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Abstract
Objective: Accurate measurements of food volume and density are often required
as ‘gold standards’ for calibration of image-based dietary assessment and food
database development. Currently, there is no specialised laboratory instrument
for these measurements. We present the design of a new volume of density
(VD) meter to bridge this technological gap.
Design:Our design consists of a turntable, a load sensor, a set of cameras and lights
installed on an arc-shaped stationary support, and a microcomputer. It acquires an
array of food images, reconstructs a 3D volumetric model, weighs the food and
calculates both food volume and density, all in an automatic process controlled
by the microcomputer. To adapt to the complex shapes of foods, a new food sur-
face model, derived from the electric field of charged particles, is developed for 3D
point cloud reconstruction of either convex or concave food surfaces.
Results:We conducted two experiments to evaluate the VDmeter. The first experi-
ment utilised computer-synthesised 3D objects with prescribed convex and con-
cave surfaces of known volumes to investigate different food surface types. The
second experiment was based on actual foods with different shapes, colours
and textures. Our results indicated that, for synthesised objects, the measurement
error of the electric field-based method was <1 %, significantly lower compared
with traditional methods. For real-world foods, the measurement error depended
on the types of food volumes (detailed discussion included). The largest error was
approximately 5 %.
Conclusion: The VD meter provides a new electronic instrument to support
advanced research in nutrition science.
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With the high prevalence of obesity, diabetes and other
chronic diseases, the study of caloric and nutritional intake
becomes increasingly important(1,2). Besides proper food
choice, the control of portion size is the most deterministic
factor in controlling intake. Traditionally, food portion size
is measured in terms of either weight or volume. Although
the weight measurement can be conducted precisely using
a weighing scale, it is inconvenient because the weighing
scale must be placed at, or carried to, the eating site.
Volumetric portion size measurement, on the other hand,
is traditionally conducted by self-estimation with reference
to a common object (e.g. a cup, a spoon or a fist). In some
cases, a set of descriptive terms is used (e.g. small, medium
or large) instead of a quantitative volumetric value.

Although these intuitive approaches are easy to learn for
people to self-monitor their intake, they are clearly very
subjective and inaccurate. In addition, numerous studies
have shown that people tend to underreport their
intake(3,4).

Recently, advances inmicroelectronics andmobile tech-
nology have led to an imaging approach to portion size
measurement. A food image acquired by a cell phone or
a wearable device can be used to quantitatively measure
food volume based on a mathematical transformation of
coordinates, expressed inmatrices, between the image pix-
els and real-world coordinates(5,6). Several computational
methods have been developed(7,8), including those based
on wireframe shape models(9), structured lights(10) and
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depth maps(11,12). Although this advanced imaging
approach holds promise for objective portion size quanti-
fication, its accuracy is currently much lower than that of
the weight-based approach. As a result, it is often required
to assess volumetric accuracy before a large-scale dietary
study is conducted. Unfortunately, one cannot assess this
accuracy easily because the true volume of food that serves
as the ‘gold standard’ is difficult to obtain. Traditionally, the
water displacement method is often used to measure the
true volume. However, foods that are destructible in water
cannot be measured unless they are properly sealed.
Frequently, the sealing process alters the volume if the food
is compressible. Although water in this method can be
replaced by certain plant seeds (e.g. rapeseeds or millets),
sealing is still required for foods containing liquid, and the
degree of seed compression, which is influenced by a
variety of physical factors(13), introduces a new source of
error. Several advancedmethods have been reported using
a CT/MRI scan(14) and a gas comparison pycnometer(15).
However, these methods are expensive, and they do not
measure the same kind of volume as pictured in a photo-
graph that shows only the surface of food, not its interior.
Currently, the lack of accurate food volumemeasurement is
a significant stumbling block in image-based dietary
assessment.

Technological advances in dietetics and nutrition sci-
ence face another significant challenge in updating the
existing food databases. A food database for dietary assess-
ment outputs values of calories and nutrients based on
inputs of food names and portion sizes. Many currently
used large databases were established over decades.
Some food entries do not provide volumetric measures(7).
Updating food databases is thus necessary to support the
new imaging technology. Clearly, this conversion cannot
be accomplished properly without an accurate means to
determine the true volume of food.

