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Estimation of additive and dominance variance components

in finite polygenic models and complex pedigrees
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Summary

Estimation of variance components with the finite polygenic model (FPM) was evaluated.

Phenotypic data for a 6300-pedigree simulated under a wide range of additive genetic models were

analysed with constant homozygote difference across loci using deterministic Maximum Likelihood

(DML) and a Bayesian method implemented via Gibbs sampling (BGS). Results indicate that

under no selection, both DML and BGS accurately estimated the variance components, with a

FPM of 5 loci or more. When both analysis methods were applied to equivalent data sets on

populations that had undergone selection, the DML method produced upward biased estimates of

additive genetic variation and heritability due to its use of pedigree loop cutting, while BGS

provided more accurate estimation. BGS was extended to non-additive FPMs with variable

homozygote differences and dominance effect across loci. This method was used to analyse data

simulated under two genetic models with positive, completely dominant gene action at all loci.

Results indicate that the estimates of additive and dominance variances slowly increase as the

number of loci in the FPM for analysis increases, while accuracy of predicting individual breeding

values and dominance deviations remains unaffected. For the simulated pedigree structure, a FPM

with 10 loci or slightly fewer appears to be appropriate for variance component estimation in the

presence of dominance.

1. Introduction

A finite polygenic model (FPM) was first proposed by

Thompson & Skolnick (1977) for estimating the

heritability of longevity in complex human pedigrees.

In contrast to the infinitesimal model, in which a trait

is assumed to be influenced by a normally distributed

polygenic component consisting of an infinite number

of additive genes of small effect, a FPM fits a finite

number of unlinked polygenic loci to describe the

genetic covariance among pedigree members. The

additive FPM results in a computationally more

simple likelihood than the infinitesimal model, under

the mixed model of inheritance containing both a
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major quantitative trait locus (QTL) and a polygenic

component (Fernando et al., 1994).

The inclusion of dominance variation under the

infinitesimal model is difficult for theoretical and

computational reasons, especially when inbreeding is

present (DeBoer & Hoeschele, 1993). Under inbreed-

ing, with no epistasis, it is necessary to fit extra

parameters, including dominance variance and co-

variance between additive and dominance effects in a

completely inbred population with allele frequencies

equal to those in the base population, and the effect of

inbreeding depression, in the model for phenotypes

(Gillois, 1964; Harris, 1964; DeBoer & Hoeschele,

1993). These complications to the genetic covariance

structure under the infinitesimal model motivated

investigation of an alternative model, the FPM.

The mixed models of inheritance of Fernando et al.

(1994) and Stricker et al. (1995b), which contain finite

polygenic loci along with a segregating major QTL,
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appeared accurately to estimate major gene effects

and polygenic heritability. In this contribution, the

ability of the FPM to estimate the narrow-sense

heritability in the absence of a major gene was

investigated first. Data simulated under various

additive FPMs and an infinitesimal model, all either

with or without selection, were analysed with additive

FPMs assuming different numbers of polygenic loci as

suggested by Thompson & Skolnick (1977). The

additive analysis was performed using two methods: a

deterministic Maximum Likelihood method (DML)

implemented via the Segregation andLinkageAnalysis

for Pedigrees package (SALP) by Stricker et al.

(1995a), and a Bayesian approach implemented via

Gibbs sampling (BGS). For non-additive analysis, the

BGS program was modified to sample genotypes at

individual loci, and to fit variable homozygote

differences and dominance deviations in the FPM for

each biallelic locus, allowing estimation of both the

additive and dominance variances across loci, as well

as the prediction of individual breeding values (BVs)

and dominance deviations (DVs).

2. Methodology

(i) Finite polygenic model with polygenic numbers

In the additive FPM, each polygenic locus contains

two alleles with equal, fixed gene frequency of 0±5 and

equal but unknownhomozygote difference, as outlined

in Fernando et al. (1994) but without the major gene.

Under this FPM, the additive genotypic value of an

individual can be completely described as a function

of its polygenic number ν defined as the total number

of favourable alleles across all loci, and constant

homozygote difference a. For k loci, there are 2k­1

possible polygenic numbers with values from 0 to 2k.

