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Abstract. Let G be a finite nilpotent group, x and v be irreducible complex
characters of G with prime degree. Assume that x (1) = p. Then, either the product x v
is a multiple of an irreducible character or x v is the linear combination of at least ’%1
distinct irreducible characters.
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1. Introduction. Let G be a finite group and y, ¥ € Irr(G) be irreducible complex
characters of G. We can check that the product xv of x and 1, where x¥(g) =
x(@)¥(g) for all gin G, is a character and so it can be expressed as a linear combination
of irreducible characters. Let n(x ) be the number of distinct irreducible constituents
of the product x .

Theorem A. Let G be a finite nilpotent group, x and yr be irreducible complex characters
of prime degree. Assume that x(1) = p. Then, one of the following holds:

(i) xV is the sum of p* distinct linear characters.

(ii) x is the sum of p distinct linear characters of G and of p — 1 distinct irreducible
characters of G with degree p.

(iii) all the irreducible constituents of x are of degree p. Also, either xvr is a
multiple of an irreducible character, or it has at least ’%1 distinct irreducible constituents
and at most p distinct irreducible constituents, i.e.

p+1

either n(xy) =1 or <n(xy) <p.

(iv) x is an irreducible character.

It is proved in Theorem A of [1] that given any prime p, any p-group P, any faithful
characters yx, ¢ € Irr(P), either the product x is a multiple of an irreducible, or
Xx V¥ 1s the linear combination of at least ’%1 distinct irreducible characters, i.c. either
n(xv)=1orn(xy) > ’%1 It is proved in [4] that given any prime p and any integer
n > 0, there exists a p-group P and characters ¢, y € Irr(P) such that n(¢y) = n. Thus,
without the hypothesis that the characters in Theorem A of [1] are faithful, the result
may not hold. In this note, we are proving that if the characters have ‘small’ degree
then the values that n(x ) can take have the same constraint as if they were faithful.
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2. Proofs. We are going to use the notation of [5]. In addition, we denote by
Lin(G) = {x € Irr(G) | x(1) = 1} the set of linear characters, and by Irr(GmodN) =
{x € Irr(G) | Ker(x) > N} the set of irreducible characters of G that contain in their
kernel the subgroup N. Also, denote by ¥ the complex conjugate of y,1.e. x(g) = x(g)
for all gin G.

Lemma 2.1. Let G be a finite group and x, vy € Irr(G). Let oy, oy, ..., oy, for some
n > 0, be the distinct irreducible constituents of the product x ¥ and ay, ay, ..., a, be the
unique positive integers such that

n
Xy = Z a;a;.
i—1

If a1(1) =1, then Yoy =7x. Hence, the distinct irreducible constituents of the
character x° are lg, ajon, djan, . .., d1d,, and

XX =alg+ Y ai@ia).
i=2

Proof. See Lemma 4.1 of [3]. Il

Lemma 2.2. Let G be a finite p-group for some prime p and x € Irr(G) be a character of
degree p. Then, one of the following holds:

(i) xX is the sum of p* distinct linear characters.

(ii) xx is the sum of p distinct linear characters of G and of p — 1 distinct irreducible
characters of G with degree p.

Proof. See Lemma 5.1 of [2]. O

Lemma 2.3. Let G be a finite p-group, for some prime p, and x , ¥ € Irr(G) be characters
of degree p. Then, either n(xy) =1or n(xy) = 1%1_

Proof. Assume that the lemma is false. Let G and yx,¢¥ € Irr(G) be a
counterexample of the statement, i.e. x(1) = (1) =pand 1 < n(xy¥) < 1%1.

Working with the group G/(Ker(x) N Ker(yr)), by induction on the order of G,
we may assume that Ker(y) N Ker(y) = {1}. Set n = n(x ). Let 6; € Irr(G), for i =
1,...,n, be the distinct irreducible constituents of x . Set

Xy = Z m;0; 2.4
i1

where m; > 0 is the multiplicity of ; in x .

If x4 has a linear constituent, then by Lemmas 2.1 and 2.2 we have that n(x ) > p.
If x has an irreducible constituent of degree p?, then x ¢ € Irr(G) and so n(x ) = 1.
Thus, we may assume that 6;(1) = pfori=1,...,n.

Since G is a p-group, there must exist a subgroup H and a linear character & of
H such that €9 = x. Then, |G : H| = x(1) = p and thus H is a normal subgroup. By
Clifford theory, we have then

p
XH = ZS[ (2.5)
i1
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for some & =&, ..., &, distinct linear characters of H.
Claim 2.6. H is an abelian group.

