R ; n).

Our theorems are proved first by showing the same results for the principal
part L, in Section 3, and then by applying the stability of Fredholm property by
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small perturbations in Section 4. The results for L, will be proved by showing
that an equation L, U(t, x) = F(¢, x) in G,(R) (resp. in G,(R ;n)) is decom-
posed into an infinite direct product of finite section Wiener-Hopf equations on fi-
nite section spaces of weighted I space (resp. Wiener-Hopf equations on weighted
I” spaces). In these studies, we shall see that the Fredholm property depends
deeply on the invertibility or the norm inequality for (finite section) Toeplitz mat-
rices which holds under the condition (H),, (cf. Propositions 2.2, 2.3).
We give examples below.

ExampLe 1.1 (M3). Let Ly,=D'D;" “+D'DX* (p>1,p+ a>0).
The Gevrey index of this operator is s = 1 + (a@/p) > 0, and the Toeplitz sym-
bol is f(2) = 27 + 2’. Since {f(2) ;| z| =1} = [— 2, 2], by Remark 1.2 (ii) or
(iii), we have

o(L,) = C\chif(z);z€ K,

=frec; (wpli:’zw_p)z + (wplf”w_l,)z >1} (cC\[-2, 2D,

(1.10)

and 0,(L,) is densely distributed on [— 2, 2]. More precisely, we have
(1.11) 0,(Ly) = U {2cos 7 ;sin(n +2)7rd =0, 0< 6 <1},
n=0

from results in [M3], where the case w = 1 was studied.

9
4
Then the Gevrey index of this operator is given by s =1+ a = 2 and the

4

ExampLe 1.2, Let L, =3 D2 DX + 3D ' D, — > D, D™, where a = 1.

. . . 4 2 9 -1 4 -1 3 2

Toeplitz symbol is given by f(2) =37 + 32—ZZ =lz3— 2 <z+§ .
3 3

Therefore the condition (H),, is satisfied for 1 <w< 3 Then the operator L, is

3 3
a Fredholm operator on G, (R) for 1 <w< 5. In this case, it holds that 0&

N 5/scwess Ch{f(2) ;| z]| = w} (see the figures). From the proof of Theorem 1 we
can see that L, has 1 + o dimensional kernel and cokernel on G, (R). (Cf. Exam-
ple 2.1)

https://doi.org/10.1017/50027763000005018 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005018

FREDHOLM PROPERTY OF THE GOURSAT PROBLEM 173

2. Inversion and norm inequality of Toeplitz matrices

We define Banach spaces I,, (p =1 or o, w > 0) of formal Laurent series
by

he'= W@ =Zcqu;2 5 lul, = Ziepu | w' < oo},
(2.1) ) )
low={u@ = Z;pu;2 i lul.,:=supllu;|w';j € Z} < oo},

We, sometimes, identify #(2) € I,, with a sequence # = {u;},., with the above
defined norm. We denote by I,, (resp. ,,) the set of #(2) € 1,, with u; = 0 for
7 <0 (resp. j > 0). The projection P : [,,— l;w is naturally defined by

(2.2) Pw) = Z,enu;2 for (@) =3,c,u;2 €1,

For f(2) =X _,.f,Z €Clz, 271 (—m <m, f,f, #0), a Wiener-Hopf
equation on I, , with symbol f(2) is defined by

(2.3) P.lu] := P(fu) = g(2) € l;,w (u(z) € l;w).

The operator P, is called a Toeplitz operator with symbol f(2). An infinite matrix
T; defined by

T, := (fi-d)j k=00

is said to be a Toeplitz matrix with symbol f(2). Then the equation (2.3) is writ-
ten in the matrix form by

2.3y Tu=ge<l, wel,,.
We note that P, or T, defines a bounded operator on /,, with operator norm,

” Pf “ = " Tf " = “f”1w

https://doi.org/10.1017/50027763000005018 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005018

174 MASATAKE MIYAKE AND MASAFUMI YOSHINO

The first purpose of this section is to study the unique solvability of the
Wiener-Hopf equation (2.3) or (2.3)" on l;w. For that purpose, we firstly investi-
gate the condition (H),. The condition (H), is satisfied if and only if #, m = 0
and the equation z”f(2) = 0 has m roots {g};-, in {0 <|z| < w} and # roots
(s o in {l 2| > w}. Therefore, under the condition (H),, we have a decom-
position, f(2) = f,(2) f_(2), given by
n

(2.4) fil =

7

(=), £ =T (1-5).

where we assumed f, = 1 without loss of generality. Note that f,(2) (resp.
f_(2)) is holomorphic and does not vanish on {|z| < w} (resp. {w < |z| < oo}).
Such a decomposition is called a Hilbert factorization of f(z) with respect to the
circle K,. We note that the converse holds, that is, f(z) is Hilbert factorizable
with respect to the circle K, if and only if f(2) satisfies the condition (H),. We
omit the proof, since it is easy.

From the decomposition, we see that

L@ = 2jen by 2"

are absolutely convergent on the circle K,, and hence they belong to /;,. These
facts imply that Toeplitz matrices T,-1 define bounded operators on l;,w with oper-
ator norms

(25) ” Tf;l “ = “ f:t (Z)_l "1,w (E ZjeN| bj—_j | wij)-

Under the above consideration, we see that the condition (H), implies the follow-
ing decompositions of Toeplitz operator P, and Toeplitz matrix 77,

P,=P,_P, and T,=T1,T,,

where P,, is a multiplier operator by f,(2). Note that T,, (resp. T,_) is a lower
(resp. an upper) triangle matrix, and has a bounded inverse matrix on l;,w given
by T, = Ty (resp. T,_ = T,-1). Thus we have seen that under the condition
(H),, T, has a bounded inverse matrix on l;'_w given in the form, Tf_l =T Tpm,

and its operator norm is estimated by

(2.6) 1771 <1A@7 ol @7 .

