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ABSTRACT. A series of wave instruments was deployed on first-year Antarctic sea ice during SIPEX (Sea
Ice Physics and Ecosystem Experiment) II. Here we describe the hardware and software design of these
instruments and give an overview of the returned dataset. Each instrument consisted of a high-
resolution accelerometer coupled with a tri-axis inertial measurement unit, which was located using
GPS. The significant wave heights measured near the ice edge were predominately between 1 and 2m.
During the 6 weeks of data capture, several large wave events were measured. We report here a
selection of events, highlighting the complexities associated with measuring wave decay at individual
frequencies.
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INTRODUCTION
Antarctic sea ice is greatly influenced by the dynamic nature
of the Southern Ocean. Ocean waves can propagate from
tens to hundreds of kilometres into sea ice (Kohout and
others, 2014), leaving behind a wake of broken ice floes.
Over recent decades, the frequency of storms has increased
in the Southern Ocean (Hartmann and others, 2013), and
wave heights are predicted to increase in the future
(Dobrynin and others, 2012). Increased storm intensity will
bring stronger winds and larger, longer waves, with the
potential to travel deeper into the ice pack, increasing the
likelihood that ice floes break apart.

Understanding the complicated physical processes of
waves-in-ice theory has been a topic of interest for several
decades (e.g. Squire and others, 1995; Squire, 2007), and has
evolved to a point where a more accurate representation of
wave decay in sea ice could be included in wave models
(Squire and others, 2009; Wang and Shen, 2010, 2011;
Dumont and others, 2011; Bennetts and Squire, 2012). The
theory, however, has typically depended on measurements
collected in the Arctic during the 1970s and early 1980s (e.g.
Wadhams and others, 1988), from experiments conducted
over short timescales and in relatively low-amplitude ocean
swells. Additional experiments have since been conducted in
the Antarctic (Hayes and Jenkins, 2007; Doble and Bidlot,
2013), but a more comprehensive dataset is still required.

To work towards this, we designed a series of waves-in-
ice observation systems (WIIOS) to measure waves in
Antarctic sea ice. These were deployed on East Antarctic
sea ice from RV Aurora Australis, during the Australian-led
second Sea Ice Physics and Ecosystem Experiment (SIPEX II).
The purpose of SIPEX II was to investigate relationships
between the physical sea-ice environment, marine biogeo-
chemistry and the structure of Southern Ocean ecosystems.
Upon entering the pack-ice zone, five WIIOS were
deployed on the sea ice along a meridional transect line.
Every 3 hours, the WIIOS simultaneously woke and
recorded wave accelerations for 34min. On 23 September
2012, three WIIOS were deployed via a helicopter hovering

�2m above the floe. The remaining WIIOS were deployed
via RV Aurora Australis’s aft 7 t crane. This was achieved in
high winds (up to 25m s� 1) and 2–3m swell. Each WIIOS
performed on-board data quality control and spectral
analysis before returning the wave spectrum via satellite.

Our aim was to capture the attenuation of wave energy as
it propagates into sea ice. There are, however, various levels
of complexity associated with extracting wave attenuation.
To accurately describe the attenuation, one must consider
wave direction, ice conditions, ice extent, storm duration
and wave speed. Due to the logistical challenges of the
study site, complications due to the proximity of magnetic
south, and the duration of the experiment, these details were
not comprehensively measured. Kohout and others (2014)
analyse this dataset, managing these complexities by
applying assumptions and using approximations from satel-
lite imagery. Any errors are minimized by focusing on the
significant wave heights, the median decay rates and
excluding outliers.

In this paper we summarize the dataset, excluding the
assumptions used by Kohout and others (2014). We also
describe, in detail, the hardware and software design of the
WIIOS. The raw data and metadata are available via Kohout
and Williams (2013). All dates throughout this paper are
referenced to coordinated universal term (UTC).