Proof. Suppose that ¥ € Irr(H). Since (§¥5) = x ¥ by Exercise 5.3 of [5], and
&Yy € TIrr(H), it follows that either £y induces irreducibly, and thus n(xy¥) =1, or
£y extends to G and thus (£v)¢ is the sum of the p distinct extensions of £/, i.e.
n(xy) = p. Therefore, ¥y ¢ Irr(G) and since H is normal in G of index p and y(1) = p,
¥ is induced from some t € Lin(H).

Since both & and t are linear characters, we have that Ker(¢) N Ker(z) > [H, H].
Observe that coreg(Ker(¢) N Ker(t)) = coreg(Ker(£)) N coreg(Ker(z)) = Ker(x) N
Ker(y). Since H is a normal subgroup of G, so is [H, H] and thus {1} = Ker(x) N
Ker(y) > [H, H]. Therefore, H is abelian. ]

By the previous claim, observe that v is also induced by some linear character t
of H and thus

P
Y= Z T 2.7
i=1

for some 1; =1, ..., 7, distinct linear characters of /. Observe also that the centre of
both x and v is contained in H.

Claim 2.8. Z(G) = Z(x) = Z(y).

Proof. Suppose that Z(x) # Z(y). Set U = Z(x) N Z(y). Either U is properly
contained in Z(x), or it is properly contained in Z(1/). We may assume that U < Z(y/)
and thus we may find a subgroup 7T < Z(y) such that 7/ U is chief factor of G.
Since H is abelian, Z(y¥) < H and ¢ = ¢, then ¥7 = prr and so (t;)7 = tr for
i=1,...,p. Because £€9 = x, £ e Lin(H) and T £ Z(x), the stabilizer of &7 is H.
Thus, the stabilizer of &7ty in G is H. By Clifford theory, we have that &t; € Lin(H)
induces irreducibly and &t; are distinct characters for i =1, ..., p. By (2.7), we have
that ¢ = (Eym)® = E(m +--- + 1) = () + -+ (§7,)°, and thus n(x ¥) = p.
We conclude that such 7" cannot exist and so Z(x) = Z(y).

Givenanyz € Z(x)and g € G, we have z8 = z (mod Ker(y)) since Z(G/Ker(x)) =
Z(x)/Ker(x). Hence, [z, g] = z~'2¢ lies in Ker(x). This same z lies in Z() = Z(x).
Hence, [z, g] also lies in Ker(y). Therefore, [z, g] € Ker(x) N Ker(y) = 1 for every
z € Z(x) = Z(¥) and every g € G. This implies that Z(x) = Z(¥) = Z(G). ]

Set Z = Z(G). Since Z is the centre of G, €9 = x and ¢ = 1, we have
xz = péz and ¥z = ptz. (2.9)
Because xzyz = p*£,77, (2.4) implies that
(61)z = péztz (2.10)

foralli=1,...,n.

Let Y/Z be a chief factor of G with Y < H. Since Z is the centre of G and
Z =7(x), the set Lin( Y | &) of all extensions of &7 to linear characters is {(§;)y =
&y, (&)y, ..., &)y} and it is a single G-conjugacy class. By Clifford theory, we have
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that

P

Xy =) E)r. 2.11)

i=1

Since H is the stabilizer of 7y in G and (1) = p, as before we have that the set
Lin(Y | z.) = {(r)y = v, (©2)y, ..., (rp)y} and

V4
Yy =) (1) 2.12)
i=1

Claim 2.13. The stabilizer Gg,., ={g € G| (Eyty) =&yty} of Eyty € Lin(Y) in G
is H.

Proof. Assume notation (2.4). Since H is an abelian subgroup of index p in G,
we have that G¢,,, > H and thus either Gz, = H or G¢,,;, = G. Suppose éyTy is a
G-invariant character, i.e. G¢,,, = G. Since |Y : Z| = p and &yty is an extension of
&1, it follows then that all the extensions of &,t, to Y are G-invariant. Thus, by
(2.4) and (2.10), given any i, there exists some extension v; € Lin(Y) of £&,7 such that
0y = pui. Thus, (x¥)y = QL mib)y = Yy mi(vi)y = )i, m;pu; has at most
n< 1%1 distinct irreducible constituents. On the other hand, by (2.11) and (2.12) we
have

p p p
¥y = xyvy = <Z(§i)Y) Z(Tj)Y ZPZEY(U)Y,
i=1 Jj=1 Jj=1

and so (xv)y has p distinct irreducible constituents. That is a contradiction and thus
Geyry = H. O

By Clifford theory and the previous claim, we have that foreachi =1, ..., n, there
exists a unique character o; € Lin( H | §yty ) such that

0; = (07)°. (2.14)

If Y=H, then |G:Z|=|G:H||H:Z| =p> Since x(1)=v()=p, by
Corollary 2.30 of [5] we have that y and ¥ vanish outside Z. Since 6;(1) = p for
all i and |G : Z| = |G : Z(6;)| = p?, it follows that there exists a unique irreducible
character lying above &2t and thus n(x ) = 1.