Assuming single records, the linear model for pheno-

type is

y¯Xβ­(v®1k) a­e, (1)

where y is a vector of phenotypes ; X is a known

design-covariate matrix relating observations in y to

the vector of fixed effects (β) ; v is a vector of polygenic

numbers; k is the number of biallelic loci ; 1 is a vector

of ones; a is the homozygote difference which is

constant across loci ; and e is a vector of residuals.

For simplicity, the � of an individual is assumed to

be conditionally independent of the � of any ancestor

or sibling given the � values of the parents, although

under Mendelian inheritance only approximate con-

ditional independence holds. Occasionally, the poly-

genic numbers of full-sibs are not conditionally

independent given the polygenic numbers of their

parents, as shown in a counter-example in Fernando

et al. (1994).

(a) Deterministic ML

The likelihood of a pedigree is given by
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where σ#
e
is the residual variance; n

b
is the number of

base (founder) individuals in the population; n is the

total number of individuals ; and f (y
i
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,β, a,σ#

e
) is the

penetrance function with normal density. The tran-

sition probability that a non-base individual will have

polygenic number �
i
given the polygenic numbers of

its sire (�
si

) and dam (�
di

) is denoted by f (�
i
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), and

can be calculated recursively according to appendix C

of Fernando et al. (1994). Probability f (�
i
) that a base

individual will have polygenic number �
i
is equal to

the population frequency of �
i
. The summation is over

all possible vectors v of polygenic numbers.

For evaluation of likelihood, the ML program

SALP cuts pedigree loops according to the method of

Stricker et al. (1995c), in which an additional founder

with an identical phenotype is inserted at the site of

the cutting, resulting in an approximation to the

likelihood. After loops are cut, the likelihood of the

data is computed using the recursive algorithm of

Fernando et al. (1993):
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where α
i
(�

i
) denotes the anterior probability of

individual i having polygenic number �
i
, p

i,j
(�

i
) the

posterior probability of i through mate j, and S
i
the

set of individual i’s mates. Further, i represents an

arbitrary individual in a pedigree, and the likelihood

equals the product of likelihood for all independent

pedigrees within the data set. The likelihood in (3) is

then deterministically maximized using the Downhill

Simplex algorithm of Nelder & Mead (1965). After

SALP converged the first time, it was restarted with

those estimates to ensure that convergence had

occurred.

(b) Bayesian analysis �ia Gibbs sampling

The joint posterior density of the parameters and

polygenic numbers can be written as
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where f (β), f (a) and f (σ#
e
) are priors for β, α and σ#

e

respectively.

Flat but bounded priors were assumed for β, a and

σ#
e
. The effects in β and a were sampled from fully

conditional, normal distributions, and the error

variance was sampled from an inverse-χ# distribution

derived in Wang et al. (1993). The polygenic number

of individual i was sampled from the distribution with

probability density
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where I(i) is an indicator function that equals 1 if

individual i is a base animal and 0 otherwise.

Parameters β, a and σ#
e
were estimated as averages

of samples generated using the Gibbs sampler.

Additive genetic variance (σ#
a
) was calculated as 0±5 ka#

and narrow-sense heritability (h#) as

σ#
a

σ#
a
­σ#

e

in each Gibbs cycle using that cycle’s samples of α and

σ#
e
.

(ii) Finite polygenic model with genotypes at

indi�idual loci

To generalise the FPM to also incorporate dominance

variation, the model becomes

y¯Xβ­Z
G
a­W

G
d­e, (6)

where y, X, β and e are defined as before, a is a vector

of k variable homozygote differences at k biallelic loci ;

d is a vector of k variable dominance deviations at k

biallelic loci ; Z
G

is a design matrix with k columns

containing coefficients of ®1, 0 and 1 corresponding

to the three genotypes at a biallelic locus ; and W
G

is

a design matrix with k columns containing coefficients

of 1 for the heterozygous genotype and 0 for the

homozygous genotypes. Both Z
G

and W
G

can be

constructed based on known G, a matrix of genotypes

of all individuals at all k biallelic loci. The allele

frequency at each of the k biallelic loci was fixed at 0±5.