HARDWARE DESIGN
The WIIOS consisted of a single printed circuit board with
two processors and four daughter boards. The main sensor
was a high-resolution Kistler ServoK-Beam accelerometer
(model 8330B3). The Kistler is an analog force feedback
sensor incorporating a silicon micro-machined variable
capacitance sensing element that provides excellent band-
width, dynamic range, stability and robustness. Capacitive
accelerometers are less prone to noise and variation
with temperature, typically dissipate less power and can
have larger bandwidths. The Kistler has a range of
�3g (1g ¼ 9:80665m s� 2), a sensitivity of 1200mV g� 1, a
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resolution of 1.3 µg and a –40°C operating temperature limit.
Each WIIOS also included a GPS, an Iridium transceiver and
lithium batteries. A lower-resolution 9 degrees-of-freedom
Razor inertial measurement unit (IMU) was also included in
the package. This IMU incorporates an ITG-3200 micro-
electromechanical system (MEMS) triple-axis gyro, an
ADXL345 triple-axis accelerometer with 286mV g� 1 sensi-
tivity and a resolution of 4mg LSB� 1 (LSB is least significant
bits) and a HMC5883L triple-axis magnetometer. The board
came programmed with the 8MHz Arduino bootloader and
firmware. The intended use of the IMU was for true vertical
acceleration correction and wave direction. Unfortunately,
due to magnetic south distortion at the time of the
experiment, the calculated wave directions are unreliable.
The electronics were sealed in a silicon membrane to avoid
condensation andwere housed in a watertight container. The
container was packed with enough lithium batteries to
survive for a minimum of 6 weeks. Finally, the container was
fitted inside a tyre for protection and flotation (Figs 1 and 2).
The Iridium and GPS aerials were housed in a plastic
spherical container on top of a 0.5m tube attached to the
tyre. Protruding screws were fixed to the underside of the tyre
to provide friction with the ice.

SOFTWARE DESIGN

Signal conditioning
Prior to carrying out any analysis, the raw acceleration data
were conditioned. Following Earle (1996), we ran several
basic statistical tests on the raw time series. The number of
occasions that consecutive unresponsive (or showing no
variation) samples occurred was recorded and the fraction
of unresponsive samples in the Kistler record was returned.

If >15% of the Kistler data were unresponsive, the flat-lined
samples were filled with the IMU acceleration. If >50% of
the Kistler, IMU or gyro data were unresponsive, it was
assumed the full time series was corrupt and it was therefore
flagged as bad. If 100% of the IMU magnetometer data were
unresponsive, then the time series was again flagged as bad.

We also put a 0.5g upper bound on the magnitude of
the acceleration. For a Stokes 120° corner flow, the limiting
form of a non-breaking wave at the crest, the downward
acceleration of a water particle in the crest is 0.5g (Tucker
and Pitt, 2001). We also identified unlikely occurrences
(spikes) using a statistical test. These are usually set at a
probability level, meaning that they will occasionally fail
on valid data. A general approach is to remove data points
that exceed a specified standard deviation (Emery and
Thomson, 1998). A weakness with this approach is that the
spike itself is included in the calculation of the standard
deviation. This can be corrected using an iterative process,
in which the values outside the accepted range are omitted
from each subsequent recalculation of the mean and
standard deviation, until the remaining data have near-
constant statistics with each new iteration. Earle (1996)
used such an approach, with the limit being three standard
deviations over three iterations. According to Chebyshev’s
inequality, for all distributions, at least 97% of the data will
be within six standard deviations of the mean. We
therefore used the standard deviation threshold limit, but
used six standard deviations as the threshold. The number
of spikes was returned and each spike was removed and
linearly interpolated from the adjoining valid points. The
maximum number of consecutive spikes in the dataset was
also returned.

Trends in the time series should be removed before
analysis. Tucker and Pitt (2001) suggest a simple and
effective detrending scheme:

y�n ¼ yn � 1 � kð Þsn, ð1Þ

where y�n is the nth detrended signal, yn is the raw signal,
sn ¼ yn þ ksn� 1 and ð1 � kÞ � 1. At the start of the
computation, s0 is set to zero, and as the filter runs into
the data, it settles down exponentially with a time constant
of �t=ð1 � kÞ. We applied this scheme with k ¼ 0:9995.
With a sample rate of 8Hz (the rate at which the algorithm
was applied), this is the equivalent of a single-stage resistor–
capacitor (RC) electronic high-pass filter with a time-
constant of 250 s (100 s is the lowest that should be used).
It is important to remove the mean before the detrend
algorithm is applied. If this is not done, the series will begin

Fig. 2. One of the WIIOS shortly after deployment.

