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Elastic turbulence can lead to increased flow resistance, mixing and heat transfer. Its
control – either suppression or promotion – has significant potential, and there is a
concerted ongoing effort by the community to improve our understanding. Here we
explore the dynamics of uncertainty in elastic turbulence, inspired by an approach
recently applied to inertial turbulence in Ge et al. (J. Fluid Mech., vol. 977, 2023,
A17). We derive equations for the evolution of uncertainty measures, yielding insight
on uncertainty growth mechanisms. Through numerical experiments, we identify four
regimes of uncertainty evolution, characterised by (i) rapid transfer to large scales, with
large-scale growth rates of τ 6 (where τ represents time), (ii) a dissipative reduction
of uncertainty, (iii) exponential growth at all scales and (iv) saturation. These regimes
are governed by the interplay between advective and polymeric contributions (which
tend to increase uncertainty), viscous, relaxation and dissipation effects (which reduce
uncertainty) and inertial contributions. In elastic turbulence, reducing Reynolds number
increases uncertainty at short times, but does not significantly influence the growth
of uncertainty at later times. At late times, the growth of uncertainty increases with
Weissenberg number, with decreasing polymeric diffusivity and with the logarithm of the
maximum length scale, as large flow features adjust the balance of advective and relaxation
effects. These findings provide insight into the dynamics of elastic turbulence, offering a
new approach for the analysis of viscoelastic flow instabilities.
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1. Introduction
Elastic turbulence (Groisman & Steinberg 2000), a chaotic flow state observed in polymer
solutions even in the limit of vanishing inertia, has implications across a range of
application areas. It has been shown that elastic turbulence can enable emulsification
(Poole et al. 2012); that it can promote heat transfer (Traore, Castelain & Burghelea
2015); that it is involved in melt fracture (Morozov & van Saarloos 2007); and that in
mass-transfer-limited regimes it can increase apparent reaction rates in porous reactors
(Browne & Datta 2024) to provide just a few examples. Since the first documentation of
elastic turbulence in 2000 by Groisman & Steinberg (2000), there has been a concerted
effort amongst the community to understand the phenomenon, and we refer the reader
to Steinberg (2021), Datta et al. (2022) and Sasmal (2025) for recent and comprehensive
reviews. We note the related phenomena of elasto-inertial turbulence, first described by
Samanta et al. (2013), a chaotic state seen across a large range of Reynolds numbers, driven
by the polymer dynamics, where both elastic and inertial effects are important. In this work
we only consider two-dimensional low-Reynolds-number flows in the elastic turbulence
regime, although the theory we develop is applicable to viscoelastic flows in general. For a
review of elasto-inertial turbulence, we refer the reader to Dubief, Terrapon & Hof (2023).

The work we present here was inspired by the recent work of Ge et al. (2023) on
uncertainty in inertial (Newtonian) turbulence. In Ge et al. (2023), a remarkable depth
of insight was provided through a relatively simple and intuitive approach: take two
realisations of the Navier–Stokes equations, subtract them and get evolution equations for
the difference. The uncertainty was defined as the spatial average of the kinetic energy of
the velocity difference �ui :

〈EΔ〉 = 1
V

∫
1
2
�ui�ui dV, (1.1)

for which an evolution equation was derived. Simply by inspecting the form of the
evolution equation for 〈EΔ〉, and performing numerical experiments in which one
realisation is perturbed and the evolution of the difference is tracked, they obtained
fundamental quantitative insight into the chaotic nature of turbulence: identifying a
similarity regime in which the production and dissipation rates of uncertainty grow
together and the uncertainty spectrum is self-similar, and finding that in the absence of an
external input of uncertainty, uncertainty can only be created via compression events in the
Newtonian case. For chaotic flows, 〈EΔ〉 is expected to grow exponentially, according to

d 〈EΔ〉
dt

= λ 〈EΔ〉 , (1.2)

in which λ is twice the maximal Lyapunov exponent of the system. Although Ge et al.
(2023) provided our inspiration, the concept of 〈EΔ〉 in studies of chaos and predictability
in Newtonian turbulence predates this (e.g. Boffetta & Musacchio 2017, Berera & Ho
2018) dating back to the work of Leith & Kraichnan (1972). To our knowledge, this
concept has not previously been applied to viscoelastic flows. We are interested in chaotic
flows of polymer solutions. Here, the system cannot be completely defined by the velocity
field; a conformation tensor cij, which provides a macroscopic measure of the molecular
deformation of polymers, is also required, and the picture is more complex.