The unknowns now include the parameters in β, a, d,

σ#
e

and the nk genotypes in G. The joint posterior

density of all unknowns can be written as
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genotype of individual i at locus j, and f (g
ij
) and f (g
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) are population frequency and transition

probability of genotype g
ij
, respectively.

Flat but bounded priors were assumed for β, a, d

and σ#
e
. Parameters in β, a and d were sampled from

fully conditional, normal distributions, and the error

variance was sampled from an inverse-χ# distribution

derived in Wang et al. (1993). Genotypes of non-

parent individuals at single loci were sampled from

standard, fully conditional distributions. For sampling

genotypes of parents, the sampling scheme of Janss

et al. (1995) was extended to sample both sires and

dams unconditionally on their final offspring, which

further improves mixing of genotype states.

Parameters β, a, d and σ#
e
were estimated as averages

of samples generated using the Gibbs sampler.

Additive genetic variance (σ#
a
) and dominance variance

(σ#
d
) were calculated as

0±5 3
k

i="

a#
i

and 0±25 3
k

i="

d#
i
,

respectively, where a
i

and d
i

are the ith element of

vector a and d, respectively. Individual BVs and DVs

were predicted as zi a and wi d, where zi and wi are the

ith row of design matrix Z
G

and W
G
, respectively.

Correlation coefficients between true and predicted

BVs and between true and predicted DVs were

estimated to evaluate the accuracy of the prediction.

(iii) Data and analysis

The simulated population structure consisted of n¯
6300 individuals over one base generation and three

discrete offspring generations. Every generation, 50

males and 250 females were randomly selected, with

each male randomly mated to five females. Females

produced 8-offspring litters divided equally in half by

sex, giving each sire 40 progeny. Twenty independent

replications under the same population structure were

generated. Unintentional inbreeding and the mating

structure of the unselected population resulted in 945

cuts of inbreeding and mating loops in the pedigree by

the deterministic ML program, SALP. Under selec-

tion, the size and structure of the pedigree were

maintained. In each generation, the 50 males and 250

females with the highest breeding values as predicted

by Best Linear Unbiased Prediction (BLUP) with the

animal model program JAA (Misztal, 1989) were

selected to be parents. This scheme resulted in a

selected proportion of 5% for males and 25% for

females. There were on average 985 cuts made to

pedigree loops.

Phenotypic data were simulated under four additive

models with true values of σ#
e
¯ 50 and σ#

a
¯ 50 for

residual and additive genetic variance (across loci),

respectively, and a mean (µ) equal to zero as the only

element of β. Model 1 was the infinitesimal model,

while models 2, 3 and 4 were FPMs of 40 loci of equal

effect, 18 loci of diminishing effect and 5 loci of equal
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Table 1. Genetic models used for data simulation

Model No. of loci a d

1 Infinitesimal — 0
2 40 Constant 0
3 18 Diminishing 0
4 5 Constant 0
5 18 Diminishing Positive complete
6 20 Constant Positive complete

a is the homozygote difference and d is the dominance
deviation across loci. The 18 loci in models 3 and 5 included
one locus with additive genetic variance 25, 2 loci with
variance 5, 5 loci with variance 2, and 10 loci with variance
0±5.

effect, respectively, with all loci being unlinked and

biallelic with P¯ 0±5 (Table 1). The 18 loci in model

3 included one locus with variance 25, two loci with

variance 5, five loci with variance 2, and 10 loci with

variance 0±5.

Two genetic models with dominance were also

simulated for this 6300-pedigree (Table 1). Model 5

was simulated by modifying the model 3 structure

with positive complete dominance at all 18 loci.

Model 6 contained 20 loci with equal additive genetic

and positive complete dominance effects across loci.