Fig. 1. The custom-made circuit board, lithium batteries and the
watertight case.
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at the mean of the raw series (rather than at zero). Eventually
the series will settle to a mean of zero, but it will need to run
through hundreds of iterations before settling. The spike
algorithm was reapplied after the detrending algorithm to
ensure no spikes were missed due to the presence of a trend.

As shown by Bender and others (2010), the method of
using only the vertical acceleration relative to the platform
(Ap

z ) to approximate the true vertical acceleration (relative to
the Earth, Ae

z) is only sufficiently accurate when the tilt is
<10° from the vertical. If the instruments are deployed with
an angle >10° the heave will be overestimated. Ae

z can be
calculated given the roll, pitch and the platform relative
acceleration along three axes (Bender and others, 2010)

Ae
z ¼ � g sin ð�ÞAp

x þ sin ð�Þ cos ð�ÞAp
y þ cos ð�Þ cos ð�ÞAp

z

� �
,

ð2Þ

where � is the pitch and � is the roll. Therefore, using the
high-resolution z-axis accelerometer, and the lower-reso-
lution x- and y-axis accelerations, combined with the roll
and pitch calculated via the IMU and the direction cosine
matrix algorithm (as described by Premerlani and Bizard,
2009), we can calculate the true vertical accelerations.
However, due to the low resolution of the IMU, if small
accelerations are present, then the true vertical acceleration
may be less accurate than using only the Kistler. After
rigorous testing, we found it suitable to apply the true
vertical correction if the tilt was >50°. Otherwise, using only
the higher-resolution Kistler was the better alternative. For
the duration of this experiment the tilt only exceeded 10°
twice (and was flagged as bad on these occasions) and did
not exceed 50°, so the IMU was not used to correct the
vertical acceleration.

Low-pass anti-aliasing filter and decimation
As we take a discrete sample of a continuous function which
is not bandwidth-limited, all wave signals greater than the
Nyquist frequency (fc ¼ 1

2�
, where � is the time interval

between consecutive samples) are aliased or falsely trans-
lated to signals less than fc. To overcome aliasing, it is
necessary to enforce a known limit on the sample by analog
filtering of the continuous signal and sampling at a rate
sufficiently rapid to give at least two points per cycle of the
highest frequency present (Press and others, 1992). The
analog filter is an RC filter, where at 8Hz the power is
reduced to half (3 dB). Following Tucker and Pitt (2001), we
oversampled at 640Hz and decimated to 2Hz. Down-
sampling from 640 to 2Hz was achieved through a multi-
stage decimation of 80 followed by 4, to achieve a total
decimation of 320. The multistage decimation was applied,
as it reduces computational and memory requirements of the
filters. Prior to each downsampling stage, a second-order
low-pass Butterworth filter was applied to remove all
components above the Nyquist frequency. We first applied
the Butterworth filter with a cut-off of 1Hz and sampled at
8Hz, and then with a cut-off of 0.5Hz and sampled at 2Hz.
A second-order Butterworth filter was chosen, as it has a flat
frequency response, i.e. small ripple. The cost, however, is a
slow roll-off around the cut-off frequency. We minimized
this by selecting cut-offs well within the Nyquist frequency.
Note that the effectiveness of the anti-aliasing filter depends
on the ratio of the amplitude of the noise to the amplitude of
the waves within the band limit.