In recent years there has been a concerted effort by the community to understand and
explore the fundamental dynamics of elastic (and elasto-inertial) turbulence. Much effort
has focused on the onset of instabilities, aiming to address the questions of when, where
and how do viscoelastic flows transition to these chaotic states. This has led to many
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important discoveries, including the existence of purely elastic instabilities in straight
channels (Pan et al. 2013), the first exact travelling-wave solutions (Boffetta et al. 2005;
Page, Dubief & Kerswell 2020; Morozov 2022), identification of a continuous pathway
between elastic and elasto-inertial turbulence (Khalid, Shankar & Subramanian 2021) and
the recently discovered polymer diffusive instability (Beneitez, Page & Kerswell 2023;
Lewy & Kerswell 2024, 2025; Couchman et al. 2024) present in wall-bounded viscoelastic
flows.

Early numerical studies of elastic turbulence took two-dimensional Kolmogorov flow
(a flow with a unidirectional sinusoidal forcing in a doubly periodic domain) as the setting
(Berti et al. 2008; Berti & Boffetta 2010), and this setting is still used in more recent
studies (e.g. Garg, Calzavarini & Berti 2021). Even in this simple configuration, the main
features observed experimentally are present: a transition to a chaotic unsteady flow state
above a critical Weissenberg number; a distinct increase in power input required to sustain
the flow; and an energy spectra with a power-law decay having a slope steeper than k−3,
where k is the wavenumber. More recently, a similar numerical setting – doubly periodic
with a cellular forcing – has been used by Plan et al. (2017) to estimate the Lyapunov
dimension of elastic turbulence and by Gupta & Vincenzi (2019) to study the influence of
polymeric diffusivity on the dynamics of elastic turbulence.

Uncertainty is inherent in both real flows of polymer solutions and numerical
simulations. The conformation tensor cij used to describe the macroscopic behaviour of
polymers is a statistical average of microscopic polymer deformations. Although if left
to rest polymers will revert to an undeformed configuration (cij → δij), in real flows of
polymers, local temperature, concentration and composition fluctuations will influence
viscosities and relaxation times, and potentially create local internal stresses. Consequently
there is likely to be inherent uncertainty in the precise initial conditions in any real
experiment. Can we ever be certain of the exact internal molecular configuration of
polymers at the start of an experiment? On average, perhaps, but not in the microscopic
detail. In inertial (Newtonian) turbulence, thermal fluctuations have recently been shown
to influence the energy cascade at the Kolmogorov length scale in incompressible
settings (Bell et al. 2022), and in compressible settings, this influence extends to larger
length scales, whilst intermittency is inhibited by thermal fluctuations across the entire
dissipation range (Srivastava et al. 2025). Such findings may have implications for under-
resolution approaches such as large-eddy simulations, where closure models are used to
represent the dynamics at the smallest scales. Whether such effects are significant in elastic
turbulence is unknown.

For numerical simulations, a very high resolution is required to fully resolve elastic
turbulence: the pseudo-spectral simulations of Berti et al. (2008) and Berti & Boffetta
(2010) were conducted with 5122 modes, the simulations by Plan et al. (2017) and Gupta &
Vincenzi (2019) used a high-order compact finite-difference scheme on a grid with 10242

elements and recent studies by Lellep, Linkmann & Morozov (2024) use a pseudo-spectral
code with 256 × 256 × 1024 modes (the higher resolution in the wall-normal direction) to
explore the stability of highly elastic planar channel flows. Recently, Yerasi et al. (2024)
investigated the effect of different numerical schemes, and of polymeric diffusivity, on
the large-scale dynamics of numerical simulations, finding that even stable numerical
simulations displaying the expected chaotic fluctuations can contain numerical errors
which distort the large-scale flow dynamics.

With such uncertainty inherent in viscoelastic flows, one might logically ask: how do
aleatoric uncertainties propagate in such settings? How will a slight under-resolution in
a simulation impact the observed flow dynamics? How sensitive is an experiment to the
initial conditions, or uncertainty in conditions such as flow rate, temperature or geometry?
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How do effects such as thermal fluctuations or concentration fluctuations influence
predictability and repeatability? These questions are also important in the development
of closure models (analogous to those used for inertial turbulence): if we devise some
statistical closure for the small scales, allowing the elastic turbulence equivalent of large-
eddy simulation, how does uncertainty inherent in the small scales affect larger scales, and
how is the long-time evolution of a flow affected?

Whilst turbulence is generally analysed via spectral approaches, such questions of
uncertainty are more closely related with ideas around chaotic measures (Ho, Clark &
Berera 2024), such as maximum Lyapunov exponents and attractor dimension. Estimates
of how the Lyapunov exponent of inertial turbulence scales date back nearly 50 years, to
the work of Ruelle (1979) and Deissler (1986), although a consensus on the scaling of the
Lyapunov exponent with Reynolds number still eludes the community (Ge et al. 2023). In
the field of elastic turbulence, Plan et al. (2017) estimated the attractor dimension based on
two-dimensional numerical experiments, proposing the attractor dimension to scale with
Wiα , with α≈ 0.7. Beyond this effort, we are not aware of any work analysing elastic
turbulence via such measures.

