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Abstract

This paper investigates the logical stability of various groups. Theorem 1: If a group G is stable
and locally nilpotent then it is solvable. Theorem 2: Every non-Abelian variety of groups is
unstable.

Morley (1965) introduced the notion of a totally transcendental complete
first order theory; Shelah (1969) generalized this to the notion of a stable first
order theory. The study of stable and unstable first order theories has yielded a
number of results: e.g., Lachlan (1974), Shelah (1971 a,b). Various mathemati-
cians, including Keisler and Shelah, have suggested the application of these
concepts to the classification of groups.

The classification is complete for Abelian groups (Berthier (1973), Eklof
and Fisher (1972), Macintyre (1970)). In this article we begin the classification
for non-Abelian groups.

In Section 1, we define the logical concepts involved and establish some
special properties of these concepts in the context of groups. In Section 2, we
classify a number of particular groups. In Section 3, we give an application of
the logical concepts to group theory by proving a locally nilpotent stable group
is solvable. In Section 4, we investigate incomplete theories of groups and
prove every non-Abelian variety contains an unstable group. Finally, we
suggest several specific open problems in the area.

Our notation is consistent with that in Shelah (1971 a). Either that work or
Sacks (1972) can serve as a logical reference. We would like to acknowledge
useful conversations and correspondence with G. Sabbagh. Several of the
results in this paper (notably Lemma 2.2, Theorem 2.3, Theorem 2.4, and
Theorem 4.1) were obtained independently by Sabbagh (1975 a, b).

Section 1.

In this section we recount for algebraists the principal logical definitions
and results used in this work. A thorough investigation of stable theories occurs
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in Shelah (1971 a) and we rely heavily on that work. After listing a few general
results from model theory we turn to some specific formulations for applica-
tions to algebra, and in particular the theory of groups.

A complete theory of groups is a maximal consistent set of first order
sentences in tfie language of group theory (i.e. with non-logical symbols, •, - 1
and 1). In particular, for any group G, Th(G) = {<p | G \\ = <p} (i.e. the set of first
order sentences true in G) is a complete theory. Rosenstein (1973) elucidates
the notion of first order property in a group theoretic setting.

If A is a subgroup of B such that every first order formula (possibly with
names for some members of A) which is true in A is true in B then we say A is
an elementary submodel of B(A < B). Let b0 £ B > A. Then the type p which
b0 realizes over A is the set of all formulas <p(v0, a) (where a is a sequence of
elements from A) such that B\=<p(b0, a). We denote by S(A) the set of all types
realized in some elementary extension B of A. Now for each complete theory
T define a function from cardinals to cardinals by

KT(\) = sup{\S(A)\: A\=T a n d \A\^X}.

(This definition differs slightly from that given by Shelah (1969), but it is easy to
see that the difference is mainly notational.)

Shelah (1971a) and Keisler (1974) have shown that for any first order
theory T the function KT(A) is one of the following six functions,

i) KT(K) = K (T is No-stable or totally transcendental.)
ii) K + 2"° (T is superstable.)

iii) /c"° (T is stable.)
iv) KT(K) = ded (K) (T is ordered.)
v) KT(K) = ded(K)"° (T is multiply-ordered.)

vi) KT(K) = 2" (T has the independence property.)
Thus the question we shall address is: given a group A, into which of these

six stability classes does Th(A) fall. We will say, e.g., A is stable if Th(A) is
stable. We will not deal here with the distinction between iv) ordered and v)
multiply ordered. (For further information on this and the definition of the
function ded from cardinals to cardinals see Keisler (1974) and Shelah (1971a:
§4.) If Th(A) is in classes iv), v) or vi) we say A is unstable. Note that if G is a
finite group then | S(G) | = | G | so our interest is primarily in infinite groups.

The following definitions and results of Shelah link the foregoing "global"
properties with "local" properties of particular formulas.

DEFINITION, (a) A formula <p(x, y) is unstable in T, if for every n g 1, T
implies the sentence

A__3tv A

where r,, • • •, r2n - 1 enumerate the binary sequences of length less than n,
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a | i denotes the restriction of the sequence a to i, and <p(x, y)"fl> denotes
<p(x, y) or O(p(x, y) according as cr(i) = 0 or o-(i') = 1.