2.15. Fix a subgroup X < H of G such that X/Y is a chief factor of G. Let «,
B € Lin(X) be the linear characters such that

Ot=r‘;:xal’ld,3=‘fx.

Since o; lies above Eyty € Lin(Y) for all i and X/ Y is a chief factor of a p-group, there
is some §; € Irr(X mod Y) such that

(01)x = diap. (2.16)

Claim 2.17. The subgroup [X, G] generates Y = [X, G|Z modulo Z.
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Proof. Working with the group G = G/Ker(x), using the same argument as in the
proof of Claim 3.26 of [1], we have that [X, G] generates ¥ = [X, G]Z modulo Z. Since
Z = Z(x), we have that Ker(y) < Z. Thus, Z = Z/Ker(x) and the claim follows. [J

2.18. Observe that G/H is cyclic of order p. So, we may choose g € G such that the
distinct cosets of H in G are H, Hg, Hg?, ..., Hg’ .

Since x = £9 and £y = «, it follows from 2.15 that
xx=a+af+-+a¥ = Zaé
Similarly, we have that
p—1
—1 i
Ur=B+B B =B

Combining the two previous equations, we have that
p— p—l p-lp-1
axvx =D e DI BT =D D B (2.19)
j=0 j=0 i=0 j=0
By (2.4) and (2.16), we have that

n -1
(x¥)x = (Zmie,) Zm, Z(aiaﬂ)g" : (2.20)
X

i=1 Jj=0

Claim 2.21. Let g€ G be as in 2.18. For each i=0,1,...,p— 1, there exist j €
{0,1,...,p— 1} and 6y € Lin(XmodY) such that

af? = (aB)¥ sy (2.22)
Also, {651 11 =0,1,2,...,p—1}| <n
Proof. See Proof of Claim 3.30 of [1]. ]

Claim 2.23. Let g € G be as in 2.18. Then, there exist three distinct integers i, j, k €
{0,1,2,...,p— 1}, and some § € Irr(XmodY), such that

aBf = (@B)Y'S, apf = (aB)¥'s and ap? = (aB)'s,
for somer,s,t€{0,1,2,...,p—1}.
Proof. See Proof of Claim 3.34 of [1]. ]

Claim 2.24. We can choose the element g in 2.18 such that one of the following holds:
(i) There exists somej=2,...,p— 1such that

apf = (@)t and apt = (@p)*
for somer,s € {0,1,...,p— 1} withr £ 1.
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(ii) There exist j and k such that 1 < j < k < p, and
ot = (@B 8. af? = (@B)*§ and ap® = (@p)*s.
for some § € Irr(XmodY) and somer, s, t € {0,1,...,p— 1} withr # 1.

Proof. See Proof of Claim 3.35 of [1]. O

Let g be asin Claim 2.24. Since X/ Y is cyclic of order p, we may choose x € X such
that X = Y < x >. Since H is abelian, we have [X, H] = 1. Suppose that [x, g7'] € Z.
Then, x centralizes both g~! and H modulo Z. Hence, xZ € Z(G/Z)and so [x, G] < Z.
Since Y/Z is a chief section of the p-group G, we have that [Y, G] < Z and so [< x >
Y, G] = [X, G] < Z which is false by Claim 2.17. Hence [x, g"!] € Y \ Z and so

Y =Z < y > is generated over Z by y =[x, g"']. (2.25)

Since[Y, G] < Z,wehavethatz =[y,g"'] € Z.1fz = 1, then G = H < g > centralizes
Y=Z7Z<y>, since H centralizes Y < X by 2.15, and G centralizes Z. This is
impossible because Z = Z(G) < Y. Thus,

z = [y, g"']is a non-trivial element of Z. (2.26)
By (2.25), we have y = [x, g '] = x"'x¢ . By (2.26), we have z = [y, g '] =y~ )" .
Finally, ¢ = zsinceze Z. Since X = Z < X,y >< H is abelian, it follows that

2 =z p¢ =y and x¢ = xp/20), 2.27)

for any integer j =0, 1, ..., p — 1. Because g7 € H centralizes X by 2.15, we have
=1 andy”z(g) =1.

Observe that the statement is true for p < 3 since then ’%] < 2. Thus, we may assume
that p is odd. Hence, p divides (5) = 22" and z®) = 1. Therefore,

W= =1 (2.28)
It follows that ', z' and z/> depend only on the residue of i modulo p, for any
integer i > 0.

