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Abstract

If a finite segment of a spectrum is known, the determination of the finite object function in
image space (or the full spectrum in frequency space) is a fundamental problem in image
analysis. Gerchberg’s method, which solves this problem, can be formulated as a fixed point
iteration. This and other related algorithms are shown to be equivalent to a steepest descent
method applied to the minimization of an appropriate functional for the Fourier Inversion
Problem. Optimal steepest descent and conjugate gradient methods are derived. Numerical
results from the application of these techniques are presented. The regularization of the
problem and control of noise growth in the iteration are also discussed.

1. Introduction

Two long standing and fundamental problems in image restoration and reconstruction
are the Fourier inversion problem and its natural partner the Fourier extrapolation
problem (also known as super-resolution) [2, 28]. Both of these start with the as-
sumption that only a finite segment of a Fourier transform is known, say g(w) for
w e [-R, Q).

The Fourier Inversion Problem (FIP) requires the determination of the image func-
tion f(x) such that

f ” f)e " dy = g(w) for |w| <& 1.1)

00

For reasons outlined below, Gerchberg [12] and Papoulis [26] studied this problem
with the constraint that f (x) is spatially limited (that is f has compact support); that
is

fx)=0 for x| > X (1.2)
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for some X > 0.

The Fourier Extrapolation Problem (FEP) involves the recovery of the Fourier
transform of f (x) for frequencies outside the finite segment, hence for |w| > 2. This
requires determining the transform f (w) for all w such that in the finite segment

~

fw) =g(w) for lw] < €2. (1.3)

It should be noted that in general, g (w) will be made up of the Fourier transform of f
plus some additive noise € (w):

gw) = f(w) + e(w), lw| < €. (1.4)

The two problems are strongly related. If the solution to the FIP is known then the
FEP can be obtained by simply taking the Fourier transform

f@=Ffkx) = / ” f(x)e ¥ dx, lw| < oo. (1.5)

Alternatively, if the solution to the FEP is known, then the image function can be
reconstructed by

f@) =F'f(w)= f " f (@™ dw. (1.6)

Although we shall be chiefly concerned with solving the FIP, Gerchberg’s method, by
its very nature, produces solutions to both problems.

It is well-known that a compact support function has a Fourier transform which is an
analytic function of w and therefore uniquely determined outside (—£2, 2). Hence the
FEP and FIP have unique solutions. However analytic continuation is not a feasible
method for the numerical solution of either problem.

In this paper we examine the use of Gerchberg’s method [12] to solve the Fourier
inversion and extrapolation problems. Gerchberg’s method and its generalization
([2], page 74) proceeds by successively imposing the compact support constraint (and
possibly extra constraints such as non-negativity) upon the solution in image space
and then imposing the data in Fourier space. This iterative technique was also outlined
by Papoulis [26]. Here we shall investigate the properties of this algorithm and its
relationship to other iterative schemes such as Lent and Tuy [19] and gradient methods.
The results of this analysis suggest improved algorithms for solution to these Fourier
inversion and extrapolation problems. The ill-posed nature of the problem and control
of the resulting noise growth in the iteration are also discussed. An extensive review
of the application of iterative methods to the solution of inverse problems can be found
in Connolly [7].
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2. Gerchberg’s method as a fixed point iteration

The Gerchberg algorithm [12] proceeds by successively imposing the measurement
data in Fourier space and the compact support constraint in image space.
We take the initial estimate of the finite f(x) in image space to be

P =0, 2.1

or equivalently, the initial estimate of the spectrum f (w) in frequency space to be

Then the successive iterates of f* and g® for k > 1 can be constructed via
86 =8 (@) + L@F [ (), 23)
where
= {0 1<
and then the update for each compact support f* is
6 00 = y()F g5 (@), 2.5)
where
y(x) = [ (1) :i: N i 2.6)

Therefore, starting with f “ in image space, a new spectral update in frequency space
is given by g(") from (2.3), and then the next object function is f&*" from (2.5).
However, for our purposes it is convenient to combine these as

f((;k+l) — yF—l (MF (k)) + yF—lg(O) (2.7)