This estimate is obtained from the following Hausdorff-Young inequality of
discrete type.
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LemvMa 2.1, Let a(z) €1, and b(2) €1,, where 1 <p <. Then
a()b(z) € 1,, and we have ||abl,,, <|al,,bl,., Here the Banach space 1,,
(1 < p < o) is defined in the similay manner as in the case p = 1.

We omit the proof, since it is obvious. It is important that the converse holds.

ProposITION 2.2.  The Toeplitz matriz T, is bijective, that is, invertible on l;, w
and only if the condition (H),, is satisfied. Moveover, suppose that f(z) # 0 on K,, and

2.7 L = o b dlog £ = k #0.

If k > 0 then T, is injective with k dimensional cokernel, and if kK < O then T is
surjective with — k dimensional kernel.

Remark 2.1. Calderoén, Spitzer and Widom ([CSW]) proved this result in the
case where p = o and w = 1. The above consideration and the proof below show
that this proposition holds for every 1 < p < oo,

Proof. We may assume w = 1 without loss of generality. Indeed, it is suffi-
cient to make a change z by wz. This change implies,

oD ) en ™ {u, '),y € 15,
T, on I, D,(w) T, D.(w™ on I,

where D, (w) := diag{l, w,. .., wj,. ..}, a diagonal matrix with the j-th diagonal
component ' (j > 0), and D_'(w) = D, (w™).

We prove the “only if” part, so we always assume that T, is bijective on l;‘
In what follows, we omit the suffix w = 1, and the condition (H),,, is denoted by
(H). We give the proof dividing into two parts. The proof of latter half of the
statement will be given in part 2.

1) The case f(2) € Clz] or Clz 7.

First, we consider the case f(z) = X_,f,2' € Clz] (n > 0). We put f(2) =
2°g(2), g(0) # 0, k > 0. Then the Toeplitz matrix T, is decomposed into

T,= S, (k) T,=1T, S, (k),
where S, (k) is a shift operator defined by

k
S, (k) = (ugy yy y,..) =0, ..., 0, Uy, Uy, Usy,...).
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This shows that if k¥ > 0, the cokernel of Tf includes k£ dimensional vector space,
and hence T is not surjective. Now we consider the case where f(0) # 0. Suppose
that the condition (H) is not satisfied, that is, f(z) = 0 has at least one root in
{z] <1}

First assume that f(z) = 0 has at least one root in {| z| < 1}. This implies
that the convergent radius of f(2) ' 1= X5, b2’ is less than 1. Hence we have

lim sup | b;| = oo.
i jw

We put ¢; = ‘0,...,0, T, 0,...) (7 2 0). Then ¢, does dot belong to the image
of T,. Indeed, the equation, T; # = e;, has a unique solution,

u,="'0,...,0, by, by, b,,...),

which satisfies the equation in the formal sense, but does not belong to l:.

Next suppose that f(z) = 0 has all roots in {| z| = 1} and has at least one
root on {| zI =1}, It is assumed that T; is invertible on l;. Since the set of
invertible operators on l; consists of an open set in the set of bounded operators,
there exists a positive constant ¢ > 0 such that every bounded operator B on l;
satisfying | T, — B < ¢ is also bijective on I, where ||| denotes the operator
norm. For any & > 0, we can give a polynomial g(z) € Clz] by a small change of
coefficients of f(2) such that g(z) = 0 has at least one root in {| z| < 1}, and also
ll T,— T, | < e. This implies that T is not bijective on l;.

Next, we consider the case f(2) = X, _,f;2 € Clz”'] (m > 0). We put
f(2) = 2"g(2), k = 0 and g(c°) # 0. Then T, has the following decomposition,

T,=S.(k) T, = T,S_(k),
where S_(k) is a shift operator defined by
S_(Kk) : ' (ug, tyy g, ...) P "ty Uprry Upyay...).

Therefore if kK > 0 then operator T} includes £ dimensional kernel, and hence it is
not injective. So we may assume that £(%°) # 0. Suppose that f(z) does not satis-
fy the condition (H), that is, f(2) = O has at least one root in {| z| = 1}. By the
same reason as above, we only consider the case that f(2) = 0 has at least one
root in {| z| > 1} to prove that 7, is not bijective on I;. We put f(2) ™" 1= 27
b_,z”. Then we have
lim sup | b_j| = o0,
joo

It is easy to check
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T, Tire;=¢(;=0,1,2,...), Trre;="(b_j, b_js1,..., by, 0,...).
This shows that 7, does not have bounded inverse on /,, because
I T, e ",,—’ © a5 j— o0,

2) The case f(2) = =, f,2 (m, n >0, f_,,. f, # 0).
Let {g;}71" be the roots of an equation 2" f(z) = 0, and suppose that

|/lj| <1A<j<p), lﬂp+j|=1(1£jsq)ylﬂp+q+j| >1(0<j<0n,

where p, g, 7 =20andp+qg+r=m+ n

In what follows, we assume that the condition (H) is not satisfied.

First, we consider the case ¢ = 0. Hence it holds that p <m or p > m. We
consider the following decomposition,

) N 7 t oo
f@ =" (1)1 =) 2L LG.
According to the case p < m or p > m, we have the following decompositions of
the Toeplitz matrix T,

T,=S m—pT, T, 0<m), T,=T, T, S,(p—m) (p>m).