(b) A formula <P(JC, y) has the independence property for T if for every
n i l , T implies the sentence.

4>" : 3H>0, • • -,3wn~, A Bf,, A t/»(t\,, VVJ)""'

Thus a formula <p(x, y) is unstable in T if for every n, a binary tree of
length n can be found where each node represents an instance <p(x, a) of
tp(x, y) or a negation ~ <p(x, a) and each path through the tree is satisfiable.
The formula <p has the independence property if this tree can be chosen so that
all nodes at the same depth on the tree are either ip(x, a) or ~ <p(x, a) for the
same a.

The following examples illustrate some of the definitions of the last few
paragraphs. The theory of algebraically closed fields is totally transcendental.
For, if F is an algebraically closed field, S(F) consists of the types of elements
of F and the unique type of an element which is algebraically independent over
F. The theory, Th(Z, + ) , of the integers under addition is an example of a
superstable but not totally transcendental theory. That is, for any model B of
Th(Z, +), a member p of S(B) is determined by whether p describes a
member of B or, if not, by which standard prime numbers divide each element
which realizes p. Thus, | S(B) | = | B | + 2*V If T is an unstable theory then
(Shelah (1971) a); §4) either some formula (p(x, y) has the strict order property
(i.e. there is a model A of T and a sequence of sequences (ai)1<o, such that
A\=3x((p(x, ak)/\(p(x, a,) if and only if k < /) or some formula t/<(x, y) has the
independence property (i.e. there is a model A and a sequence of sequences
(ai),<<u such that sets defined by the formulas <p(v, di) are independent subsets
of A" in the sense that any Boolean combination of these sets in nonempty.) In
the presence of GCH, ded (K) = 2" so the classes iv), v), and vi) defined above
coalesce. But the syntactic distinction indicated in this paragraph remains. To
see that in either case T is unstable in the sense of the earlier definition note
that in either case we can for any cardinal A by the compactness theorem
expand the set (di)i<u to a set X of cardinal A. Moreover in the first case
(compactness again) we may assume X is densely linearly ordered. Now, for
every cardinal A, there is a dense linear order X of power A with | the set of
Dedekind cuts of X\>\X\ (cf. Shelah (1971 a). Lemma 2.3). For this X,
S(X) | > | X | = A. In the second case for any subset Y of X there is a member

p of S(X) with <p(v», x) G p if and only if x G Y. Thus | S(X) | a 2|x| = 2\ As
Shelah ((1971a): Theorem 4.7) points out, the theory of dense linear order
without endpoints does not have the independence property. Numerous
examples of theories with the independence property are given in Section 2.
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THEOREM 1.1 (Shelah (1971a)). (a) The theory T is unstable if and only if
some formula ip(x, y) is unstable in T.

(b) The theory Thas the independence property if and only if some formula
<p(x,y) has the independence property in T.

We now apply these results to groups and obtain some simpler sufficient
conditions for non-stability.

DEFINITION. A subgroup B of a group A is definable in A if there is a
formula ip(vo,d) such that B = {b \A\=ip(b,d)}, where a is a sequence of
elements of A.

THEOREM 1.2. (a) If there is a sequence of definable subgroups <B,)1<<O of A
with B,D Bi+I then A is not totally transcendental.

(b) //, in addition, the index of Bi+i in B-, is infinite then Tis not superstable.

PROOF, (a) Choose a sequence (b,) with b, £ B, - Bi+l.

Then for each k, the translates of Bk by appropriate products of the (bi)isk

produce 2k disjoint infinite definable subsets of A. Thus there will be 2""distinct
types over a countably subset of A consisting of bt, b2, • • • and the countably
many constants necessary to define the Bt.

(b). If the index of Bi+X in Bt is infinite, we can, by the compactness
theorem, find for any cardinal K and all / simultaneously, a model of Th (A) and
elements (bL)a<,. such that b'aB, n b^B, = 0 if a^ /3. If we choose « with
K H °>K we see A is not superstable.

Theorem 1.2 depends strongly on the fact we are dealing with groups (or at
least some class of algebras). There certainly exist totally transcendental
theories with infinite decreasing sequences of definable sets. The key to
Theorem 1.2 is the ability to translate subgroups. In fact, the theorem does not
go through for ascending chains of definable subgroups. For, Sabbagh has
pointed out that theory of the additive Abelian group Zp- is co- stable (indeed
Ni-categorical) but contains an increasing chain of definable subgroups Bn =
{x \p"x = 0}. On the other hand if the Bn's are defined uniformly (see below)
then A is unstable and this result has nothing to do with group theory.