In this work, we present an electronic instrument to
measure both food volume and density (VD). We call it a
VD meter. The VD meter is composed of four main mod-
ules: a mechanical module to support a turning table and
a weighing sensor; a camera module for image acquisition
by an array of cameras with illuminating lights; an elec-
tronic module for power supply and system control/
coordination; and a data processing module for performing
image calibration and 3D surface reconstruction.

The rest of the paper is organised as follows. The struc-
tural design of the VD meter will be described. The sub-
sequent section highlights our algorithms for image
calibration and reconstruction with an emphasis on a
new mathematical model that mimics the physical proper-
ties of the electric field. We use this model to estimate food
surface from a 3D point cloud, followed by estimating the
volume and density. Our experiments and data analysis
will be presented. After a discussion about several impor-
tant constraints in food volume measurement, this paper
will be concluded.

Structural and hardware design

A cross-sectional view (in the vertical direction) of the VD
meter is illustrated in Fig.1. The mechanical module con-
tains a turntable rotating precisely at a constant speed of
0·625 rpm and driven by a step motor through a transmis-
sion system. A high-precision load sensor is installed under
the turntable as the weighing sensor. The camera module
of the VD meter contains an arc-shaped stationary support
that is installed with a set of high-quality cameras (Type
MER-132-30GM; Daheng Group, Inc.) with a resolution
of 1292 × 964 pixels, frame rate 30 frames per second
and pixel size of 3·75 × 3·75 μm. In our experiment, we
used three cameras (installed on the arc support and
marked with green borders), and the imaging rate was
sixty-four images per turntable rotation. The cameras are
properly angled towards the turntable. The support arc is
also installed with a set of white LED aiming at the turn-
table. Each LED is located at themiddle of the neighbouring
cameras. The electronic module within the VD meter pro-
vides power to other units, interfaces data (for cameras,
weighing sensor and exterior computer) and coordinates
functions among other system components. Additionally,
a data processing module, which is a set of software, is
loaded in both the microcomputer within the VD meter
and a desktop computer connected to the VD meter. The
assembled system is shown in Fig. 2a.

During measurement, food, with or without a plate, is
placed on top of the turntable. The control unit has an
option to tare the plate weight automatically to obtain
the net weight of the food. As the turntable rotates for an
entire cycle (360°), the set of cameras synchronously takes
images at multiple positions, forming an imaging surface
shaped like a mesh dome food cover (Fig. 2b). Precisely,
sixty-four images were taken for each camera, and a total
of 64 × 3= 192 images were obtained by the three cameras
of the VDmeter for each foodmeasurement. Since the rota-
tion speed of the turntable and the locations/orientations of
the cameras are known, all picture-taking points (small red
cameras in Fig. 2b) on the ‘mesh dome’ are known and dis-
tributed regularly on the dome, minimising the likelihood
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Fig. 1 (colour online) Food image acquisition platform
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of occlusion. With shadowless illumination provided by
white LED, the VD meter provides an imaging platform
for high-accuracy food image reconstruction. Here we note
that the size of the food measurable by the VDmeter is lim-
ited by the turntable size and the space within the imaging
area. However, we intentionally designed them to be suf-
ficiently large (Fig. 2a) for common foods.

System calibration and volume estimation based on
3D point cloud

System calibration
In order to establish correspondences between image pixels
and real-world coordinates, the imaging system within the
VD meter must be calibrated. This calibration is required
only once if the system is not re-adjusted or repositioned.
The calibration is performed using an algorithm (more
information is provided in Supplementary material S1)
with a sheet of checkerboard placed on the turntable, as
shown in Fig. 2.

Point cloud construction from multi-view images
The purpose of this part of the algorithm is to compute a 3D
cloud of food surface points based on 192 2D images in dif-
ferent views. While the details of the algorithm can be
found in Supplementary material S2, here we highlight
the key procedures utilised. First, a set of common points
(called feature points) observable from multiple neigh-
bourhood images are selected automatically. Then, these
feature points are one-to-one registered across as many
images as possible. Next, the 3D relationships of these fea-
ture points are obtained and utilised to calculate a 3D cloud
of points in the actual world coordinates (in a real-world
unit, e.g. millimetre) as illustrated in Fig. 3. Finally, outlier
points due to noise are identified and removed from the
point cloud.