Integration
We are primarily interested in wave displacement and
therefore needed to integrate the acceleration time series. A
consequence of integrating the acceleration is large low-
frequency drifts from simple integration acting on low-
frequency noise. We therefore needed to apply a high-pass
filter to cut out the large low-frequency drifts (Tucker and
Pitt, 2001). We achieved this by applying a Fourier-transform
filter, which is an efficient alternative to a moving-average
filter in the time domain. The time series was first Fourier-
transformed, multiplied by frequency response weights, RðfÞ,
and then reverse-transformed to give the filtered time history.
We chose real numbers as the weights to ensure no phase
shift was produced. Applying frequency response weights of
� 1/!2 is equivalent to double integration of acceleration.
We applied the high-pass filter by enforcing a low-frequency
cut-off. To prevent an abrupt cut-off, which leads to a long
and slowly decaying convolution array, we smoothed the
cut-off using a half-cosine taper (Tucker and Pitt, 2001)

RðfÞ ¼
0 for 0 < f < f1
1
2 1 � cos � f � f1

f2� f1

� �h i
� 1

2�f2
� �

for f1 � f � f2
� 1

2�f2 for f2 < f < fc,

8
><

>:
ð3Þ

where f is frequency, fc is the Nyquist frequency and f1 and f2
vary depending on the specific requirements of the task.
Since we were taking a finite record from an infinite source,
transients were introduced at the two ends of the record. The
effects of these transients after filtering can be significant, and
can distort the statistics of the wave heights. The solution (as
recommended by Tucker and Pitt, 2001) is to design the filter
to restrict the effect of these transients to a short time at each
end of the record, and abandon the affected parts (Fig. 3).
Following Tucker and Pitt (2001), we selected f1 ¼ 0:02 and
f2 ¼ 0:03, which are suitable for a frequency bandwidth of
4–20 s and reduce the convolution function to �120 s.

Spectral analysis
From Parseval’s theorem, and since our time series was real,
the power spectral density, PSD, can be defined as

PSDðfÞ ¼ 2jCðfÞj2, ð4Þ

where CðfÞ is the time series represented in the frequency
domain. Due to data leakage, we can only estimate the PSD.
This estimate is known as the periodogram estimate, P. We

Fig. 3. (a) The response function. (b) The wave accelerations after
integration and filtering (blue) and the abandoned transients (red).
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can minimize leakage by multiplying the input time series,
cj, j ¼ 0, :::,N � 1, by a window function, wj, which
changes more gradually from zero to a maximum and back
to zero as j ranges from 0 to N. In typical applications, the
window functions are non-negative, smooth bell-shaped
curves. Tucker and Pitt (2001) recommend applying a
partial cosine taper function. Figure 4 shows weighted
displacements for various values of the partial cosine taper
coefficient, �. We used � ¼ 5 in the WIIOS.

Another complication with the periodogram estimate is
its variance (Press and others, 1992). Regardless of the
number of sampled points, the standard deviation will
always be 100% of the value. Following Bartlett’s method,
the variance can be reduced by partitioning the original
sampled data into K segments, each of 2M consecutive
sampled points. This, however, comes at a cost of reduced
frequency resolution. Each segment is separately Fourier-
transformed to produce an independent periodogram esti-
mate. The K periodogram estimates are then averaged at
each frequency. This averaging reduces the variance by a
factor of K. Welch’s method extends Bartlett’s method by
windowing each segment prior to the Fourier transform. As a
result, however, the data at the centre of the window
function generally have more influence than the data at the
edges, which results in a loss of information. To mitigate that
loss, the individual datasets are overlapped in the time
domain. Overlapping the segments by half their lengths
gives the smallest possible variance per data point (Press and
others, 1992). The first and second sets of M points are
segment 1, the second and third sets ofM points are segment
2, and so on up to segment K, which is made of the Kth and
K þ 1th sets ofM points. The total number of sampled points
is therefore ðK þ 1ÞM, just over half as many as with non-
overlapping segments. The variance is reduced by a factor of
�9K=11. Figure 5 gives an example of how we reduced the
variance in P. In each WIIOS, we used K ¼ 4 and M ¼ 512.
With a 2Hz sample rate, this gave a segment duration of
512 s. Tucker and Pitt (2001) recommend a minimum of

1000 s for minimal leakage. In our case, we have ensured
minimal leakage by applying a window on each segment.