In both models, σ#
e
¯ 50±0, σ#

a
¯ 50±0 and σ#

d
¯ 25±0,

where σ#
d

denotes dominance variance. Ten repli-

cations were simulated for each non-additive model.

For analyses under additive gene action, data sets

from the four genetic models were all analysed by both

the DML and the BGS methods, all using additive

FMPs of 3, 4 or 5 loci. Starting values of µ¯ 5, σ#
e
¯ 65

and σ#
a
¯ 35 were arbitrarily chosen, and the starting

homozygote difference a was calculated as 2oσ#
a
}2k,

resulting in a¯ 4±83, 4±18 or 3±74 for the three

different analysis models. Under selection, the data

Table 2. A�erage parameter estimates (and standard errors) obtained

from 20 replicates of an additi�e 3-loci FPM Bayesian Gibbs Sampler

(BGS) or SALP analysis with constant additi�e effect for data simulated

without selection under �arious genetic models (see Table 1)

Genetic models

Infinitesimal 40 Equal 18 Diminishing 5 Equal

BGS µ ®0±22 (0±13) ®0±02 (0±12) ®0±19 (0±10) ®0±23 (0±14)
σ#

e
50±71 (0±53) 49±65 (0±57) 49±93 (0±44) 50±84 (0±35)

σ#
a

49±10 (0±87) 51±16 (1±08) 50±49 (0±62) 49±28 (0±74)
h# 0±49 (0±007) 0±51 (0±008) 0±50 (0±005) 0±49 (0±005)

SALP µ 0±09 (0±22) 0±05 (0±19) ®0±18 (0±19) ®0±08 (0±12)
σ#

e
51±6 (0±67) 51±9 (0±93) 50±3 (0±84) 49±9 (0±65)

σ#
a

47±4 (1±09) 46±7 (1±46) 50±9 (1±51) 49±4 (1±31)
h# 0±48 (0±01) 0±47 (0±01) 0±50 (0±01) 0±50 (0±01)

True values are mean (µ)¯ 0±0, error variance (σ#
e
)¯ 50±0, additive variance (σ#

a
)

¯ 50±0 and heritability (h#)¯ 0±50.

sets were analysed by the 5-loci FPM only. Data sets

generated under the dominance models were analysed

with non-additive FPMs of 5, 10 or 20 loci, with

variable homozygote differences and dominance

deviations across loci. Arbitrary starting values of

µ¯ 0, σ#
e
¯10, a¯1 and d¯ 0 were used for all

non-additive FPMs. For all additive and non-additive

FPMs, the starting value for G was heterozygous at

all loci for all individuals.

To evaluate the accuracy of BV and DV prediction

for all non-additive FPMs, pedigree members were

divided into three groups based on their offspring

numbers: "10, 1–10, and no offspring. The cor-

relation coefficients between the true and predicted

BVs and between the true and predicted DVs were

estimated for each group and the entire pedigree.

3. Results

(i) Additi�e genetic FPM: unselected populations

For analysis under the additive genetic model, chains

of 10000 Gibbs cycles with 50 burn-in cycles were

used, and the average Monte Carlo standard errors

were below 0±5% for variance components and

heritability (data not shown). These were calculated as

suggested by Geyer (1992) using the square root of the

variance of a sample mean found in Sorensen et al.

(1995). Despite large numbers of offspring for some

individuals, the univariate sampling distribution for

the polygenic number in (5) allows fast mixing of the

sampler, unlike the slow mixing which occurs due to

large numbers of offspring when sampling genotypes

(Janss et al., 1995). The 2k­1 polygenic numbers are

more finely discretized than genotypes at individual

loci, with many different genotype combinations

having the same polygenic number, causing more

rapid mixing.
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Table 3. A�erage parameter estimates (and standard errors) obtained

from 20 replicates of an additi�e 5-loci FPM Bayesian Gibbs Sampler

(BGS) or SALP analysis with constant additi�e effect for data simulated

without selection under �arious genetic models (see Table 1)