Since T, are bijective on I,, we have T, has (m — p) dimensional kernel or
(p — m) dimensional cokernel according to the case p < m or p > m. This proves
the latter half of the statement in the proposition. Indeed, the number I(f) defined
by (2.7) for w = 1 is given by I(f) = p — m in this case.

Next, we consider the case g # 0.

First, we assume p = m. Then we have the following decomposition,

b N\ g+7 _
f) =2"1 <1 - %) 0 G—p) =@ Q).
j=1 j=1
This implies the following decomposition of 77,
T, =T, T, S,(p —m).

Since T, is bijective on I,, T, S,(p — m) should be bijective on /,. But this is
impossible, because if p > m then this operator has positive dimensional cokernel,
and also if p = m then Tf* is not bijective from the fact that ¢ > 0 as we have
proved in the first part.

Next, we assume p + ¢ < m. Then we have the following decomposition,
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5@ =2 (1= ) 1= pygs) 2 2L O£,

j=1
This implies the following decomposition of T,
T,=S m—p—T, T,,.

Since 7}, is bijective on l;, S_(m — p — @) T, should be bijective on l;. But this
is impossible, because if p + ¢ < m then this operator has a positive dimensional
kernel, and also if p + ¢ = m then T, is not bijective as we have proved in the
first part.

The above considerations show that it should hold that p <m, p +q > m
and » < n whenever T, is bijective on l;r. On the other hand, by a small perturba-
tion of the coefficients of f(2), we get g(2) such that g(2) = 0 has p + ¢ roots in
{l z] <1} and g(2) # 0 on {| z| = 1}. Then 7, is not bijective on l;. This, com-
bining with the reasoning in the first part, implies that T is not bijective on l; if
the condition (H) is not satisfied.

Thus the proof is completed. O

Next, we study the solvability of finite section Wiener-Hopf equation.
Let u™(2) = ¥ u;2 and g™ (2) = XV, g;2" for N € N. Then an N-th
finite section Wiener-Hopf equation with symbol f(2) is defined by

(2.8) Plu™1 — g™ = 0",

where O(z""") denotes the formal power series with power larger than N. An
N-th finite section Toeplitz matrix T,(N) with symbol f(2) = 2 f,2' € Clg, z'
is defined by

T,(N) = (fi- jh=02,..8"
Then the equation (2.8) is written in the matrix form by

2.8y T,(N) u™ = g(N) c CN+1,

)

. . )
where u -='(u0, #,,...,u,) and so on. We take an induced norm ||u(N ﬂx,w;zv

from I} ,, that is,
(7 "1,w;N -= Z;V=0| u; | w'.

We denote by /,,[N] the space C"*! equipped with this norm. Now we can prove
the following proposition corresponding to Proposition 2.2.
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PROPOSITION 2.3. Let f(2) satisfy the condition (H),. Then there exists N, € N
such that the equation (2.8) is uniquely solvable for every N = N, and the following
norm inequality holds.

(2.9) ™ oy < K™ oy (N 2 N,

where the constant K is independent of N (= N,). Conversely, the norm inequality
(2.9) implies the condition (H),. Hence the norm inequality (2.9) holds if and only if
the condition (H),, holds.

Remark 2.2. Let | u®™’ “p,w;N be the induced norm from l;w (1<p<o0).
Then the proof below shows that the condition (H), implies the norm inequality
(2.9) for every 1 < p < oo However, we can conclude that the norm inequality
(2.9) implies the condition (H), if 1 £ p < oo, but we do not know whether it
does hold in the case p = oo,

Proof. We assume w = 1 in what follows, and the condition (H), is only de-
noted by (H) as pointed out at the beginning of the proof of Proposition 2.2. We
denote by /,[N] the space c' equipped with the induced norm from l:l, and the
w ||1;1v~ The norm of € I, (or If) is denoted by | # |,

For the proof of the former half of the statement, it is sufficient to prove the

norm is denoted by || u

norm inequality (2.9) for sufficiently large N. Indeed, (2.9) implies the uniqueness
of solutions, and the solvability follows from the uniqueness of solutions for linear
equations of determined type. We follow the argument by Baxter [B]. The equation
(2.8) is equivalent to

(2.8Y f@Qu™ () =H (2 + g™ @ + H, (),

for some H,(2) € If of the form,

H= 3 h,Z, H.(2)= > h, 7.

j=—o j=N+1
It is sufficient to prove the following inequalities,
(2.10) lE < Clg™ e THST WS Cle™ lim

for a positive constant C independent of #™ and g(N) if N is sufficiently large. In-
deed, the equation (2.8)” and Lemma 2.1 imply

[ W - A T VA A R A
S VAN A e VN A N V) W VA N P b
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Hence (2.9) follows from (2.10). Let £, (2) ™' = 2jen bsj z* € [}, and put

B,(N) = j=§:+1 b,z
Then || B,(V) [[,— 0 as N— oo, The equation (2.8)" is rewritten in the form,
wV@f @D =H @D+ gV D@D +H @ (7
Looking at the coefficients of negative power of z in this equation, we have
H@f@" =~V .~ H, .=~ gV 7'l — [HB.WV)].,
where [u]_:= (I — P)u € I, for u(2) € l,. Hence we have
2 7 <1g™ s= i+ 2BV |l
<N 00 e™ o + 1B £ I N HL A7

Since | BV £, < I BV [, £, ],— 0 as N— oo, for any 0 <& <1 there
exists IV, such that | B_L(N) f. "1 < ¢ for every N = N,. Hence we have

VE 2 <02 00 e™ Iy + el H 7 (N 2 N,
Next, we notice a relation,
V@@ =H @f@ 7+ @@ +H.(f (7,
which follows from (2.8)”. Then we have
H@f@ " == H {7y~ gV 7y = — [HB.WN]1y — gV,

where [uly = 2, yu, Z. By taking large N, such that [| B,(W) £_ [, < & holds
for any N =2 N,, we have

VH <A g™ Iy + el Hof 7, (N2 N.