Volume estimation from point cloud
The next major computational procedure is to estimate
food volume from the point cloud. Traditionally, this esti-
mation is performed using the convex hull method in
which the surface is assumed to be locally convex(16,17).
However, it is problematic to estimate the food volume
using this method because this special type of 3D objects
often has concave local surfaces. When the convex hull
method is applied to a concave surface, the estimated vol-
ume tends to be larger than the true volume. In order to
solve this significant problem, we present two methods
for food volume estimation: a simple sliced point cloud
method and a robust estimation method using a new elec-
tric field-based physical model (Fig. 4). These methods are
described in detail in Supplementary material S3.

Experiments

To evaluate the performance of the VD meter, we con-
ducted two experimental studies of both computer-
synthesised 3D objects and real food samples. Since
the food density is equal to mass divided by volume, and
the mass measurement is at least two orders of magnitude

Fig. 2 (colour online) (a) A VD meter assembly with the world
coordinate system indicated (in red colour); (b) imaging surface
and equivalent image-taking points (small red cameras)
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Fig. 3 Principle of 3D point reconstruction
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Fig. 4 (colour online) Model of the electric field-based method
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more accurate (when a high-quality digital load sensor is
used) than the volumetric measurement, the error in mass
measurement can be ignored. As a result, the accuracy of
volumetric measurement is equivalent to the accuracy of
density measurement. Therefore, we needed only to per-
form experiments for the volumetric case. We used com-
puter synthesis in the first study because, in this case, the
true volumes of 3D objects are precisely known, and this
approach allows us to evaluate our algorithm performance
for specific concave surfaces. In the second study, real-
world food samples with a variety of shapes, colours and
textures were utilised to evaluate the VD meter perfor-
mance. In both studies, we compared volume estimation
accuracies of different methods, including the convex hull
method, the slice-based method and the electric field
method. For the last method, we conducted an additional
study by changing point cloud density and adding noise
and outliers to evaluate the robustness of this method.

Experiments on synthetic object models
Two 3D volumetric models were synthesised computation-
ally, as shown in Fig. 5. We applied the convex hull
method, slice-based method and electric field method to
each point cloud for volume estimation and compared their
results against the ground truth volumes of synthesised
models. We performed the slice-based method twice for

N= 10 and N= 18, where N represents the number of
slices.

Table 1 compares the three methods quantitatively,
where both N= 10 and N= 18 cases for the slice-based
method are listed. It can be observed that the convex hull
method tends to distort the regions where the object sur-
face is locally concave. As a result, the estimated volumes
are larger than the true volumes (comparing Figs. 5 and 6).
In contrast, in our electric field-based method, the point
cloud points were well fit by the free particles even in con-
cave regions (Fig. 7).

Comparedwith the convex hull method, the accuracy of
the electric field method is higher. In the slice-based
method, estimation accuracy tends to increase as the num-
ber of slices increases. However, this method has a signifi-
cant problem: it is difficult to determine N (number of
slices) applicable to different point cloudmodels. For a spe-
cific food, N needs to be adjusted manually. Estimation
accuracy tends to increase as the number of slices
increases, but, if the number of slices is too large, the num-
ber of points in each slice reduces, which tends to affect
estimation accuracy negatively.

For the best performing electric field method, we con-
ducted additional experiments to evaluate its robustness
by changing the density of the original point cloud. For
each object model, we compared three point cloud den-
sities, as shown in Table 2. It can be observed that
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Fig. 5 Original point cloud of synthetic 3D object models: (a) model 1; (b) model 2

Table 1 Volume estimation results of synthesised object models

Convex hull-based method
Slice-based method

(n 10)
Slice-based method

(n 18) Electric field-based method

Model 1 (ground truth= 279·2 cm3)
Estimated volume (cm3) 294·2 291·7 286·1 277·6
Error 5·4 % 4·5 % 2·5 % 0·6 %

Model 2 (ground truth= 1802·3 cm3)
Estimated volume (cm3) 1839·4 1839·6 1836·7 1819·2
Error 2·1 % 2·1 % 1·9 % 0·9 %
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estimation accuracy remains<1 % regardless of the choices
of number of points in the cloud. During 3D reconstruction,
noisy outliers are present due to calibration error, matching
error and other sources of errors. These outliers are often
difficult to remove. In order to evaluate the electric field
method with the presence of noise and outliers, we added
white Gaussian noise (mean= 0, standard = 1) and outliers
(randomly generated from a uniform distribution in the
range of [0·05, 5]) separately to each point cloud and per-
formed volume estimation. The results (Table 3) indicate
that the electric field method maintained similar perfor-
mances regardless of noise and outliers.