Genetic models

Infinitesimal 40 Equal 18 Diminishing 5 Equal

BGS µ ®0±26 (0±11) 0±24 (0±12) ®0±25 (0±11) ®0±22 (0±11)
σ#

e
50±53 (0±44) 49±41 (0±60) 49±88 (0±44) 49±32 (0±67)

σ#
a

49±08 (0±76) 51±01 (1±08) 50±31 (0±59) 49±32 (0±67)
h# 0±49 (0±006) 0±51 (0±008) 0±50 (0±005) 0±49 (0±005)
a — — — 4±44 (0±03)

SALP µ 0±11 (0±20) 0±34 (0±23) ®0±14 (0±20) ®0±18 (0±13)
σ#

e
50±7 (0±79) 49±9 (0±73) 50±8 (0±68) 51±3 (0±74)

σ#
a

48±1 (1±09) 48±8 (1±31) 49±2 (1±22) 48±2 (1±44)
h# 0±49 (0±01) 0±49 (0±01) 0±49 (0±01) 0±48 (0±01)
a — — — 4±38 (0±06)

True values are mean (µ)¯ 0±0, error variance (σ#
e
)¯ 50±0, additive variance (σ#

a
)

¯ 50±0, heritability (h#)¯ 0±50 and half of the homozygote difference (a)¯ 4±48.

Table 4. A�erage parameter estimates (and standard errors) obtained

from 20 replicates of an additi�e 5-loci FPM Bayesian Gibbs Sampler

(BGS) or SALP analysis with constant additi�e effect for data simulated

with selection under �arious genetic models (see Table 1)

Genetic models

Infinitesimal 40 Equal 18 Diminishing 5 Equal

BGS µ 0±98 (0±14) 0±63 (0±07) ®0±16 (0±10) 0±12 (0±14)
σ#

e
52±9 (0±28) 51±8 (0±31) 48±8 (0±30) 49±7 (0±67)

σ#
a

58±8 (0±67) 55±0 (0±68) 48±7 (0±66) 51±2 (0±76)
h# 0±53 (0±004) 0±52 (0±004) 0±50 (0±01) 0±51 (0±01)
a — — — 4±52 (0±04)

SALP µ 9±09 (0±19) 8±92 (0±14) 8±28 (0±13) 8±51 (0±19)
σ#

e
50±4 (0±47) 51±0 (0±48) 48±9 (0±56) 47±3 (0±94)

σ#
a

66±6 (1±04) 60±9 (0±88) 55±4 (0±98) 59±2 (1±05)
h# 0±57 (0±01) 0±56 (0±02) 0±53 (0±01) 0±56 (0±01)
a — — — 4±86 (0±04)

True values are mean (µ)¯ 0±0, error variance (σ#
e
)¯ 50±0, additive variance (σ#

a
)

¯ 50±0, heritability (h#)¯ 0±50 and half of the homozygote difference (a)¯ 4±48.

Posterior mean estimates of the parameters of

interest and empirical standard errors for the

unselected populations are given in Tables 2 and 3 for

the 3- and 5-loci additive FPMs, respectively. Ana-

lysing FPM models with 3-loci or more using BGS

produced accurate estimates of population mean,

additive genetic variance and heritability (Tables 2

and 3 and results from the 4-loci FPM analysis not

shown). For data simulated under models 3 and 4,

SALP estimates for the additive genetic variance and

heritability appeared to be accurate. For data simu-

lated under the infinitesimal or 40-equal-polygenic-

loci models, SALP estimates of heritability equalled

0±479 and 0±474 using the 3-loci FPM, and 0±476

and 0±475 using the 4-loci FPM, respectively (Table 2

and results not shown). Tested with a two-sided t-test

at the 0±05 significance level, these heritability SALP

estimates significantly underestimated heritability, but

all other SALP estimates appear to be accurate

(Tables 2 and 3 and data not shown). When the

genetic model of 5-loci was used as the analysis FPM,

the effect of the favourable allele at each locus a was

estimated accurately with both DML and BGS (Table

3).

(ii) Additi�e genetic FPM: selected populations

Table 4 gives parameter estimates under selection,

with the 5-loci additive FPM as the analysis model.