Now we get (2.10) by taking C = {| £, + | f7" I} /(1 — €. This proves the
former half of the statement of the proposition.

Let us prove the latter half of the statement. We, first, prove the solvability
of the equation, T, u = g € I

For g= (g, & &...) €17 we put gV = (g, &0..., &) € LIN]. Let
N = N, as in the norm inequality (2.9). There exists u® = (u(()N), u;m,. .
uy”) € LIN] satisfying T,(N)M(N) = g™ and the norm inequality (2.9) holds.
We identify #™ with w(N) = (ug", u;" ..., uy , 0,...) € [ 1t is the same for

gN) € ll+. The norm inequality (2.9) implies
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lu) I, < Kl g |, < K g,

Then there exists # = (u,, %,, #,,...) € I such that

. (N)
lim #;
N—oo

=u; (2 0).

Strictly speaking, the limit N — o should be taken over a subsequence of N, but
we may assume as above without loss of generality.

Now it is proved that # satisfies the equation, T, % = g in ll+. Indeed, we
notice the equation,

o > _ .
2fiju;, =g for 0<i<N.

By the definition of the Toeplitz symbol f(2), fi_; = 0 if | i — 7| > max{|m|, | n]},
and hence the summation is taken is over a fixed finite number of j's for any 1.
Therefore, we can take the limit N— o in the above equation, and we have

N—oo j=0

. X W) _ i _
lim 2 f_ju; = . Of,»_j u; = g,
j=

for any fixed ¢ This shows that T, # = g in 1.
Next, we prove the uniqueness of solutions. Suppose # € ll+ satisfy T, u = 0.
We take N = N,, and rewrite the equation in the form,

put

y _ e Ut .
Zfiu,=— 2 fi,u;=g , 0<i<N.

j=0 j=N+1
The norm inequality (2.9) shows

L) Iy = 1™y < Kllg™ la

) (N) (N) (N
N

where g(N =g L& .0 )). We remark again that the summations in both

hand side are taken over a fixed finite number of j's, and g;N) =0for0<i<N
— max{| m |, | #|}. Hence we have

"g(N) “1;1\/ <C " u — u(N) "p

for a positive constant C independent of N. Since |[# — u(N) [, — 0 as N— o,
we have || » [, = limy_.. Il () ||1 = 0. This proves # = 0 in ll+.
The proof is thus completed. ]

We remark that the condition (H), implies the unique solvability of the N-th
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section Wiener-Hopf equation (2.8) only for sufficiently large N, and the condition

does not control small N. For the invertibility of the N-th section Wiener-Hopf

equations for all N € N, we have to impose other additional conditions, which will
be given in the below.

4 -1 3\ 4,

ExampLE 2.1 (cf. Example 1.2). Let f(2) = <§ ~z )(z + E) =37 + 3z

9 _ 3 3
— 2 ' Then the condition (H), is satisfied for 4 < w <. The finite section

Toeplitz matrices are given by

0 —9/4 0
T,(O)=(O),T,(1)=<g 3/4),@(2): 30 —9/4),....
4/3 3 0

It is easy to check that det(7,(N)) >0 for N =1 Indeed, we have
det(7T,(1)) = det(T,(2)) = 27/4, det(T,(3)) = 729/16 and det(T,(N)) =
(27/4) {det(T,(N — 2)) + det(T,(N — 3))} > 0 for N = 4.

ProposITION 2.4. If one of the following conditions is satisfied, then T,(N) 1S M-
vertible for every N € N :

() f@) is a polynomial of z or 2", and (H), is satisfied for some ¢ > 0.

(ii) There exists ¢ > 0 such that {f(2) ; z € K.} is a segment which does not
contain the origin. In this case, the set of eigenvalues of T,(N) is included in this seg-
ment, and is densely distributed on this segment as N — 00 (Theorem of Szego).

(iii) There exists ¢ > O such that 0 & ch{f(2) ; z € K }.

Note that (ii) is a special case of (iii), but it has a special interest because of
Szegd’s precise theorem.

Proof. (i) It is obvious, since T,(N) are triangle matrices with non zero di-
agonal component f;

(i) We take a, BE€ C (|B|=1) such that h(z) := Bla — f(c2)} is real
valued on | z| = 1. Then A(2) is written in the Hermitian form,
m : -
h@z) = hy+ = (2 + hz™),
j=1
where 2, € R, h; € C and h_j is its complex conjugate (f = 1). Then we have

Dy(0) faly,, — T,(N)}Dy' (¢) = B7'T,(V),
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where Iy, is the identity matrix of order N + 1, D,(¢) := diag 1, c,..., "},
the diagonal matrix with the j-th diagonal component ¢’ (0 <j < N) and
Dy () = Dy(c™.

Now our result follows from Szegd’s theorem below.

THEOREM [S, Satz XXII]. Let h(2) be as above. Then we have
(2.11) U o(T,(\M) = {h(2) ;| z| = 1},
N

where 0(T,(N)) denotes the set of eigenvalues of T,(N) and (-} denotes the closure of
a set of points.

(iii) It is a consequence of the following,

Lemva 2.5. If Ref(2) > 0 on K,, then o(T,(N)) € {2 € C;Red > 0} for
every N 2 0.

Indeed, suppose this lemma and assume that 0 & ch{f(2);z € K,}. Then
we can take @ € C ((a|=1) such that Ref{af(2)} >0 on K, Therefore,
o(aT,;(N)) € {1 € C;Rei > 0}, and hence T,(N) is invertible for every N = 0.