Experiments on real food samples
Six foods, purchased from cafeteria and food stores, were
used to study the real-world performance of the VD meter.
For each food, we used the VDmeter and applied the elec-
tric field method to estimate the volume. For the same food,
we also obtained its 3D point cloud using a laser
scanner(18), which is considered to be close to the ground
truth of 3D shape of the food. The electric field method is
also applied to the 3D point cloud from the laser scanner to
estimate the volume, in order to check the accuracy of 3D
point cloud from the VD meter. Furthermore, we also used
the slice-based method, where both N= 20 and N= 50
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Fig. 6 (colour online) Estimation of the convex hull method for volumetric models in Fig. 5: (a) model 1; (b) model 2
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Fig. 7 (colour online) Estimation of the electric field method for volumetric models in Fig. 5: (a) model 1; (b) model 2

Table 2 Volume estimation results of the electric field method with different densities

Model 1 (ground truth= 279·2 cm3) Model 2 (ground truth= 1802·3 cm3)

Number of points 5880 11 480 17 220 4304 6049 12 007
Ground truth (cm3) 279·2 279·2 279·2 1802·3 1802·3 1802·3
Estimated volume 278·5 277·6 278·1 1819·2 1802·4 1797·9
Error 0·3 % 0·6 % 0·4 % 0·9 % 0·006 % 0·2 %
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were implemented. Finally, water displacement (manual
measurement) was adopted as a base for comparison, as
it is a very traditional and 3D-point-free method to obtain
the food volume.

We first performed system calibration to establish corre-
spondences between image pixels and real-world coordi-
nates using a commercial, high-precision checkerboard.
Then, 192 images (taken by three cameras) of foods in dif-
ferent views were produced by the VDmeter. Next, feature
points were detected using combined features of Harris(19)

and features from accelerated segment test (FAST)(20) and
speeded-up robust features (SURF)(21) as described in
Supplementary material S2. The threshold value of Tmin

was experimentally chosen to be 3. Then, the point cloud
of each shape model was computed according to Eq. (7) in
the Supplementary material. To remove noise and outliers,
we filtered raw clouds using Kp= 10. After filtering, we
applied the electric field method to reconstruct the surface
for each food and estimating its volume.

In contrast to the VD meter, the number of points
obtained by the laser scanner was very large (usually on
the order of 105). As a result, estimating the volume directly
using the raw point cloud data was time-consuming. Since
the density of the point cloud has only limited effect on vol-
ume estimation accuracy, to accelerate computation, the
original laser point cloud was down-sampled 80 % for vol-
ume estimation.

Table 4 lists the names of real foods (column 1), results
based on water displacement method (column 2, which
was used as the base for comparison), results of slice-based
method with its corresponding errors (columns 3 and 4 for

N= 20 and columns 5 and 6 for N= 50), image-based elec-
tric field method with its corresponding errors (columns 7
and 8) and laser-based electric field method with its corre-
sponding errors (columns 9 and 10) and cubic centimetre
as the unit of estimation values. The number of 3D points in
the real food study ranges from 7000 to 20 000.

Several important observations can be made from
Table 4. First, our electric field-basedmethod achieved bet-
ter performance than the slice-based method. Although the
best number of slices can be found for optimising volume
estimation, the optimal number differed between foods.
Second, the electric field method achieved satisfactory per-
formance regardless of different food shapes both in image-
based and laser-based point clouds.

Figure 8 shows food images tested (first row) and their
experimental results using both image- (second row) and
laser- (third row) based electric field methods. In the bot-
tom two rows, red and green points represent, respectively,
food point clouds (i.e. particles in the PCP set) and the final
positions of free particles in the NCP set. It can be seen that
the green points well represent the surfaces of red food
point clouds.

All the experiments were performed using a computer
equipped with Intel Core i7 3·5 GHz CPU and 16 GB
RAM. The time required for each measurement depends
on the complexity of food shapes and the number of points
reconstructed to estimate the volume. In our analysis, the
typical amount of time ranges from 3 to 5 min using
MATLAB. We expect the duration to be shortened substan-
tially using a different code, but with additional program-
ming effort.