The Bayesian method produced accurate parameter
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Table 5. Parameter estimates (and standard errors)

a�eraged across 10 replicates of a 5-loci FPM

Bayesian Gibbs sampler (BGS) analysis with �ariable

dominance effects for data simulated without selection

under model 4 (see Table 1)

Additive effects

Constant Variable

µ 0±09 (0±08) 0±05 (0±09)
σ#

a
50±8 (1±22) 51±1 (1±25)

σ#
d

3±7 (0±43) 3±9 (0±39)
σ#

e
47±0 (0±71) 46±8 (0±70)

h# 0±52 (0±009) 0±52 (0±009)

True values are mean (µ)¯ 0±0, additive genetic variance
(σ#

a
)¯ 50±0, dominance genetic variance (σ#

d
)¯ 0±0, error

variance (σ#
e
)¯ 50±0 and heritability (h#)¯ 0±50.

estimates for the two genetic models with the fewest

numbers of loci, models 3 and 4, but overestimated

additive genetic variance and heritability for data

simulated under models 1 and 2. SALP produced

biased estimates for all four genetic models and

greatly overestimated the mean. There appeared to be

a slight trend with both methods of increasingly

overestimating genetic variance as the number of loci

in the genetic model increased. Therefore, the selected

data sets were reanalysed using a 20-loci FPM for the

Bayesian approach and a 14-loci FPM for SALP (14

was the maximum number of loci fitted by SALP).

However, increasing the number of loci in the analysis

model did not significantly improve the SALP

estimates of either genetic variance or the mean, and

the Bayesian estimates were virtually unchanged as

well (results not shown).

Table 6. Variance component estimates (and standard error) obtained

from analysis of FPM with �ariable additi�e and dominance effects using

Bayesian Gibbs sampler (BGS) for data simulated under models 5 and 6

(see Table 1). Estimates are a�eraged across se�eral replicates (10 for

FPMs with 5 and 10 loci and 5 for FPMs with 20 loci)

Genetic model
No. of
analysis loci σ#

e
σ#

a
σ#

d

Model 5 5 51±2 (0±91) 51±9 (1±34) 23±8 (0±97)
10 46±8 (0±96) 52±7 (1±36) 28±3 (1±03)
20 39±5 (1±83) 56±0 (2±70) 35±6 (1±69)

Model 6 5 54±4 (0±92) 51±0 (0±94) 20±9 (1±11)
10 48±6 (1±05) 51±9 (1±02) 26±7 (1±21)
20 42±8 (2±18) 53±8 (0±93) 32±9 (2±75)

True values are error variance (σ#
e
)¯ 50±0, additive variance (σ#

a
)¯ 50±0 and

dominance variance (σ#
d
)¯ 25±0.

(iii) Non-additi�e genetic FPM

As a preliminary step in investigating the estimation

of both additive and dominance variances, 10 data

sets simulated under model 4 were analysed with 5-

loci non-additive FPMs using the BGS method

modified to sample genotypes at individual loci and fit

both homozygote differences and dominance

deviations at individual loci. The results, shown in

Table 5, indicate that constancy versus variability of

homozygote differences across loci has virtually no

effect on accuracy of parameter estimation, and that

the analysis correctly estimates a dominance variance

near zero when no dominance variation exists.

When dominance variance was non-zero in the

simulation models, analysis with non-additive FPMs

required larger numbers of Gibbs cycles to produce

sufficiently small Monte Carlo standard errors. Gibbs

chains of length 100000 with 2000 burn-in cycles were

used in the analyses reported in Tables 6 and 7. The

Monte Carlo standard errors for all variance com-

ponents were below 0±5% of the genetic variance

(results not shown). Despite large correlations among

the parameters, joint sampling of µ, a and d did not

significantly improve MC standard errors (results not

shown).