A sequence of subsets B,,B2- • • of a structure is uniformly definable if
there is a formula <p(x, y) and a sequence of sequences («,)•«* such that
Bi={b\A \=<p(b,a,)}.

THEOREM 1.3 (Shelah (1971) a)). If a group A contains an infinite increas-
ing (or decreasing) sequence of uniformly definable subsets (in particular
subgroups) then T is unstable.

PROOF. This is just a special case of (Shelah 1971 a: Theorem 2.13).
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We relate one further method of proving unstability which holds in general
but is particularly useful in this context.

THEOREM 1.4. If A C B and the quantifier free formula <p(x, y) is unstable in
Th(A) (has the independence property in Th(A)) then tp(x, y) is unstable (has
the independence property) in Th(B).

PROOF. Note that the sentences ipn which asserts that ip(x, y) is unstable in
Th(A) are all logically equivalent to existential sentences. So each <pn is true in
B and thus <p is unstable in Th(B). The situation is exactly the same if <p has
the independence property.

We now relate one result which enables one to prove a group is stable.

THEOREM 1.5 (Macintyre (1970)). Let A and B be groups then the stability
class of A®B is the same as the stability class of the less stable of A and B. In
particular, if A and B are totally transcendental (superstable, stable etc.) so is

PROOF. Macintyre proved that \S(A©B)\ = \S(A)\
the introduction to Eklof and Fisher (1972).

\S(B)\. See also

Section 2

In this section we investigate the stability of various groups. We first
report earlier work completely solving the problem for Abelian groups. We
then make use of the results proved in Section 1 to prove various well-known
groups are unstable.

The investigation of the stability classes of Abelian groups was begun by
Macintyre (1970) who determined all the totally transcendental complete
theories of Abelian groups. Berthier (1973) proved that every complete theory
of Abelian groups is stable. The complete theories of Abelian groups were first
determined by Szmielew (1955) and later by Elkof and Fisher (1972). In their
paper Elkof and Fisher also established in which cardinals K a complete theory
of Abelian groups has a saturated model.(See Sacks (1972) or the introduction
to Eklof and Fisher (1972) for a definition.) It follows from work of Shelah
(1971 a) that a countable complete theory T is stable in K if and only if T has a
saturated model of power K. One can thus determine from the table on page 146
of Eklof and Fisher (1972):

THEOREM 2.1 (Shelah, Eklof, Fisher).

1. Every Abelian group is stable.
2. There are stable but not superstable Abelian groups.
3. There are superstable but not totally transcendental Abelian groups.
4. Every H0-categorical Abelian group is totally transcendental.
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The following example illuminates the situation somewhat. Let T be the
complete theory of Abelian groups which asserts G is torsion-free and for
every p the dimension of GIpG is infinite. (The completeness of T is a special
case of Szmielew's theorem.) Now the subgroups n\G form a decreasing
sequence of subgroups Bn such that Bn+, is of infinite index in Bn. Hence, by
Theorem 1.2 b), G is not superstable.

By taking the direct sum of a finite non-Abelian group with an Abelian
group of the appropriate sort and applying Theorem 1, we see there are stable
but not superstable, superstable but not totally transcendental, and also totally
transcendental non-Abelian groups.

We now prove that various infinite permutation groups are unstable,
indeed, have the independence property.

The symmetric group on K elements, SK, consists of all permutations of a
set of K elements. The restricted symmetric group S'K consists of those
permutations which move only finitely many elements.

The groups SK give rise to various complete theories (depending on K)
whose properties are explored in McKenzie (1971). In contrast, it is easy to
show by the method of Ehrenfeucht games that for any pair of infinite cardinals
a and /3, S'a is elementarily equivalent to S'p.

LEMMA 2.2 The restricted Symmetric group SL has the independence
property.

PROOF. We show the formula [x, y] = 1 is unstable in SL- For fixed n, we
must show Sw \=<p" where <p" is the formula in the definition of the indepen-
dence property.