Table 3 Volume estimation results of the electric field method with added noise and outliers to point clouds

Original point cloud Point cloud with random noise Point cloud with outliers

Model 1 (ground truth= 279·2 cm3)
Estimated volume (cm3) 277·5 296·0 283·0
Error 0·6 % 6·0 % 1·4 %

Model 2 (ground truth= 1802·3 cm3)
Estimated volume (cm3) 1819·2 1817·6 1817·2
Error 0·9 % 0·8 % 0·8 %

Table 4 Different methods of volume estimation of real foods

Water displacement method
(cm3)

Slice-based method
(n 20, cm3)

Slice-based method
(n 50, cm3)

Image-based electric
field method

Laser-based electric
field method

Volume
(cm3) Error

Volume
(cm3) Error

Volume
(cm3) Error

Volume
(cm3) Error

Burger 540 352 34·8 % 396 26·7 % 530 1·85 % 558 3·33 %
Bread 488 396 18·9 % 416 14·8 % 477 2·25 % 473 3·07 %
Apple 242 198 18·2 % 213 12·0 % 244 0·83 % 221 8·70 %
Rice 180 157 12·8 % 171 5·0 % 178 1·11 % 186 3·33 %
Salad 185 159 14·1 % 167 10·0 % 179 3·24 % 191 3·24 %
Stir fry 153 140 8·5 % 158 3·3 % 145 5·23 % 159 3·92 %
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Discussion

Since the VD meter measures food volume and density, it is
necessary to discuss the physical definitions of these quan-
tities and several important challenges regarding their mea-
surements. Unlike numerous incompressible objects in the
physical world that have no ambiguity in their volumetric
measures, foods do not have a unique definition for its vol-
ume. For example, the volume of an apple or a cup of coffee
is well defined. However, the volume of a bowl of rice or a
plate of salad is ambiguous because these compressible
objects are porous with connected air spaces and, as a result,
the boundary between food and air is uncertain. Strictly
speaking, volumetric measurement of this type of food is
not a deterministic quantity, but rather a probability distribu-
tion! In order to mitigate this fundamental problem, three
kinds of food volumes (and densities) have been defined(22):
bulk volume, apparent volume and net volume. Bulk volume
is the volume defined by the container (e.g. a box of cereal);
apparent volume is defined by a hypothetical enclosure cov-
ering the food; and net volume, which cannot be measured
using a camera, is the volume of net matter excluding all
spaces. Despite these three definitions, food volume is still
an ambiguous quantity. A bowl of non-liquid food has both
bulk and apparent volumes (e.g. the top and bottom parts
of the food in a bowl fit the definitions of apparent and bulk
volumes, respectively). A compressible food in a bowl or
plate does not have the same volume precisely if measured
twice. This phenomenon is due partially to the redistribution
of food elements and the variation of ‘tightness’ of the hypo-
thetical enclosure. Similarly, the concept of ‘spaces’ cannot be
accurately defined in the net volume because new gaps
between matters or particles always exist as we descend into
a lower scale of observation. Therefore, we must accept the

ambiguity in food volume (density as well) and treat these
quantities with a certain level of uncertainty (we emphasise,
again, they are probability distributions). As a result, an overly
high requirement for ‘accuracy’ in the volume of a compress-
ible food is unnecessary and misleading. By the same token,
volume and density measurements using the VD meter are
‘accurate’ only relevant to the average physical states of foods
being served in the real world, including its usual amount of
water content, temperature, surrounding pressure and com-
monly accepted containers. Moreover, the VD meter only
measures the average density of the entire food, not its local
density.

Conclusion

In this paper, we presented a new instrument, the VD
meter, to measure both food volume and density. This
instrument contains a number of hardware and software
modules, including a turntable, a pressure sensor, an array
of cameras, an array of illumination lights, an electronic cir-
cuitry for system control functions and a set of software per-
forming computations. We also presented a new algorithm
to estimate the 3D surface from a point cloud based on a
physical model that governs the motions of charged par-
ticles in an electric field. This model produces a 3D surface
of food which can have both convex and concave local
regions. Our experiments using both synthesised and real
foods indicate that the electric field method overperforms
the reference methods for food volume estimation. The VD
meter presented in this paper provides a new tool for both
portion size estimation in dietary studies and the improve-
ment of food databases.
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