As shown in Table 6, variance component es-

timation was affected by the choices of both analysis

and simulation models. Variable homozygote

differences and dominance deviations across loci were

assumed in all analysis FPMs. Accurate estimates of

additive genetic variance and downward biased

estimates of dominance variance, with the extent of

bias depending on the genetic model, was found when

the 5-loci FPM was used for analysis. As the number

of loci in the analysis FPM increased, the estimate of

dominance variance slowly increased. When 20 loci

were included in the analysis FPM, additive genetic

variance and dominance variance were slightly and
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Table 7. Accuracy (and standard errors) for predicting indi�idual breeding �alues and dominance de�iations

from analysis of FPMs with �ariable additi�e and dominance effects using Bayesian Gibbs sampler (BGS) for

data simulated under Models 5 and 6 (see Table 1). Estimates are a�eraged across se�eral replicates (10 for

FPMs with 5 and 10 loci and 5 for FPMs with 20 loci)

No. of
Breeding value Dominance deviation

Genetic model analysis loci r
AT

r
A"

r
A#

r
A$

r
DT

r
D"

r
D#

r
D$

Model 5 5 0±764 0±905 0±810 0±753 0±534 0±676 0±570 0±524
(0±005) (0±005) (0±004) (0±005) (0±007) (0±009) (0±008) (0±007)

10 0±763 0±905 0±810 0±753 0±532 0±663 0±568 0±523
(0±005) (0±005) (0±005) (0±005) (0±006) (0±010) (0±008) (0±007)

20 0±767 0±907 0±815 0±756 0±537 0±675 0±569 0±527
(0±004) (0±006) (0±010) (0±003) (0±004) (0±016) (0±012) (0±005)

Model 6 5 0±746 0±881 0±783 0±737 0±503 0±562 0±515 0±499
(0±004) (0±007) (0±004) (0±004) (0±005) (0±022) (0±009) (0±004)

10 0±748 0±884 0±783 0±739 0±508 0±568 0±516 0±504
(0±003) (0±007) (0±005) (0±003) (0±004) (0±022) (0±009) (0±004)

20 0±749 0±874 0±789 0±739 0±502 0±537 0±503 0±500
(0±003) (0±009) (0±009) (0±002) (0±006) (0±034) (0±011) (0±006)

r
ij
: correlation coefficient between the true and predicted i in group j : i¯A and D for breeding value and dominance

deviation, respectively ; j¯T, 1, 2 and 3, for the entire pedigree, groups of animals with 10, 1–10 and no offspring,
respectively.

greatly overestimated, respectively, coupled with

severe underestimation of residual variance. For data

simulated under model 6, 10 loci in the analysis FPM

appear to be appropriate. For data from model 5 in

which a major gene is segregating, a number between

5 and 10 loci in the analysis FPM appears to be

optimum. In contrast, the accuracy of predicting both

BVs and DVs is virtually constant across different

FPMs with various numbers of loci (Table 7). For DV

prediction, the results show that progeny information

improves the prediction of parental DVs. The seg-

regation of a major gene in model 5 appears to

improve the accuracy of BV prediction slightly and

that of DV prediction considerably. As the genetic

model was changed from model 6 to model 5, the

correlation between predicted and true BVs was

increased by approximately 2%, and the correlation

between predicted and true DVs was increased by

5–25%. Therefore, the accuracy of prediction of BVs

and DVs depends on the genetic model of a trait,

while it appears to be unaffected by the choice of

analysis FPM.

4. Discussion

In the case of no selection, the results obtained in this

study show that BGS with a FPM of three loci or

more gives accurate estimates of additive variance and

narrow-sense heritability under a wide range of

additive genetic models. In contrast, DML analyses of

3- or 4-loci FPMs produced underestimation of

additive genetic variance and heritability for data

simulated under some genetic models. This under-

estimation appears to be corrected as the number of

loci in the analysis model increases to five, despite an

approximation to the likelihood that resulted from

cutting pedigree loops in SALP. Hence, it would be

prudent to fit at least five loci in an additive FPM.