Tucker and Pitt (2001) show how averaging the harmo-
nics, once the record has been analysed, is another effective
way to reduce leakage. If the Fourier transform is computed
using finer frequency resolution than is required, the
neighbouring estimates can be averaged together. An odd
number of bins is used, to ensure the centre frequency of the
bin remains well defined. Each WIIOS reduced the 512 bins
to 55 by averaging five bins for periods <6 s and >20 s and by
three bins for periods between 6 and 8 s. To maintain
resolution, periods between 8 and 20 s were not averaged.

Useful definitions and statistical results can be expressed
in terms of the moments of the PSD. The nth spectral
moment is defined by Tucker and Pitt (2001) as

mn ¼

Z 1

0
f nPðf Þdf ¼ �f

X2M

i¼1
fðiÞnPðiÞ, ð5Þ

where P is the periodogram estimate of the PSD. The m� 2 to
m3 moments were returned, enabling the calculation of the
key statistical results. Note that we calculated the spectral
moments before frequency averaging. The significant wave
height, Hs, is calculated from the zeroth spectral moment,
defining the total variance (or energy of the wave system),

Hs ¼ 4
ffiffiffiffiffiffiffi
m0
p

: ð6Þ

Confidence intervals
Confidence intervals for the power spectra are given by
Earle (1996) as

Pðf Þ �DoF
�2 DoF, 1� �

2

� � ,
PðfÞ �DoF
�2 DoF, 1þ�

2

� � , ð7Þ

where �2 are percentage points of a chi-square probability

Fig. 5. An example of how we reduce variance in the periodogram
estimate, P. (a) The windowed time series of each segment
(K1,K2,K3,K4); (b) the periodogram estimate of each segment; and
(c) the average periodogram estimate at each frequency. The shaded
regions in (b) and (c) give the standard deviations of the estimate.

Fig. 4. (a) The partial cosine taper window function for � ¼ 1
(solid), 5 (dashed) and 10 (dotted). (b–d) Weighted time series with
� ¼ 1, 5 and 10, respectively.

Kohout and others: Measuring waves in the Antarctic marginal ice zone418

https://doi.org/10.3189/2015AoG69A600 Published online by Cambridge University Press

https://doi.org/10.3189/2015AoG69A600


distribution and � defines the confidence interval, i.e.
� ¼ 0:9 provides a 90% confidence interval. DoF is the
degrees of freedom. For cosine windowed overlapping seg-
mented data, the DoF can be approximated by (Earle, 1996)

DoF �
2K

1þ 0:4ðK� 1Þ
K

: ð8Þ

A reduction in this interval is obtained by averaging the
harmonics. If L bins are averaged together, the variance (and
DoF) is reduced by a factor L. The 90% confidence interval
for Hs is approximately � 10 to +15% (Earle, 1996). A
summary of the variables used in each WIIOS is given in
Table 1 and a list of the transmitted variables in Table 2.

TESTING
A number of testing methods were used throughout the
construction of the sensors. Each electrical component was
tested in a –20°C freezer for failure and endurance. As the
Kistler accelerometer is inherently linear, each individual
unit was tested at 1g, obtaining specific offset and gain for
each completed assembly. The IMU was factory-calibrated.
We found the differences between the two sensors were
minimal for accelerations within the limits of the IMU. The
software and filtering processes were tested via a series of
various pure sine waves, sine waves with artificially
generated white noise and acceleration time series from
the Ross Sea marginal ice zone (Downer and Haskell, 2001).
The combined hardware and software was tested using a
purpose-built calibration rig, which included a vertical slide
driven by a connecting rod to a rotating wheel. To minimize
noise, the motor driving the wheel was very low-geared and
controlled with pulse-width modulated power. The wheel
was driven by a soft elastic belt. The speed and amplitude of
the wheel could be varied and we tested amplitudes in the
range 0.03–0.20m, wave periods 5–20 s and accelerations
0.03–50mg. For periods >20 s and amplitudes <0.032m,
the test rig and component noise were too great to detect the
wave source. The platform could also be pivoted to test the
roll and pitch. As a final test, the sensors were deployed in a
coastal environment to test measurement and analysis of
real wave motion.