2.29. Observe that Ker(§2) N Ker(zz) < Ker(x) N Ker(y) = 1 implies that z is not in
both Ker(é,) and Ker(trz). Without loss of generality, we may assume that 74(z) # 1.
Since 8 is an extension of 7z, we may assume that g(z) # 1.

Claim 2.30. &zt(2) is primitive pth root of unit.

Proof. Suppose that (£,7,)(z) = 1. Then, (£,72)([y, g']) = 1 and so (§,12)3(y) =
(,zt2)(y). Since H is abelian, |G : H| = p, 6; lies above £z77 foralliand g € G\ H, it
follows that Y =< y, Z(G) > is contained in Z(6;). This is contradiction with Claim
2.13. Thus, (§272)(z) # 1. Since z is of order p and &1 is a linear character, the claim
follows. O

Claim 2.31. Suppose that
apf = ()8, (2.32)
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and
ap® = (@B)'s, (2.33)

for some je{0,1,...,p—1}, j#1, some & e lrr(XmodY) and some rse€
{0,1,...,p—1}. Then,

8(x) = )"0, (2.34)

where 2h = 1 mod p.

Proof. By Claim 2.30 and the same argument as in the proof of Claim 3.40 of [1],
the statement follows. U

Suppose that Claim 2.24 (ii) holds. Then, by Claim 2.31, we have that §(x) =
B(2)"=D and §(x) = B(2)" V. Since B(2) = t2(2) is a primitive pth root of unit by
2.29, we have that 4j(r — 1) = hk(r — 1) mod p. Since r # 1 mod p and 24 = 1 mod p,
we have that k = jmod p, which is a contradiction. Thus, Claim 2.24 (i) must hold.

We now apply Claim 2.31 with § = 1. Thus, 1 = §(x) = B(z)"0~V. Therefore, hj(r —
1) = O0mod p. Since 2/ = 1 mod p, either j = Omodp or r — 1 = Omod p. Neither is
possible. That is our final contradiction and Lemma 2.3 is proved. ]

Proof of Theorem A. Since G is a nilpotent group, G is the direct product Gy x G,
of'its Sylow p-subgroup G; and its Hall p’-subgroup G,. We can then write x = x; X x2
and ¥ = ¥, x Y, for some characters x;, Y € Irr(G;) and some characters x», ¥, €
Irr(G»). Since x(1) = p, we have that x(1) = 1 and thus x»v, € Irr(Gy). If ¥ (1) # p,
since ¥ (1) is a prime number, we have that v;(1) = 1 and thus ;1 is an irreducible.
Therefore, x v € Irr(G) and (iv) holds. We may assume then that (1) = p and thus
Y(1) = 1. Then, x,v» is a linear character and so we may assume that G is a p-group.

If x4 has a linear constituent, by Lemmas 2.1 and 2.2, we have that (i) or (ii) holds.
So, we may assume that all the irreducible constituents of x are of degree at least
p. If x has an irreducible constituent of degree p?, then x v € Irr(G) and (iv) holds.
We may assume then that all the irreducible constituents of x have degree p. Since
x (1) = p?, it follows that n(x¥) < p. By Lemma 2.3, we have that either n(xy) = 1
or n(xvy) > ’%1, and so (iii) holds. ]

Examples. Fix a prime p > 2

(i) Let E be an extraspecial group of order p* and ¢ € Irr(E) of degree p. We can
check that the product ¢¢ is the sum of all the linear characters of E.

(i1) In the proof of Proposition 6.1 of [2], an example is constructed of a p-group G
and a character x € Irr(G) such that x7x is the sum of p distinct linear characters and
of p — 1 distinct irreducible characters of degree p.

(iii) Given an extraspecial group E of order p?, where p > 2, and ¢ € Irr(E) a
character of degree p, we can check that ¢¢ is a multiple of an irreducible. In Proposition
6.1 of [1], an example is provided of a p-group G and a character x € Irr(G) such that
n(xx) = ‘%1. In [6], an example is provided of a p-group P and two faithful characters
8, € € Irr(P) of degree p such that n(se) = p — 1.

Let G be the wreath product of a cyclic group of order p*> with a cyclic group of
order p. Thus, G has a normal abelian subgroup N of order (p?)’ and index p. Let
A € Lin(N) be a nontrivial character. We can check that y = A% and ¢ = (A1*)“ are
irreducible characters of degree p and yx ¥ is the sum of p distinct irreducible characters
of degree p.
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We wonlder if there exists a p-group P with characters y, ¥ € Irr(P) of degree p
such that 2= < n(xy) <p — 1.

(iv) Let Q be a p-group and « € Irr(Q) be a character of degree p. Set P = Q x Q,
x =k x lg and ¢ = 15 x k. Observe that x, ¥ and xy are irreducible characters
of P.
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