Under intense selection, severe overestimation of

additive variance and heritability was found for the

DML analysis, with degree of bias depending on the

genetic model. The overestimation probably resulted

from the practice of loop cutting. When a loop was cut

and an individual was replaced by a founder with the

same phenotype, that pseudo-founder had a higher

probability of having a ‘poor’ genotype at each locus

than the original individual. As a consequence, the

overall mean may be biased upwards, and the additive

genetic variance increased. Recently, Hagger &

Stricker (1998) reported similar estimation of additive

genetic variance by SALP in their FPM analysis of

egg weights from a multigeneration selection ex-

periment with chicken. Although some upward bias

was also detected when analysing data simulated

under the infinitesimal and forty-equal-polygenic-loci

models, the BGS method gave much more accurate

estimates of additive genetic variance and heritability

than DML for data simulated under all genetic

models. Therefore, sampling-based algorithms, which

do not require loop-cutting, should be preferred.

For data simulated under non-additive models,

estimation of additive, dominance, and residual

variances appear to be accurate only when a non-

additive FPM model with an appropriate number of

loci is fitted. However, as the number of loci in the

analysis FPM with variable dominance effects
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increased, the estimates of dominance and additive

variances slowly increased, coupled with a steady

decrease in the estimate of residual variance. Although

the optimal FPM for analysis depends on the genetic

model of a trait, the 5- or 10-loci FPMs give reasonably

accurate estimates for the simulated population

structure. Moreover, the number of loci has little

effect on the accuracy of individual BV and DV

predictions. Upward biased estimates of dominance

variance were obtained using the 20-loci FPM for

analysis, and the overestimation did not significantly

diminish when the data were analysed using the 20-

loci FPM with constant additive effects and variable

dominance effects across loci. While more research is

needed to clarify the cause(s) of bias, one possible

reason for the overestimation is that the number of

parameters in an analysis FPM is too large relative to

the sample size and (or) number of founders.

To compare our results with the findings of Pong-

Wong et al. (1998), their genetic model and population

structure were simulated. When the data were analysed

with FPMs that include constant homozygous

difference and constant dominance deviation across

loci as in their analysis, very similar results were

obtained (data not shown). However, the variation in

the estimates among replications is unacceptably large

for such a small population. Moreover, the direction

of dominance action might vary across loci (positive

and negative) in the true genetic model. Therefore, it

is not optimal to fit constant dominance deviation for

analysing data with an unknown genetic model. The

analysis of this small data set with non-additive FPMs

with variable dominance deviations shows a more

rapid increase in the estimate of dominance variance

as the number of loci increases (data not shown),

suggesting size and structure of the pedigree play a

role in the overestimation.

Instead of using the kinship coefficients as in the

infinitesimal model, the FPM approach uses the

transmission of alleles at artificially created loci to

model the resemblance among relatives. Similar to the

traditional mixed linear model methodologies, the

objective of FPM analysis is to estimate variance

components and to predict individual BMs and DVs,

rather than to identify the true genetic model of a

trait. With pedigree and phenotypic data only, genetic

effects of individual polygenes are not identifiable.

It is straightforward to modify additive FPMs to

include non-additive components such as dominance

and (or) epistasis. Moreover, the results from this

study suggest that the FPM approach has the potential

for improved estimation of non-additive genetic

variance components due to the severe limitations of

analyses under the infinitesimal model (see Section 1).

However, the comparison of analyses under FPMs

and infinitesimal genetic models for different pedigree

structures and different genetic models is currently

hampered by lack of reliable software for non-additive

analysis under the infinitesimal model for general

pedigrees with or without inbreeding.

Further investigations of the FPM for parameter

estimation in non-additive genetic models are

warranted and needed. A future contribution will

consider epistasis. Alternative genotype sampling

schemes should be investigated, e.g. sampling all

individuals at a given locus jointly or sampling several

loci jointly. In the present studywe foundno indication

of insufficient mixing in genotype sampling. Fur-

thermore, the effect of estimating gene frequencies at

the biallelic loci, rather than fixing them at 0±5, on

accuracy of estimation of genetic parameters and

genetic merits has not yet been evaluated. Finally, the

dependence of accuracy of parameter estimation on

the number of loci in a FPM is of concern and

requires further study.
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