RESULTS
In total, we collected �600 records of wave spectra over
39 days. We captured our first large wave event shortly after

deployment, losing our first instrument, which experienced
25m s� 1 winds and at least 6m significant wave heights.
The second large wave event occurred on 1 October 2012.
During this event, we lost another two WIIOS, each of
which had lasted a total of 9 days. The next large wave event
occurred on 9 October 2012, during which we lost the
fourth WIIOS, after 17.5 days. Our final instrument stopped
transmitting on 2 November 2012 (Fig. 6). The WIIOS were
deployed on floes in the Antarctic marginal ice zone, the
region where the open ocean meets the sea-ice pack. Upon
deployment, the ice region consisted of individual floes
between 2 and 100m wide, brash ice, grease ice, frazil ice
and nilas ice (Fig. 2). We deployed on floes with freeboards
<1m thick and <25m wide (Table 3). The average floe
thickness along the deployment transect ranged between
�0.5 and 1m and the majority of floe diameters were 2–
20m, depending on their distance from the ice edge. The ice
concentration for the duration of the experiment was higher
than the mean for this region (Kohout and others, 2014).

Quality control of the full dataset is maintained by
returning the mean acceleration and orientation, acceler-
ation and rotational velocity standard deviations, general
data quality flags, the number of spikes and unresponsive

Table 1. A summary of variables used during analysis

Symbol Description Value

Number of raw samples 131 072
Duration of raw sample 2048 s

fc Nyquist frequency 1=2� 1Hz
� Sample rate post-decimation 0.5 s

Number of samples post-integration ð2K þ 1ÞM 2560
K Number of segments 4
M 512
D Duration of each segment N� 512 s
fk Frequency interval (prior to averaging) 1=2M� 0.002

Overlap 50%
� Partial cosine taper coefficient 5

Table 2. Transmitted data

L1: Longitude (decimal degrees)
L2: File name of attachment e-mailed via Iridium
L3: Temperature inside the box (°C)
L4: WIIOS identification number
L5: Time wave record starts (AEST 24hour format hhmmss)
L6: Date of wave record (yyyy-mm-dd)
L7: Current voltage
L8: Elevation (cm)
L9: Latitude (decimal degrees)
L10–L64: The power spectral density for the 55 wave period bins (s)

centred on [24.38 19.69 18.96 18.28 17.65 17.06 16.51
16.00 15.51 15.05 14.62 14.22 13.83 13.47 3.12 12.80
12.48 12.19 11.90 11.63 11.37 11.13 10.89 10.66 10.44
10.24 10.03 9.84 9.66 9.48 9.30 9.14 8.98 8.82 8.67 8.53
8.39 8.25 8.12 8.00 7.64 7.31 7.01 6.73 6.48 6.24 6.02

5.81 5.50 5.22 4.97 4.74 4.53 4.33 4.16]
L65–L70: Spectral moments (m� 2 to m3)
L71: Mean roll (°)
L72: Mean pitch (°)
L73: Mean yaw (°)
L74: Wave direction (°)
L75: Directional spread (°)
L76: Ratio term to evaluate quality of wave direction

approximation (should be �1)
L77: Standard deviation of acceleration (m s� 2)
L78: Standard deviation of gyro x-axis (rad s� 1)
L79: Standard deviation of gyro y-axis (rad s� 1)
L80: Standard deviation of gyro z-axis (rad s� 1)
L81: Standard deviation of yaw (rad)
L82: Accelerometer quality flag (0 – good, 1 – accelerometer bad,

2 – accelerometer and IMU bad)
L83: IMU quality flag (0 – good, 1 – pitch/roll bad, 2 – yaw bad,

3 – both bad)
L84: Mean acceleration removed (m s� 2)
L85: Number of unresponsive samples in raw acceleration data
L86: The maximum number of consecutive unresponsive samples
L87: Number of spikes (data point >6 standard deviations of

dataset)
L88: The maximum number of consecutive spikes
L89: Quality flag indicating whether the total power in the time

domain and frequency domain are equal (0 – difference
<0.01, 1 – difference >0.01)
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samples and the power difference between domains
(Table 2). A small number of data records were rejected
(Table 4). The majority of these were due to too much noise
in the gyro standard deviations or too many spikes occurring
within the record.