This defines a fixed point iteration in image space between successive iterates f ®
and f&*Y. An alternative way of writing this, which will be referred to in Section 4,
shows explicitly the difference between successive iterates:

G(k+l) (k) +yF! [ © EFf(k)] 2.8)
where
|1 el < Q
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Similarly, a fixed point iteration for the spectrum in frequency space for the FEP is
given by
ge™ = uF (yF'g®) +g©. (2.10)

If additional information on the image function is known, for example upper and
lower bounds on the function as

l<f=<u x| < X, 2.11)
then this constraint can be incorporated into a Gerchberg scheme via a projection P
by
Ix) f<u
Pfx)=1 f&x) I<f=<u (2.12)
u(x) f>u

for |x| < X. Clearly the case of a non-negativity constraint has / = 0 and u = oo.
Then a generalized Gerchberg algorithm ([12], page 74) modifies (2.7) and (2.8) as

(k+l) —P [yF—l (MFf(k)) + yF"g(o)] (2.13a)
= f® L pyF-! [ © SFf(k)] (2.13b)

In the Appendix, it is shown that the mean square error in the solution is reduced
with each iteration of the Gerchberg algorithm, that is,

”f - f(kH)” Lrexx < ”f - f(k) ||L2(—x,X) : 214

If a nonnegativity condition is imposed, this error reduction still holds.

3. The Lent and Tuy method

The Lent and Tuy algorithm [19] repeatly imposes each constraint on the image
function f by an associated projection operator. The essence of the scheme, in our
notation, is set out below.

(a) The initial iterate is the backtransform of the finite spectral data in |o| < €,
(l) F—I (0)(w) (31)

where g© is defined in (2.2).
(b) Thereafter there are five steps in updating between successive iterates f;7 % an

fir %+D_ Each step has an associated relaxation parameter A}") i=1,....5 Wthh
determines how strongly each constraint is imposed. The constraints and steps are
as follows:
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(i) f real:
f(k) f(k) +A.(k) [Re( (k)) l("_;)] (32)
(ii) f has compact support:
2(k) — 1(k) (k) [y f(k) fl(k)]; (3.3)
(iii) f has a lower bound / (x):
O = f0 4w [Sup (1, f"‘)) (k)] (3.4)
(iv) f has an upper bound u(x):
O = 1 428 inf (u, 1) - £°)) (3.5)
(v) Given spectral data g(w) in |w| < 2:
kD F—I[A(k)g(o) +(1 A"") EFFY + /,LFf(k)]. (3.6)
The authors prove that if 0 < A" < 2fori = 1,...,5, the iterates f% and F f£

converge weakly to solutions of the FIP and FEP respectlvely.
Note in particular that in this scheme, the Fourier data in the interval |w| < 2 is
replaced by
A+ (1-AP)FfY 3.7)

(using (v) above). If for a particular constraint kf ) satisfies 0 < Afk) < 1, then that
constraint is under-relaxed at the kth iteration, while if )»,‘k) satisfies 1 < Afk) < 2 then
the constraint is over-relaxed. The special case when all five relaxation parameters
are unrelaxed, that is Af") = 1, makes the algorithm equivalent to the generalized
Gerchberg method discussed in Section 2, with f¥ = P f,f"T) = (") Ifl = —o0
and u = 09, steps (iii) and (iv) in the above procedure collapse, and agam choosing the
remaining relaxation parameters to be unity, then the Lent and Tuy algorithm reduces
to the original Gerchberg algorithm with f, © =y fLU‘T’ = (").

Lent and Tuy utilize the algorithm to numerically solve a two-dimensional limited-
angle X-ray tomography problem; however the values of the relaxation parameters are
not specified. The authors note an enhancement of the quality of the image obtained
with the incorporation of available a priori knowledge via the above constraints.
Davies et al. [8] utilized the unrelaxed Lent and Tuy method (that is A% = 1) to
solve Fourier convolution integral equations with a non-negativity constraint on the
solution.

The Lent and Tuy method is based upon a projection method suggested by Breg-
man [6] which is known to converge. Vasin [30] discusses a general method for
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including convex constraints with an iterative method to solve an ill-posed problem,
and includes conditions for convergence.