We choose elements a0, • • •, an-\ and {ba)cr G 2" to satisfy <p". Let a, be the
transposition (2i, 2/ + 1). Let ba be the product of the transposition (3n, 3n + 1)
and the transpositions (2i, An + i) for those i such that o-(/)=l. Then ba

commutes with a< if and only if o-(i) = 0, so SL\=(p".

THEOREM 2.3. // G contains the restricted symmetric group on an infinite
set then G has the independence property. In particular, for all infinite cardinals
K, SK and S'K have the independence property.

PROOF. The result is immediate from Lemma 2.2 and Theorem 1.4.

A group G is algebraically closed if every set of equations with parameters
from G which is solvable in an extension of G is solvable in G (see Scott
(1951). The following theorem answers a question raised by C. F. Miller and P.
M. Schupp.

THEOREM 2.4. If G is an algebraically closed group then G has the
independence property.
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PROOF. It is well known that an algebraically closed group is in fact
existentially closed (i.e. if <p is an existential sentence with parameters in G and
G CH where H |=<p then G |=cp). Moreover, if A and B are groups there is a
common extension of A and B. Thus, given an algebraically closed group C
every finite group can be imbedded in C. (This construction occurs in Scott
(1951)). But, slightly varying the construction of Theorem 2.3 we see that any
group which contains the symmetric group on n-elements, for every finite n,
has the independence property.

Section 3

In this section we give an application of the notion of stability to prove a
theorem of a more traditionally group-theoretic nature.

In the following Z(G) denotes the center of a group G and Ca(a) denotes
the centralizer in G of the element a. A group G is locally nilpotent if every
finitely generated subgroup of G is nilpotent.

LEMMA 3.1. Let G be a locally nilpotent group such that for each a E
G\Z(G), CG(a) is 2n-\-step solvable then G is 2n + \-step solvable.

PROOF. Note, first, that it suffices to show G = G/Z(G) is 2n-step solva-
ble. Now, suppose that for each X/ 1 E G, Ca(X) is 2n-step solvable. Then if
H is any finitely generated subgroup of G, H has a non-trivial center since G is
locally nilpotent. Thus H C CG(X) for some X^ 0 so H is 2n-step solvable and
so G is 2n-step solvable. Now for a fixed X/ 1, let C = CG(X) and let C be the
inverse image of C in G. We show that C is 2n-step solvable by noticing that if
x is a preimage of X, then C", the derived group of C, is contained in CG{x)
which is 2n-l-step solvable by hypothesis. Let f,gG.C. Then xf, X' are in
xZ(G) so x' = xb and x* = xc with b, c E Z(G). Hence, xfg = xbg = xbc =
xcb = xc" = xsf. Thus [/,g] E CG(x) as desired.

LEMMA 3.2 Let G be a locally nilpotent group. For every natural number n
either:

i) G is 2n-\-step solvable
or ii) There exist a,,- • -,an E G such that for each i s n,

afE n CG(a,) \Z( n CG(a,)).

PROOF. The proof is by induction on n. If n = 1 the result is trivial.
Suppose now that n > 1 and we have proved the result for n - 1. Either, we can
choose ai, •••<!„ to satisfy.i) or for each alSG\Z(G), Ca(a,) is 2n-step
solvable by induction hypothesis. But then by Lemma 3.1 G is 2n-l-step
solvable as desired.

Now we can give the promised application of stability.
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THEOREM 3.2. If a locally nilpotent group G is stable then G is solvable.

PROOF. We suppose that G is not solvable and invoke ii) of Lemma 3.2. We
will rely on (Shelah 1971 a: §2): which implies that a formula <p(x, y) is unstable
if for each n there exist a,, • • -,an, bu • • -,bn such that (p(a,, bj) holds if and only
if i < j , to show the formula [JC, y] = 1 is unstable in G. (In fact, we show
[x, y] T* 1 has the order property (Shelah 1971 a: Definition 2.2)). Let a,, • ••, a.
be as in Lemma 3.2 ii). We proceed by a double induction to choose appropriate
bn, bn~\, • • •, bi. Suppose bn, • • •, bn-«-\) have been chosen. Since

an-kG D Ca(a,)\z( fl
Kn-k \ i<n-

there is an element bt-k, such that [b$-k,a,] = l for i<n-k and
[b^-k, an-k] ^ 1. We now choose c o = b*-k, c,,- • - ,c t = bn-k such that [c(, a,] =
1 if j < n - k and [c,, a;] ^ 1 if n - k S / S n - k + I. Suppose we have chosen
such a cm. If [cm, an-k+m+l] ^ 1 let cm+1 = cm. If not, let cm+, = cmbn-k+m+l. To see
cm+, is an appropriate choice recall that if [x, y] = 1, [x, z] / 1 then [x, yz] / 1.
Thus we choose elements bn, • • •, bx such that [ah bk] = 1 if and only if / < k so
G is unstable as desired.