Frequency distributions of the significant wave heights
and peak periods for the entire dataset are provided in
Figure 7. The majority of data collected closest to the ice
edge were obtained during calm periods, with significant
wave heights of 1–2m. Further into the ice (>100m from the
ice edge), the majority of waves recorded were 0–1m. The
majority of waves near the edge have peak periods ranging
between 10 and 12 s, and the peak periods further into the ice
were 14–16 s. In summary, as expected (Squire and others,
1995), the wave height generally decreased and the peak
period increased as the waves propagated into the sea ice.

Figures 8–12 examine the ice concentrations (Kaleschke
and others, 2001; Kaleschke and Kern, 2006; Spreen and
others, 2008), hindcast approximations for wave direction
(Chawla and others, 2013), locations, wave heights and
wave spectra of five different records.

In Figure 8, the conditions on 27 September 2012 at
02:00, during small waves, are considered. The WIIOS are
roughly aligned perpendicular to the ice edge. The offshore
swell direction from the hindcast is likely to be an error in
the model and suggests offshore winds were present
(Fig. 8a). The decay of the short-period waves and the
persistence of the long-period waves in Figure 8c aligns with
the commonly accepted theory presented by Squire and
others (1995). Figure 9 also considers the WIIOS record
during small waves, but on this occasion two spectral peaks
are measured near the ice edge. Figure 9c shows how these
two peaks evolve as the waves propagate into the ice field.
The wave hindcast shows variable wind directions and is
again unreliable. On this occasion, the WIIOS are again
roughly aligned perpendicular to the ice edge.

Figure 10 shows the conditions during a large wave event
on 23 September 2012 at 20:00. On this occasion, theWIIOS
are roughly in line with the hindcast wave direction,
providing an ideal opportunity to measure wave attenuation.

Fig. 7. The distribution of (a) significant wave heights and (b) the
peak periods for the full dataset. The blue and red bars represent
data when the WIIOS are within and beyond 100 km of the ice
edge, respectively.

Table 3. Approximate floe dimensions (freeboard (FB), width and
length) of each WIIOS and the latitude, longitude and distance from
the ice edge (X) of each WIIOS upon deployment

FB Width Length Latitude Longitude X

m m m ° S ° E km

1 0.1 12 12 61.41227 121.13549 16
2 1 10 16.5 61.44243 121.17186 20
3 0.15 10 15 61.51758 121.18118 28
4 0.15 10 16.5 61.93744 121.12817 68
5 0.5 11.5 24 62.42007 121.52611 131

Table 4. The number of data points and missing values for each
WIIOS

WIIOS Total number of data points Number of missing values

%

1 73 4.1
2 133 1.5
3 7 42.9
4 72 0
5 313 0.3

Fig. 6. An overview of the location and significant wave heights for
each WIIOS (green, red, orange, purple, blue) for the duration of
the experiment. (a) The distance, X (km), from the ice edge. (b) The
significant wave heights, Hs (m).
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Also, note that the peak significant wave height occurs at
17:00 at each WIIOS, so simultaneous comparisons are
possible. The spectra suggest that as the wave propagates
through the ice, the energy at the peak wave period cascades
toward longer periods, leading to energy growth (rather than
decay) at certain periods. This is indicative of nonlinear
interactions in a growing wind sea (Komen and others, 1994).

Figure 11 shows an example of a more complicated case.
First, the northernmost WIIOS (square and circle markers)
are parallel to the wind direction, rather than perpendicular
(Fig. 11a). Interestingly, the spectra from the two WIIOS
(solid green and dashed red) are very different (Fig. 11c).
Perhaps this is due to significantly differing distances, as a
result of the angle of the incident wave, that the waves have
to propagate through ice before reaching each WIIOS. The
deeper two WIIOS (triangle and diamond markers) are,
however, in line with the wave direction, and their spectra
show decay, as would be expected from standard

waves-in-ice theory (Squire and others, 1995). Also note
that the peak of these deeper buoys occurs 3 hours later than
the outermost buoys, presumably again due to the incident
wave angle and the extended distance the waves have to
travel to get to the deeper WIIOS.