For the case when only the compact support constraint is imposed, it is convenient
to explicitly show the difference between successive iterates as

& = (B L AWF ¢ — £Fy f¥] (3.8)

using (3.6) with A® = A% and f® = yf%.

In this form it is clear that Gerchberg’s method (and more generally the Lent and
Tuy method with compact support constraint only) is an example of Landweber’s
iteration [18] solving first kind integral equations. Convergence then follows for all
0 <A <2as|F| <1,asin Schock [27].

4. Relationship with a steepest descent method

In this section, the Fourier inverse problem is formulated as a minimization prob-
lem in L2(—X, X) and a steepest descent method for the problem is derived. This
highlights the close relationship between a steepest descent method and Gerchberg’s
method and furthermore points to ways of improving Gerchberg’s method.

The steepest descent method minimizes a functional P (f) using an iterative scheme
([21], page 149)

S(IBH) — (k) D+ a®s® “4.1)
s = —_VP ( (")) (4.2)

where s® is the steepest descent direction, VP ( f;5) is the gradient of P with respect
to f and ¢® is the steplength (which may be determined by linear search or other
means).

For the FIP, (1.1) and (1.2) suggest an appropriate functional to be minimized as

P(f)=_/_z

for functions f € L?>(—X, X). Suitable constraints on f, for example upper and
lower bounds as in (2.11), may be imposed.

It is convenient to introduce the following notation: let A be the operator acting on
functions in L2(~X, X) such that

X 2
/ fx)e 7" dx — g(w)| dw 4.3)
-X

X
Af = / f(x)e 7o dx for || <Q. 4.4)
-X
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(Clearly if A is defined on L?(—o00, 00) for functions with compact support satisfying
(1.2), then A = F). Then the functional P(f) in (4.3) can be written as

P(f)=lAf - g"u(—n,sz) =(Af -g, Af - g)Lz(—Q,Q)- 4.5)

On expanding the inner product, it is clear that

1
i P = i - - 4,
Jn N s <f, 5 Qf b>, (4.6)
where
0 =2A%A, b =2A"g @7
and A* is the adjoint operator of A, acting on L?(—£2, )
Q .
A*g = f gwe*dw  for |x|] < X. 4.8)
v3

Hence, (4.6) is in the usual form for the minimization of a quadratic functional.
Standard theory ([21], page 149) gives the steepest descent direction s at iteration k
as

s® = —(Qfsp — b) =24"g — 2A"Afp. 4.9)

By extending the definition of f& and s® from L*(—X, X) to L?(—o0, 00) by
requiring the function to be zero outside |x| > X, (4.9) can be written as

sW =2yF ' [g® ~£F £7]. (4.10)
Hence (4.1) becomes
o = £ +200yF g0 —eF £D]. (4.11)

If upper and lower bounds on f ((2.11)) are implemented by projection P ((2.12)),
then a projected steepest descent method can be applied as

o) = 8 +20PPyF [g© — F 1] (4.12)

Now some interesting comparisons can be made. Upon setting «® = 0.5, (4.11)
and (4.12) are just (2.8) and (2.13b) respectively. Hence Gerchberg’s (generalized
Gerchberg’s) method is equivalent to a steepest descent (projected steepest descent)
method with fixed steplength a® = 0.5. Comparison between the Lent and Tuy and
steepest descent algorithms, using (3.8) and (4.11) can be made by identifying the
relaxation parameter A®) with the steplength as

AW =2a®. (4.13)
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TABLE 1. Equivalence of iterative methods

Steepest Descent Gerchberg/Papoulis Lent and Tuy
Step Length & Gerchberg < Constraint (ii) and (v) only
a® =0.5 lgk) = )»gk) =1
Projected
Step Length & Generalized & Afk) =1,i=1,...,5
a® =05 Gerchberg
Constraint (ii) and (v) only
Step Length & Ag‘) =1
0<a® <1 AP = 2a®
Projected
Step Length & Af") =1,i=1,...,4
0<a® <1 AP = 2q®

Hence, when only the compact support constraint is imposed, the Lent and Tuy scheme
is equivalent to a steepest descent method with a choice for each iteration number k
of a steplength a® such that 0 < «® < 1 for convergence. In Table 1 we summarize
the conclusions made here and in the previous section.