Proof of Lemma 2.5. The N-th finite section matrix T,(N) of g(2) 1=
f(c2) is given by T,(N) = Dy() T,(NVDy'(c). Let u="(uy, u,,...,uy) € C"*"
Then we have

2%1, 02n lug + ue’ + - + uye™’ Pg(e)db
Uy
= (@ y..., G T,N) | “* |=: T,V [
Uy
The assumption, Reg(2z) > 0 on K, implies ReT,(N) [#] > 0 on CV*'\{0}. Hence
o(T,(N)) = o(T,(N)) < {2 € C;Red > 0}. This completes the proof. U

3. Spectral property of the principal part L,(D,, D,)
Recall that the principal part L, and the Toeplitz symbol f(z) are given by
L= 2. 4, 0DD: f(D= X a0z
N,

(,a)eNg (7,@)eNg
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We put
Iy(f):=1{1 €C; f(2) — A satisfies (H),},
I;(f):={1€C;f — Asatisfies (H),, for ¢ = ¢" ' and ¢ = "V}

Then the purpose of this section is to prove the following results.

ProrosITION 3.1 (The case s > 0). For any fixed R > 0, the operator AI — L is
a Fredholm operator on Gy (R) if and only if A € I, (f), and it is also necessary and
sufficient that there exists N such that AI — L, is bijective on G,(R)[N]. Here
G, (R)[N] is the ideal of G, (R) defined in Theovem 1. In this case, the operator norm
of the imverse (AI — L))" is estimated uniformly on R > 0, that is, there exists a
constant K > 0 such that | QI — L)™' | < K for every R > 0. Moreover, for A €
TI(f) if f(2) — A satisfies one of the conditions in Proposition 2.4, then A € p(L,).

ProposITION 3.2 (The case s < 0). Let A € I, (f). Then there exists ny, € N
such that A belongs to the resolvent set of Ly on Go(R ; n) for every n = n, and every
R > 0. Moreover, we have a uniform estimate of | AL — Ly ™" || for n = n, and
R>0.

First, we note that (j, @) € Ns (s € Q) if and only if ¢ = — sj. Let s =
q/p (P, q € Z, p > 0) be an irreducible fraction. Then the operator L, is rewrit-
ten in the form,

(3.2) L,= é DD (f,.f,#0, mnEN),

j=—m

and the Toeplitz symbol f(2) is rewritten by

(3.3) =% fz"

j=-—m
We prove the propositions by setting 4 = 0, so we consider an equation,
(3.4) L,D, D)U, x) = F(t, x).

For U(t, x) € Cll¢t, 11, we put U(t, ) = = U,ﬁtlxﬁ/l!B!. It is the same for
F(t, x) € ClI¢, xl]. Then the equation (3.4) gives the following equations for the
coefficients {U,g} and {F}.

(3.5) 2 Uy = Fip (mm<j<n;l+pj,B— g €N).
]
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Proof of Proposition 3.1. In this case g > 0, since s > 0. We choose a lattice
point (I, B) € N* such that [ — p < 0. We put d(/, B) = max{j ;B — jqg =0}
(= 0), and define a vector 4"? & C*“P*! from U(t, 2) € CI[[¢, z1] by

w8 _t Lt
U = (um Uy ooy ud(l,B)) = (UI,B: U1+p.3~qr B Ul+d(l,ﬁ)p,ﬁ—d(l,ﬁ)q)'
Then for U(t, x) € G,(R), we have

6) 1ok == (5 1u1”) G pn

where 2.}, is taken over such /, B mentioned above. We remark that s(I + jp) +
(8 — jg) = sl + B . This shows that U"® € I, ,[d(, B)]. We define F** from
F(t, x) similarly. A

Let T,; be the d(l, B -th finite section Toeplitz matrix with symbol g(2) :=
fE@ =327 = 3, g2, that is,

T, = (gj—k)j,k=0,1,..4,d(l,5)'

Note that the condition (H), is satisfied for f(2) if and only if (H),» is satisfied
for g(2). The relation (3.5) implies the following equation for U and FP,

(3.7) T,,B“ll”"s) = g

Hence, by (3.6), the operator L, on G, (R) is decomposed into an infinite direct
product of the finite section Toeplitz matrices T4 on I, ,»[d(l, B)] (see Proposi-
tion 2.3).

Let assume g(2) satisfy the condition (H),». Then by Proposition 2.3, there
exists N, such that T, is invertible on I, ,»[d(l, B)] for every d(l, B) = N,, and
the norm inequality (2.9) holds for a positive constant K independent of d(I, §) =
N,. This implies that L, is a Fredholm operator with an index 0 on G,(R), be-
cause d(l, B) — % as B— . The bijectivity of L, on G, (R)[N] for sufficiently
large N follows from the fact that G,(R)[N] is an infinite direct product of
1, »LK] of sufficiently large k's by the definition of P,

Next, suppose that L, is a Fredholm operator with an index 0 on G, (R).
Then it follows that det(7,,) # 0 if d(/, B) is sufficiently large. Indeed, if not so,
L, should have infinite dimensional kernel and cokernel by the decomposition of
finite section Toeplitz matrices, which is a contradiction. Therefore, L, maps
G, (R)[NI into itself, and is injective for sufficiently large N. We fix such a large
N. The following exact sequence of Banach spaces

0— GS(R)INI = GS(R) — GL(R) /GL(R)[N] — 0,
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and the additivity of indices imply that L, is a Fredholm operator with an index 0
on G, (R)[NI, and therefore bijective. This means that L, has a bounded inverse
on G,(R)[N]. This implies that T, is invertible on I, ,»[d(l, )] with uniform
norm inequality (2.9) for sufficiently large d(I, B). This shows that g(2) satisfies
the condition (H) .