Figure 12 is another example of a non-straightforward
case. During this event, the wave hindcast calculated
westerly swell (Fig. 12a), perhaps explaining why the peak
wave height of the deepest WIIOS (diamond) occurred
before the peak of the northernmost WIIOS (circle, Fig. 12b).
Also unexpected is that the peak period of the deepest
WIIOS (dotted) is less than the peak period of the northern
WIIOS (dashed, Fig. 12c).

These figures highlight the complexities associated with
calculating the wave decay at individual frequencies, due to
its direct relationship with location, wave direction and ice
conditions. For future measurements, it would be beneficial
to record the waves continuously, rather than only every
3 hours, in order to track the peaks of each event. We
conclude that more data and further analysis are required to
conclusively explain the spectral evolution of waves
through sea ice.

We also show the spectra from one WIIOS evolving from
a growing sea (wave energy (spectra) growing) to a reducing

Fig. 8. (a) The location of each WIIOS (markers), ice concentration
(%, contours) and hindcast wave directions (arrows) on 27 Septem-
ber 2012 at 02:00. (b) The significant wave heights, Hs, over time
(curves) and on 27 September 2012 at 02:00 (markers) of each
WIIOS. (c) The power spectral densities, PSD, of each WIIOS on
27 September 2012 at 02:00. The solid, dashed, long dashed and
dotted curves correspond to the square, circle, triangle and
diamond markers, respectively. The shaded regions in (b) and (c)
give the 90% confidence intervals.

Fig. 9. Same as Figure 8, but for data from 26 September 2012 at
5:00.
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sea (wave energy decaying) (Fig. 13). Here we see the
widening spectrum and the peak period increase during a
growing sea (solid–dashed). In a reducing sea (dashed–
dotted), the wave appears to lose energy evenly across the
spectrum (Fig. 13c).

SUMMARY/DISCUSSION
Five waves-in-ice observation systems (WIIOS) were de-
ployed on Antarctic sea ice during SIPEX II. In this paper, we
present the hardware and software details of each WIIOS
and an overview of the returned dataset.

The key sensor within each WIIOS was a high-resolution
vertical accelerometer. The raw accelerations were over-
sampled at 640Hz. A low-pass filter was applied with a cut-
off at 0.5Hz, and the time series was decimated down to
2Hz. The data were integrated and a high-pass filter applied
to obtain displacement. The PSD was then calculated via
Welch’s method, using a 10% cosine window and
detrending on four segments with 50% overlap. The
processed and compressed data were then returned via
the Iridium satellite system.

Of the five WIIOS, only one survived the expected
lifetime of the WIIOS (6 weeks). The other four stopped

transmitting during storms, the first after only 20 hours and
the others during subsequent large wave events. In total, we
collected 17.5 days of data which can be used to approxi-
mate wave decay. The majority of waves measured were
during calm seas. Within 100 km of the ice edge, the
majority of significant wave heights were 1–2m and the
peak period 10–12 s. Overall, the significant wave height
decayed and the wave period lengthened as they propa-
gated beyond 100 km from the ice edge, with the majority of
significant wave heights decaying to 0–1m and the peak
periods lengthening to 14–16 s. In addition, several large
wave events were measured. We examined a few examples
of these in terms of alignment with wave direction and ice
extent, and found that to accurately measure the spectral
evolution of waves decaying in sea ice, a detailed de-
scription of the wave direction and the sea ice is required.
To conclusively study the spectral evolution of wave decay
in sea ice, returning the directional wave spectra, surveying
the ice field before and after each event and measuring the
data continuously to capture the arrival times of each peak
more accurately would be valuable. Our analysis shows that
on occasion, instead of the wave energy simply decaying at
each wave period, the energy can cascade, causing more
energy than expected at longer periods.

Fig. 10. Same as Figure 8, but for data from 23 September 2012 at
20:00.

Fig. 11. Same as Figure 8, but for data from 1 October 2012 at
11:00.
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