This theorem naturally raises the question of whether there are other
group theoretic conditions which in conjunction with stability might imply that
a group is solvable. Sabbagh (1975 b) has shown that if K is an algebraically
closed field and n > 1 then PSL(n, k) is a totally transcendental infinite, simple
group so some further condition is necessary.

The results of the next section, (see also Sabbagh (1975 a, b)), show that
there are many nilpotent unstable groups. The following concrete example
shows that, unlike direct product (Theorem 1.5), semidirect product does not
preserve stability.
Let A be the direct sum of countably many copies of Z3 with generators
a0, a!,•••, and let B the direct sum of countably many copies of Z3 with
generators b0, b,, b2, • • •, and let 6 : B —* Aut (A) define the action of B on A as
follows

[ a , i f j S i )
0(b,)(a/) = j

[a,a0 if i>i J

Then the semidirect product AXeB is nilpotent of class 2 but unstable. This
example arose out of discussions with Peter Neumann.

Section 4

The definitions given in Section 1 dealt with complete theories. We can
extend our investigation to incomplete theories as follows.
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DEFINITION. A theory T is stable (superstable etc.) if and only if every
complete extension of T is stable (superstable etc.).

This definition accords with the definition of stability for incomplete
theories given in Berthier (1973).

A variety of groups is a class of groups defined by a set of equations.
Birknoff's theorem asserts that a class K of groups is a variety if and only if K
is closed under homomorphism, subalgebra and direct product.

As remarked in Section 2 every complete theory and thus, in particular,
every variety of Abelian groups is stable. In contrast, we have the following
result which relates to a question of Keisler. See also: Sabbagh (1975 b).

THEOREM 4.1. Every non-Abelian variety of groups is unstable and, in fact,
has the independence property.

PROOF. Let K be any non-Abelian variety of groups and let A be a
non-Abelian member of K. Choose a, b G A such that a and b do not
commute. Let B be A" (the direct product of countably many copies of A).
Let an, n G w and ds, S C co, be the following elements of A ":

if
if

if
if

i

i

i
i

/ n
= n

ds(i) =

Then ds commutes with an if and only if n G S. It is now easy to see that the
formula [x, y] = 1 (x commutes with y) has the independence property in
Th(B) and hence, by Shelah (1971 a), Th(B) and thus K has the independence
property.

Our proof also yields (cf. Baldwin and Lachlan 1973).

COROLLARY 1. If T is a complete theory of groups such that
i) T has a non-Abelian model and
i) the class of models of T is closed under direct product then T is

unstable. Indeed, T has the independence property.

At the AMS colloquium lectures (1975), see Keisler (1975), Keisler asked
whether there was any extension of the theory of groups which was neither
Ko-stable nor had the independence property for quantifier free types. We have
shown here that if T is any extension of the theory of groups satisfying: (i) T
has a non-Abelian model and T is closed under direct product then there is a
quantifier free formula of T which has the independence property.

We ask, is there a group G such that the universal theory of G (the set of
all sentences true in G which have only universal quantifiers) has an unstable
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quantifier-free formula, but no quantifier-free formula has the independence
property?

In the original draft of this paper we asked whether an unstable group i.e.
the complete theory of G unstable, must have the independence property.
Sabbagh has pointed out that if k is a real closed field then it is implicit in
Sabbagh (1975 b),.(using the results of Malcev referred to there), that GL(n, k)
is unstable, but GL(n,k) does not have the independence property.

The following question which is suggested by Lachlan's (1974) question of
whether an Ko-categorical stable theory must be totally transcendental remains
open.

Does there exist a stable but not totally transcendental group of bounded
exponent?
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