Here we apply the concepts developed in Ge et al. (2023) to viscoelastic flows. In
§ 2 we derive evolution equations for the difference between two realisations, and from
these we obtain equations governing the evolution of uncertainty in the flow and the
polymer deformation. These equations provide insight into the mechanisms of uncertainty
generation in viscoelastic flows in general. Focusing on the elastic turbulence regime, in
§ 3 we present a set of numerical experiments, from which we identify different regimes
of uncertainty evolution, and explore how these are influenced by inertial, elastic and
length-scale effects. In § 4 we draw conclusions and provide a discussion on future
directions.

2. Theoretical analysis
We consider the incompressible isothermal flow of a polymer solution in a periodic
domain. In dimensionless form, conservation equations for mass and momentum are

∂u(m)i

∂xi
= 0, (2.1)

∂u(m)i

∂t
+ u(m)j

∂u(m)i

∂xj
= −∂p(m)

∂xi
+ β

Re
∂2u(m)i

∂xj∂xj
+ (1 − β)

ReWi

∂c(m)ji

∂xj
+ f (m)i , (2.2)

where the superscript in parentheses (m) indicates the mth realisation of the system, ui is
the velocity, with subscripts representing the Einstein index convention, p is the pressure
and fi a body force. The conformation tensor cij is a macroscopic measure of the polymeric
deformation. The dimensionless parameters controlling the flow are the Reynolds number
Re, the Weissenberg number Wi and the solvent to total viscosity ratio β. The polymers
are assumed to obey a simplified linear Phan-Thien and Tanner (PTT) constitutive law
(Thien & Tanner 1977), with the conformation tensor following an evolution equation:

∂c(m)ij

∂t
+ u(m)k

∂c(m)ij

∂xk
− ∂u(m)i

∂xk
c(m)kj − ∂u(m)j

∂xk
c(m)ik = −c(m)ij − δij

Wi

(
1 − dε+ εc(m)kk

)
+ κ

∂2c(m)ij

∂xk∂xk
,

(2.3)

in which κ is a dimensionless polymeric diffusivity, ε� 0 is the sPTT nonlinearity
parameter and d is the number of spatial dimensions. In the limit ε= 0, the Oldroyd B
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constitutive equation is recovered. Note that in steady homogeneous flows the velocity and
stress fields obtained with the PTT model used here are identical to those obtained with
the FENE-P model (Davoodi et al. 2022).

Following Ge et al. (2023) we consider two realisations of (2.1) to (2.3) (m = 1 and
m = 2). For time t < t0, these realisations are identical. At t = t0 a small perturbation
is imposed on realisation (2), after which time the realisations may diverge. We define
the difference between the realisations as�ui = u(2)i − u(1)i ,�p = p(2) − p(1) and �cij =
c(2)ij − c(1)ij . We are interested in the evolution of these difference fields.

We can obtain evolution equations for �ui and �cij by subtracting realisation (1) from
(2) of (2.1) to (2.3). Doing so, expressing only in terms of realisation (1) and the difference,
and exploiting the symmetry of c(m)ij , we obtain

∂�ui

∂xi
= 0, (2.4)

∂�ui

∂t
+ u(1)j

∂�ui

∂xj
+�uj

∂�ui

∂xj
+�uj

∂u(1)i

∂xj

= −∂�p

∂xi
+ β

Re
∂2�ui

∂xj∂xj
+ 1 − β

ReWi
∂�cji

∂xj
+� fi , (2.5)

∂�cij

∂t
+ u(1)k

∂�cij

∂xk
+�uk

∂�cij

∂xk
+�uk

∂c(1)ij

∂xk
− ∂u(1)i

∂xk
�ckj

− ∂�ui

∂xk
c(1)kj − ∂�ui

∂xk
�ckj −

∂u(1)j

∂xk
�cki − ∂�uj

∂xk
c(1)ki − ∂�uj

∂xk
�cki

= −�cij (1 − dε)
Wi

+ δijε�ckk

Wi
− ε

Wi

(
c(1)ij �ckk +�cijc

(1)
kk +�cij�ckk

)
+ κ

∂2�cij

∂xk∂xk
. (2.6)

In the present work we restrict consideration to flows with constant, flow-independent forc-
ing, such that � fi = 0, and for brevity of exposition, all terms containing � fi are omitted
hereafter. We note here that (2.5) and (2.6) show that a non-zero difference field in either
velocity or conformation tensor may evolve into a non-zero difference in both fields. There
is inherent uncertainty in the conformation tensor, being a statistical average of molecular
deformations, and subject to (for example) thermal and concentration fluctuations.