We note that if f(2) satisfies (H), and also satisfies one of the conditions in
Proposition 2.4, then T, is invertible for every /, B and the norm inequality (2.9)
holds for every I, B. This implies the latter half of the statement.

The proof is thus completed. O

Remark 3.1. The decomposition of the operator L, into an infinite direct pro-

duct of the finite section Toeplitz matrices {T:,s} implies the following fact; if

Af@ ;12| = ¢} is a segment for some ¢ > 0, then by Szegd’s theorem in Section
2 we have

(3.8) o,(Ly) = u o(T,,),

where 0,(L,) (resp. 6(T,,)) denotes the set of eigenvalues of L, on G, (R) (resp.
of T, ,). This proves the fact stated in Remark 1.2, (ii).

Proof of Proposition 3.2. The assumption $ < 0 implies that the equations
(3.5) give a sequence of infinite systems of linear equations, since ¢ < 0. For
(I, B) € N’ such that [ — p < 0 or B+ ¢ < 0, we define U"® € C” by

t
Qe = t(U:er Urersa Uniappser - - - pul t(UO(I,B)’ Ulu,m’ UZ(I'B),. ).
We define F"° similarly. Then the equations (3.5) give the following infinite

. ) .8
equations for U~ and F 7,

(3.9) Tgou(l'ﬂ) — g(l,ﬁ)’

where T, is the Toeplitz matrix with the symbol g(z) = £(z"?). Since f(2)
satisfies the condition (H),, for ¢ = ¢* ™ and ¢ = ¢°“™", g(2) satisfies the condi-

tion (H), for ¢ = w'e?°™" and ¢ = w’e”“ V. Hence, by Proposition 2.2, T, is a

bijection on l:,,, for every # in a neighbourhood of a closed interval [w’ ep<s_1),
p ps(s—1) .

w' e ]. Precisely, let

-1.,__
T, = (Cjk)j,k=0,1,2,...‘

Then there exists a constant € > 0 such that
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(3.10) 170 = sup = | ¢, | w9 ™* < o0,
i k=0

for every 7 such that ™" — e < r < 7V + ¢

We note that g(2) satisfies (H),» because s < 0, and hence T, is a bijection
on I}, for r < w’ sufficiently near w’. By the definition of the norm in G.,(R;m,
U(t, x) € G,(R ; n) if and only if there exists a non negative constant C such

that
, W (7) .
(3.11) W’ | UM < CHEEEE 20,
w R

for every (I, B) satisfying the above mentioned condition. Here

Al e+ DB+ pn— (n+ Ds)}!
T {m =9I+ up+pn— (n+ 1)s)}!

(3.12) w4, () (7=20).

Moreover it holds that | Ul g, = inf{C ; C satisfies (3.11)}. Note that w,,,(7)
has polynomial increase or decrease in J according to the position of (I, 8). In any
case, U € I, r< w”) whenever U(t, 1) € G.(R ; n). Therefore, for any
F(t, x) € G,(R ;n), the equation (3.9) has a unique solution u"® e l:,, for
r<w sufficiently near w’.

In order to prove that L, is bijective on G, (R ;#) with uniform estimate of
I LEI | (R > 0) for sufficiently large #, we put

Dy = diag{w, 5.,(7)} 2,
a diagonal matrix with the j-th diagonal component w,4.,(5). Then we have that
wl RSI+B D’;l Ou(l,ﬂ) e l:’wy’

if (3.11) is satisfied. Hence, in view of (3.9), it is sufficient to show that the oper-
ator norm of Dy; T, ' Dys on %, is uniformly bounded on (I, B). This is equiva-
lent to prove

(3.13) sup sup EOI G| 0w, 5. (5) w5 (R) < 00

i

bs(s—1) p(s—1)

From (3.10) with » = ¢ +efor k<jand r=ce —¢ for k>, it is
sufficient to prove that for any € > 0 there exists #, € N such that

- e < @+ o<k <y,
. Wipn]) Wygy, » »
" v @+ 0< <k,
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holds for # 2 n, This is a consequence of the following,

LemMa 3.3. Let w,4.,(j) be as above. Then we have

—sp(1—-s(1+1/7)) (j—k) .
e , 0 < k < 7,

(3.15) W, 50 (5) "0, 5., ) < .
LB L8;n eﬁ(l—s(1+1/n))(k—j)’ 0<j<k

Proof. 1In the case 0 < k < j, we have

wl,ﬂ;n(j) - Wig.n (k)

(n—(n+1f_f)i>(i—k) (n — s)l + nﬁ + (n — (n + 1)8)1)/6 + 7
ot nl+m+DB+ m— -+ Ds)pk+r

o\ =4 DS G—B)

n—s sl i

< < ) < S arImsDG=k
n

In the case 0 < j < k, we have

wl,ﬁ;n(j)_l w[yﬁ;n(k)
wn=trebons=h pl + (n+ DB+ (1= (o + Ds)pj + 7
r=1 m—9)l+nB+ m— m+1)s)p;+ 7

n+1 {n—(n+1)s}p (k—j) _ .
< ( - ) < L UrUmSIp D)

This completes the proof of Proposition 3.2. O

4. Proofs of Theorems 1 and 2

Theorems are proved by stability theorems of Fredholm operators.
We denote by 0( x| < X) the set of holomorphic functions on {x € C; | z|
< X} and continuous on its closure. For a(x) € 0( x| < X), we put

lall:= max | a) |.
lzl <X

The following lemmas are proved essentially in [M2] and [MH] with a slight change
of notations.