The fact that Gerchberg’s method is formally equivalent to a steepest descent
method for minimizing our functional P (f) explains its relatively slow rate of asymp-
totic convergence. Gerchberg [12] states that the error “characteristically converges
rapidly toward zero at first and more slowly as the limit is approached”.

We note that for the more general Landweber iteration, convergence may also be
arbitrarily slow [27], with the convergence rate dependent upon the smoothness of the
data g.

5. Optimal steepest descent and conjugate gradients

As discussed above, the various Gerchberg and Lent and Tuy algorithms can
be expressed as steepest descent methods. We wish to exploit this relationship by
obtaining more efficient algorithms for solving the FIP and FEP.

One direction to follow is to find the optimal steplength «®. A standard result
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([21], page 150) for minimizing (f, 1Qf — b) gives this as

® —

2
(S("), s(k))LZ(-X,X) _ "s(k) " L(-X.X) (5.1

(s(k)' Qs(k))u(—x,X) - 2” As® ”iu-n.m

using (4.7) for Q. Hence for a known direction s®, «® can be easily calculated. If
2 = oo, A = F (the Fourier transform operator), and hence Parseval’s identity gives
a® = 0.5 foreach k. (This is the value for the Gerchberg algorithm.) More generally,
for 2 < 00, since

| As ol L PR B

" L2(—00,00) ’

5.2)

® ” L2(—-Q,Q) (—00,00)

therefore
B > 0.5 for Q2 < oo (5.3)

Hence in terms of the Lent and Tuy algorithm, at each iteration the optimal steepest
descent direction corresponds to an over-relaxation of the constraint specifying the
given Fourier data in |w| < €.

We see from (4.11) and (5.1) that the Fourier transforms F fs('g,
F~' (@ — £F £{}) and Fs® are required for the calculation of the update fi5 "
at each iteration. However since

k k—1
S(D) — ( )+a(k 1 gtk— 1) 5.9

the F £ can be computed from the already determined F f& " and Fs*~V at the
previous iteration. Thus F £ does not need to be computed by fast Fourier transforms
and the computation of only two Fourier transforms per iteration is required as with
Gerchberg’s method.

The other way to improve the asymptotic rate of convergence of the steepest descent
method is by trying a conjugate gradient method ([21], page 174). The successive
iterations in this scheme are obtained by

(k+1) — f(k) (S(k)t(k), (55)
where the conjugate gradient descent direction must be determined by
(0D = gD 4 g0 (5.6)
from the steepest descent direction s® given by
s¥ =b— 0fs=2yF ' [¢9 - §F 3] .7

with a choice
1O =5O =p— QfO = 2y F1®. 5.8)
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So the initial step is identical to the steepest descent step, but each succeeding step is
a linear combination of the current gradient and the preceding direction vector. The
steplengths §® and 8% are determined as

2
@ _ (59 5)panm _ Is“ ) cxr (5.9)
e, Qt("))u(__x‘x) 2| Ar® ”iq_m "
2
o _ Is*]
=2 (5.10)
T er

As with the optimal steepest descent method, only two Fourier transforms per iteration
are required for this conjugate gradient method. Error estimates for the convergence
of both the steepest descent and conjugate gradient methods for the least squares
problem for Af = g are given in Kammerer and Nashed [17, 18], and later improved
for conjugate gradients in Louis[20] and Brakhage [5] with smoother data.

In the Fourier phase problem, when the phase of a Fourier transform is to be
determined from knowledge of the amplitude of the transform, Fienup’s method [10]
successively iterates between image and Fourier spaces, imposing constraints in each
space, just like Gerchberg’s method for FIP. Fienup [11] shows that the steepest
descent method for an appropriate functional for the Fourier phase space problem is
equivalent to a variation of Fienup’s method known as the “error reduction method”.
He states that this method has fast convergence initially but slow asymptotically.
Conjugate gradient methods are suggested but not implemented to increase this rate
of convergence.

The results of numerical calculations using these various iteration methods are
discussed in Section 6, allowing comparisons to be made. In the previous sections
we have only discussed the Fourier inversion problem. Essentially the same analysis
follows for reconstructing the Fourier transform f (w) = kljglo g% (w).

6. Numerical results

The theoretical differences between the various algorithms discussed above can be
demonstrated by considering a few types of image functions f(x). We choose

(i) a Gaussian - no compact support, smooth function;
(i1) a triangular function - compact support, discontinuities in derivative;
(iii) a rectangular function - compact support, discontinuities.

Clearly, depending on the application, different properties of f(x) will be appro-
priate. For example, in the gas absorption problems considered by Lum Wan and
White [23, 22], the functions are probability functions and therefore of Gaussian type.
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Various quantities can be used as measures of the quality of the algorithm. These
are the mean error in f(x) for FIP and the mean error in f(w) for FEP at the kth

iteration:
X 5 172 o, 2 172
[f |F = £ dx] and [/ |7 - 8% dw]
-X -0

respectively. The integrals are replaced by the appropriate sums for the discrete
numerical calculations. Also of interest are the mean energy of the kth iterates

X 172 00 12
[ trorax] ana [ [ g o]
-X ~00

and the peak height of each f®,
First, let us consider the case when the image function is taken to be Gaussian.
Therefore the given Fourier data comes from f (w) = e~"®/4”¢=27ivB for the image

function
’A —A(x-B)?
X) = —e

Several parameters can be varied, namely A, B, the frequency cutoff 2 and the
compact support dimension X. (In all examples, the spacings dw and 8x for the
discrete values of f® (x) and g (w) are chosen so that the functions are well defined,
that is well resolved. This can be verified by varying éw and §x — the results will
be insensitive to small changes in dw and 8x if they are chosen correctly). Noise free
and noisy data g (w) are considered separately. :
(1) Examples with no noise

In our first example A = 1, B = 0 and the cutoff frequency value is 2 = 0.3183
giving f(Q) = f(O)e“. In Figures 1a and 1b, the mean error is f(x) and f(w) at the
kth iterate are plotted using the Gerchberg, Lent and Tuy (A®) = 2a® = 1.5), optimal
steepest descent and conjugate gradient algorithms. Each algorithm makes a large
reduction in error for the first few iterations. The Gerchberg algorithm has the slowest
error reduction. As anticipated by our theoretical discussions the error reduction is
improved with the over-relaxed Lent and Tuy algorithm, again with optimal steepest
descent and finally the best reduction is with the conjugate gradient method. A perhaps
surprising result is that the conjugate gradient method ‘converges’ in approximately
eight iterations. This method takes ‘discontinuous steps’ in the mean error, whereas
the other three methods exhibit an almost linear decline in mean error with iteration
number. In this example the compact support constraint on the Gaussian was imposed
for values of |x| > 3, in that range | f(x)| < 1.2 x 10~%. Of course, the compact
support range of f(x) is often unknown in a real example, or the function may not
have compact support (as for Gaussian) but only tend to zero as |x| — oo. Clearly, the
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FIGURE la: Mean error in Gaussian f(x) = 7~ X =3, = 0.318 using various iterative
techniques. No noise.

results of the FIP must be consistent for various values of support length X. However,
if the support length is chosen too small, it would be hoped that the results become
inconsistent in some way. For example, when the support length X was halved to 1.5
in the above example, the error in the conjugate gradient method decreases for the
first three iterations but then increases to a value larger than the initial value. (This
behaviour also occurs in the other methods but for smaller values of X.)

However, it is clear that the mean error is not in practice an appropriate measure of
the accuracy of the method because the exact f(x) and f (w) are unknown in a real
problem. Other measures considered were the supposed peak height, f®(0) here, and
the mean energy. When the compact support length was chosen large enough, f®(0)
increased monotonically with k. However when X = 1.5, f®(0) initially increased
but then decreased rapidly at large values of k. Indeed in this case the origin was not
the position of a maximum for f® (x). Hence both the nature of f®(x) and its value
at the origin become inconsistent if the compact support length is too small. (The
same behaviour is seen in the other methods for smaller values of X.)
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FIGURE 1b: Mean error in Fourier transform f (w) = e X = 3, Q@ = 0.318 and various iterative

techniques. No noise.