Lemva 4.1. (i) Let s > 0. If alx) € 0( x| < pR) (0 > 1), then for any
Ult, ) € G,(R), we have a(@) U(t, x) € G,(R) and
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(4.1) laU1se < 55 1 ale | Ul

(ii) Let s<0. If alx) € 0( x| <pR) (0> ¢, then for any U(t, x) €
G, (R ;n), we have alx)U(t, x) € G,(R ; n) and

(4.2) 1aU S < ——Nlale I UIS
e

w,R.n*
0 —

Proof. We put a(x) = Za,x’ /7! €0( x| < pR). They by Cauchy’s

integral formula, we have |a,| < | al,z 7! /(0R)" (y € N). We put a(x) U(¢t, )
= X V,t'2® /11B!. Then we have

Ve=SaU B
B @ Y- (B — )1yl
(i) The inequality (4.1) is obtained as follows.

I pSi+8
w R

B
2 |V;3| (SI+B)' Sna”pR;rgol U1,5—7—|

1,BeEN

1 ‘B' wlel+ﬁ
(pR)r (,8 - 7’)! (Sl +B)!

. 1 wl Rsl+5—r
<lal,e :Z §)| Ul,g_7|im

» 1 o oo wl Rsl+5 T
—wmgj@§|mA@¢F?ﬁ
=l alel Ulr o=, 1 lalell Ulle-
(ii) By the definition of the norm, we have
| psivs ((m— 81+ ”.3) ()
" i -~ B! ((m—=9l+np)! ml+ n+1DEB— P!

20 BT (—9I+aB—D)! G+ x+DP!

Now (4.2) follows from the following inequality,

B! ((n— 9+ np)! ml+ m+1)E—)!
B=! ((n—9)I+nB—)! i+ (n+1)P)!
=)l +nB—7 +5 B—rtJ

T o i (- e R L ey e ) ) P
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. nr
< (n s) <
n

This completes the proof. O

Lemva 4.2, If s = 1, then G,(R) is a Banach algebra. Precisely, for a(t, x),
U(t, x) € G,(R), we have a(t, x) U(t, x) € G,(R) and

) (s)

(4.3) laUller < lalell Ul

Proof. We put alt,x) = X a,t'z%/jla!, Ult, 1) = X Uyt'z /118! and
alt, U, ) = X V,t'x® /11B). Then we have
L8 I B!
Vig =2 2 ay Ul—i,B—a]'!(l N alB—a

j=0a=0

Suppose the following inequality which is trivial in the case s = 1,

(sj+a)lsl—7) +B—)! A B!
(4.4) GIT A1 =T al@—at =1

Then we have

I psi+B
w R
> Vel 7=
LpeN Bl (sl+ B!
! g w].st+a wl—j Rs(l—j)+(5——a)
< e ) .
=EREl el g ar Vs U=+ = a1
I-j sU—-)+B-a) 7 Si+a
w R w R
B ch:v <12,~§2a] Uicsa-a | T = N+ @- a))!) £ (s + )t

(s )
=l alye | Ullog
Let us prove the inequality (4.4) in case s > 1. Considering the inequalities,

I B! < I+ B!
M=t alB—a)! = G+a!lU+B—j—a)V

U= +B—a)!(l+ P!
(I+B—j5—a)la!

< (sl+p—(s— D!,

we have

. ‘ I !
(si+a!(sl—j) +B— a)!jg(l—j)! a!(,BB— a)!
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oy (sl +a)!
< (sl-I-B—(s—l)])!ﬁ.

Recall the relation between gamma function and beta function, I'(x + y)-
Bz, y) = I'x) I'(y) (x, y > 0). Then we have

(s ta)! _ I'(s —1j)
G+a! " BUs—1j,j+a+1)

F'(—DNGI+HB—G—DI=GI+H!'BU(Gs—1j,sl+B—(G—Dj+1).

These imply

. . I B!

B((s—1),sl+8—(G—1j+1)

< i+ p)! B(s—Dj,j+a+D

< (sl+ P!,
because sl+B— (s —1)j+1 =7+ a+ 1, since s > 1. This proves (4.4). [

LemMA 4.3. Let (0, j, @) € N X Z X Z satisfy
(4.5) si+ 1 —s)c+ta=—6<0.

Then t” D] DY is a bounded operator on Gy(R) or on G4 (R ; n) according to s > 0
and s < 0, and the operator norm is estimated by

(4.6) D! D | < Cw’™ R™*,
for some positive constant C = C(a, J, a, s, n) independent of R. Moreover, if & > 0,
then t° D) Dy is a compact opevator on each Banach space.

Proof. We only prove the case s > 0, since it is similar in the case s < 0.
We put t° D] DYU(t, ) = = V,,t'z® /1'8!. Then we have

Al
Vie = T=o! Uiij—opar

This implies immediately that
17 D] DU gy < Clo, j, &, 9w R7* | Ul

where Clo,j,a, s)=suplGl+B—c—NU/(sl+P!U—0)!;l, BEN}.
This implies the estimate (4.6). Let 0 > 0. Then for any & > 0, there exists N
such that
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{(sl-i-B— c— ol
ST GI+ BT — 0!

;si+ B2 N| <e.

Hence we have,

wl RSH-B ) 5 ©
S Vel gy <ew’ R U,
aisey (sl B! vk
This shows that ¢’ Dtj D] is approximated by operators of finite rank, and there-

fore a compact operator. This completes the proof. ]

Recall the decomposition (1.3) of the operator L,
4.7) L=L,+L,+ 1L,
where L, is the principal part and

L= 2 a,, @t DD (a,,0) =0orac>0),

sy+(1-s)o+a=0
finite o i a
L,= 2 a,,t, 0t°D,D;.
si+(1-8)o+a<0
From the above lemmas, L, is a compact operator on each Banach space G;(R) or
G,(R ; n) according s > 0 or s < 0. For the operator norms of L; (j = 1,2) on
each space, we have

(4.8) IL;]—0 as R—0.