We also considered having less initial Fourier data by decreasing the frequency
cutoffs (for example 2 = 0.212, f (£2) = 0.641). All the results were qualitatively
the same as those above, although as expected the mean error at each iteration k is
larger for the smaller cutoff for each of the methods.

In all the discussion above, the compact support region was taken to be (—X, X).
In fact there is no change in the analysis if the region is taken as (a, b). This highlights
the fact that both the length (b — a) and range of the compact support is unknown.
In the above example, we varied this region and the inconsistencies already discussed
for too small values of X also appear if the range is inappropriate. This naturally leads
to the case of translated Gaussian, (B # 0). In fact, this problem is no different from
the centered Gaussian, despite oscillation in the Fourier transform, and qualitatively
and quantitatively all the results hold. For example, as one would expect taking
A = B = 1 and range (-2, 4) with the same number of Fourier data points, the
results are the same as for Figure la and 1b. More generally, cutoffs nonsymmetric
about the peak in the function produce negligible difference to a symmetric cutoff
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provided the compact support approximation is valid.

For all the triangular and rectangular function examples, all the comments and res-
ults for the Gaussian function are true. Again the conjugate gradient method converges
much more rapidly (approximately ten iterations) to mean errors considerably smaller
(up to four times) the other methods (after 100 iterations). For both these examples,
most of the error arises near the discontinuities in derivative (at x = 0 for tnan-
gular function) and discontinuities in function value (at the ends for the rectangular
function).

Positivity constraints were tried on these examples but did not improve the conver-
gence rates. In addition, positivity often increased the mean error.

Of course the testing we have done is not all inclusive but it does indicate that
the usval Gerchberg and Lent and Tuy methods can be improved by using optimal
steepest descent or conjugate gradient methods.

(2) Examples with additive noise

The superiority of conjugate gradient methods for the solution of the FIP and FEP has
been demonstrated when the initial Fourier data is noise free. In the above discussion,
the only source of numerical error was roundoff and the use of the Fourier series
approximation to the Fourier transform when using FFT’s.

Gerchberg’s method is well known not to converge in the presence of measurement
noise in Fourier space. As the steps of the algorithm are linear, initial noise € (w) has
grown to

n

Z (p,FyF_')k €

k=0
after the nth iteration. Similar expressions for the propagation of noise can be obtained
for the other iterative schemes.

We illustrate the growth in noise for the Gaussian example above and all parameters
as in Figures la, 1b. The initial noise €(w) added to g@(w) for |w| < N is the
Fourier transform of pseudo-random numbers normally distributed with mean zero
and variance o2. A standard deviation of 0 = £% means that 0 = 0.01 X f,., where
fimax 18 the largest value of f(x) (= f(0) = ="/ here).

Introducing noise gives rise to competition between convergence to the solution
and the growth of the noise. In each method the mean error curves initially decrease,
reach a minimum and finally increase as the iteration number increases. Since the
conjugate gradient method converges in approximately ten iterations in this example
without noise, it is expected that the error amplification will occur at around this
iteration number. The error amplification occurs later the slower the convergence
rate, essentially due to the step length «® being reduced. It is also notable that the
mean error reduction is still smaller with conjugate gradient than the other methods.
Some of these results are illustrated in Figure 2. The conjugate gradient method also
has the advantage that by looking at the iterates f®, it is clear between one or two
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successive iterates when the noise is swamping the solution. This is not the case with
the other methods.

CGo%
CG1%
CG5%
CG10%
OSD up to 1C

Mean error in f(x) with noisy data

Iteration number
. . 2 . . .
FIGURE 2. Mean error in Gaussian f(x) = 77'2¢™*", X = 3, Q = 0.318 with various noise levels
using conjugate gradient and optimal steepest descent methods.