Proof of Theovem 1. (i) Let the Toeplitz symbol f(z) satisfy the condition
(H),. Then by Proposition 3.1, there exists N € N such that L, is bijective on
G, (R)[N] and the norm of inverse operator L;l is estimated uniformly on R > 0,
that is, | Lgl | £ K for some K > 0 and every R > 0. Therefore, by (4.8) there
exists R, > 0 such that L is bijective on G, (R)[N] for every 0 < R < R,. Now,
by the same way as the proof of Proposition 3.1, we can prove that L is a
Fredholm operator on G, (R) for every 0 < R < R,. This proof shows that if L,
is bijective on G,f,(R), then there exists a positive constant R, > 0 such that L is
bijective on G, (R) for every 0 < R < R,

Next, we study the operator L on ’[N]. By the definition of #'[N], L maps
ACIN] into itself. Precisely, for Ut, ) = 2 Uy, t'z° /118! € CIIt, 211, we put
r(U) = min{sl + B ; U, # 0}. Then we have

r(L, U) >r(), j=1,2.
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Therefore, by the proof of Proposition 3.1, we see that if det(7,;) # 0 for sl + 8
> N, then there exists a recurrence formula to obtain a unique solution in J°[N]
of an equation, LU(t, x) = F(¢t, x) € M’[N]. This implies that L is bijective on
M°[N] and also on G, (R)[N] for sufficiently large N and small R > 0 under the
condition (H),. The bijectivity of L on C[[¢, 211/G,(R) for sufficiently small
R > 0 is now obvious, because C[[¢, x11/G,(R) = M°[N1/G,(R)[N] for every
N.

(ii) Let L, = 0 in the decomposition of the operator L. Suppose that L be a
Fredholm operator on G,(R) for some R > 0. Then L,=L— L, is also a
Fredholm operator, since L, is a compact operator. Hence the condition (H), is
satisfied.

Next, suppose A € o(L; G,(R)) for some R >0. Then AI— L, is a
Fredholm operator on G,(R) as above, and hence A € Iy (f). Therefore, there
exists N such that A — L, and also AI — L are bijective on G, (R)[N]. Here we
note that the operator norm of L, on G, (R)[N] tends to 0 as N— o from the
proof of Lemma 4.3. The exact sequence of Banach spaces,

0— G,(R) [Nl = G,(R) — G,(R) /G, (R)[N] =0

implies that an induced operator from AJ — L on G,(R) /G, (R)[N] (= finite
dimensional vector space) is bijective. The matrix representation of this operator
is a blockwise triangle matrix with diagonal blocks of the Toeplitz matrices A —
T, ;. Hence, we have det(A — T,z # 0 for every I, B. This shows A € p(L,),
that is,

oLy 2 RUOp(L; G,(R).

The converse relation is obvious. These prove (1.8).
Thus the proof of Theorem 1 is completed. ]

Proof of Theorem 2. It is almost obvious, so we omit it.

5. Proof of Theorem 0
Theorem O is a consequence of Theorem 1 and the following proposition.
ProposiTion 5.1. Fors > 0, it holds that

(5.1) n G,» =9,(R).

0<7<R
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Proof. For U(t, ) = X,, Ugt'z? /11 B! € Gy (#), let us prove
ltl 1/s
Ut,2) =% Uth /(sDIB! € 0(( ) + x| < r),

which implies N ,c,<p Go(#) < %, (R). By the definition of the norm in G,(R),
there exists a positive constant M such that | Uy, | < M(sl + A/ w1, pe
N). This implies
£* 8
-1 —si (Sl + B)'
U/(x) := Z U,H 51 < Mw™'r % BT 7
(sD! — M w' (sh!

a-— l‘/T)SHl 1 —=z/7 (r — x)sl’

-1 sl
= Mw r*

where 2gen aﬁxB < 2 Ayz® means that | ag| < A for all B € N. Then we have

1 £\
Ut, x)<<M(1_x/r)lZ;(r_x) <—>,

and the right hand side belongs to G(( ¢|/w)"* + | z| < »).
Conversely, let U(t, x) = X U,t'z® /71'18! € 0(( t|/w)"”* + | x| < #). Then
we shall prove

) - (sD)!
Utt, » := E {U,ch T ] TigT € G, (k7

for any 0 < £ < 1. We denote by ]l U|L° the maximum of | (7(t, ) | on the domain.
Let 0 <7< wr’ and put E=7r— (c/w)"”. By Cauchy’s integral formula, we

have
g Ut, )
= dtdzx.

18 (27ri)2 ﬁl e Jiaice A €T

This implies
1'B!
| Ul < Ul
v or = (@/w)")"

The function f(2):=7 {r— (z/w)"*}™® (0 <t < wr’) takes the minimum

value

- (sl+B)Sl+ﬂ
rsl+B(sl)slB/3

https://doi.org/10.1017/50027763000005018 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005018

FREDHOLM PROPERTY OF THE GOURSAT PROBLEM 195

at T = wislr/ (sl + B))°. Put Uy = U,(sD!/1!. Then we have
(sl + B (s 1B!

1 UIB | = " U”°° wIVSHB(Sl)S"BB

From Stirling’s formula, we see that it holds that

I+P" p! B!
(sl + B! (SI)SI ,BB

~ o jfﬁasg+5~w.

Hence we have

”U'(s) :ZiU |wl(lf7')81+ﬂ<oo
war = 2| Ui | G gy

for any 0 < £ < 1. This completes the proof. O
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