The sensitivity of the iterative methods to noise occurs because of the ill-posed
nature of the inverse problems. Regularization methods could be used to stablize the
methods and these are discussed further in Section 7.

7. Discussion

The existing Gerchberg and Lent and Tuy algorithm for the solution to the Fourier
inverse and extrapolation problem have been rephrased as steepest descent methods.
We have given numerical results illustrating the significantly improved rate of con-
vergence and reduction in mean error of the solution obtained by generalising the
iterative scheme to a conjugate gradient method. Although this method also suffers
from noise amplification, it may not prove to be a major difficulty, as discussed in
Section 6.
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We conclude by suggesting the following methods for the regularization and control
of the noise growth.

(i) Limiting the number of iterations performed, with the number of iterations
decreasing as the amount of noise increases. This stopping point may be chosen so
that the iteration errors and amplified data errors balance ([14, 13]). In particular
for the conjugate gradient method, stopping rules depending upon the residual
|Af® — g|| are given by Eicke et al. [9] and Nemirovskii [25].

(ii) Imposition of a constraint on the size of the solution, for example | f (x)| < M,
using a projection, as in the Lent and Tuy method. It is a well-known result [3]
that the problem is not ill-posed if the solution f is in a known compact set; for the
weak topology this also holds for the bounded set just suggested. An unbounded
feasible set (such as a positivity constraint alone) may not help.

(iii) Tikhonov’s regularization method [24]. This involves incorporating the con-
straint on | f|| into the functional being minimized in the descent method, for

example,
2

7.1

2
JRLL V] -
12(-9,9) L*(=X,X)

|| Af —¢
where the regularization parameter A depends on the amount of noise present.
Methods for choosing this parameter are given by Miller [24] for example (and

more recently [15]).

A stability result for the Fourier inverse problem regularized in this manner is to
be found in [4]. To compute the minimum of the functional, the steepest descent
or conjugate gradient methods (with a simple modification for the extra term in
the functional) could be used. Convergence of these gradient methods would be
guaranteed as the regularized functional has eigenvalues bounded away from zero.

Appendix. Error reduction and non-negativity

It was shown by Papoulis [26] that the mean-square error in the solution is reduced
at each step of that iteration; that is

| £ - 7E (AL1)

|-

L(R) L®)’

where f((;") denotes the object at each iteration before compact support is imposed:

¢ =F (uF P + ). (A1.2)
A complementary result can be obtained as
| £ - s <|r-s2 (AL3)
L*(-X,X) L2(-X,X)
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giving the mean-square error reduction for é") = yf®, the object after compact
support is imposed. This is proved by substituting f = F~'f and g® = &£ into

equation (A1.1), using Parseval’s identity and the compact support of f, f&°, f&+9:

||f - fékH) LA(-X.X) = f - fék+l) L2(R)
oll [T 57
<|f-FfP i
=1/ - ék) LYA(R)
ol LA/ PO

We see from these steps that error reduction occurs twice, because of the two strict
inequalities.

The effect upon the error reduction of imposing a non-negativity constraint on the
solution f is easily done. Let f:,(") and f¥ be the kth iterate solution before and after
both the non-negativity and compact support constraints are imposed respectively.
Then an argument similar to the one above gives one strict inequality in the relationship

Flk+1) (%)
—— < — N
“f f” L2(R) Hf f” L} (~X.X)
and the non-negativity of f and f**" gives
_ fk+) < H (T8 < " (T5)) .
"f f” LA=X.X) f f” L2(=X,X) f f” LX(R)

Combining these we obtain (with two and a possible three reductions per iteration)

<[r-s

-2

L3(~X.X) L2-X.X)

Error reduction will also follow (in a similar manner) for the imposition of known
lower and upper bounds on the function.

Note that convergence of the iteration is not implied by these error reduction
results. Convergence is proved by Papoulis [26] via the use of prolate spheriodal
wave functions as basis functions. Also convergence properties can be gained by the
relationship of Gerchberg’s method to the Lent and Tuy and steepest descent methods
and also Landweber’s iteration.
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