2.1. Uncertainty in the flow
We define a positive scalar metric to quantify the uncertainty in the flow as the kinetic
energy of the velocity difference: EΔ = (1/2)�ui�ui . An evolution equation for EΔ can
be obtained by multiplying (2.5) by �ui , resulting in

∂E�
∂t

+
∂

(
u(1)j +�uj

)
EΔ

∂xj
+�ui�uj

∂u(1)i

∂xj

= −∂�ui�p

∂xi
+ β

Re
∂

∂xj

[
∂EΔ
∂xj

]
− β

Re
∂�ui

∂xj

∂�ui

∂xj
+ 1 − β

ReWi
�ui

∂�cji

∂xj
. (2.7)
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We take the average of (2.7) over the periodic domain and, denoting the spatial average
〈·〉, we obtain

d 〈E�〉
dt

=
〈
−�ui S(1)ij �uj

〉
−

〈
β

Re
∂�ui

∂xj

∂�ui

∂xj

〉
+

〈
−1 − β

ReWi
�cij�Sij

〉
, (2.8)

where S(1)ij = (1/2)((∂u(1)i /∂xj )+ (∂u(1)j /∂xi )), and we have exploited the fact that
〈∂(·)k/∂xk〉 = 0 on the periodic domain. Note that (2.8) is only valid on periodic domains;
in more general settings, the evolution of EΔ is given by (2.7). The first two terms on the
right-hand side of (2.8), which (respectively) represent inertial production of uncertainty
(denoted IΔ) and viscous dissipation of uncertainty (denoted DΔ), match those derived by
Ge et al. (2023) for Newtonian flows. The final term represents the polymeric propagation
of uncertainty (denoted PΔ), and governs the propagation of uncertainty from the polymer
deformation to the flow. We express (2.8) in these terms as

d 〈E�〉
dt

= 〈IΔ〉 − 〈DΔ〉 + 〈PΔ〉 . (2.9)

Viscous dissipation DΔ is positive by construction; Newtonian viscosity always
reduces uncertainty. Inertial production may be positive or negative, and its sign is
dependent on the alignment of the uncertainty velocity field �ui with the reference
strain rate, as discussed in detail in Ge et al. (2023) in the context of three-dimensional
inertial turbulence. Considering for now the two-dimensional case, we denote the
eigenvalues of S(1)ij as Λ(1)i (following the convention that Λ1 �Λ2), and note that due

to incompressibility the two eigenvalues are real, equal and opposite (Λ(1)2 = −Λ(1)1 =
Λ(1) > 0). We define the components of �ui projected onto the corresponding principal
axes as �u′

i , and the inertial production term can be expressed as

〈IΔ〉 =
〈
Λ(1)

(
�u′2

1 −�u′2
2

)〉
, (2.10)

in which �u′
1 corresponds to a velocity difference aligned with the compressive flow

direction in the reference field and �u′
2 corresponds to a velocity difference aligned with

the stretching direction. This is the two-dimensional equivalent of the expression given
by Ge et al. (2023) for three-dimensional flows: the inertial production of uncertainty is
increased by uncertainty aligned with compressive flows, and decreased by uncertainty
aligned with flow stretching. A similar approach may be taken to provide insight into
the polymeric propagation of uncertainty 〈PΔ〉, which depends on the alignment of the
uncertainty in the conformation tensor with the uncertainty in the strain rate. We again
consider the two-dimensional case, and now take the principal axes of �Sij as a local
orthonormal reference frame. Denoting the eigenvalues of �Sij as ±ΛΔ (ΛΔ > 0), and
the components of �c in this basis as �c�ij, we obtain〈

P2D
Δ

〉
=

〈
1 − β

ReWi

[(
�c�11 −�c�22

)
ΛΔ

]〉
. (2.11)

Here �c�11 corresponds to a difference in the polymer deformation aligned with
compression in the velocity difference field, whilst �c�22 corresponds to a difference
in the polymer deformation aligned with extension in the velocity difference field. We
denote by �N �

1 the term in parentheses, which is proportional to the difference in the
first normal stress difference in a basis aligned with a compressive flow difference. The
polymeric propagation of uncertainty depends on the difference in the first normal stress
difference in a basis aligned with the principal axes of the velocity difference. Little can
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be said a priori of the likely sign or magnitude of �N �
1 , as �cij is not constrained to

remain positive definite, and even if both realisations exhibit a positive first normal stress
the difference, �N �

1 , may be negative.
Considering the viscous dissipation of uncertainty 〈DΔ〉, in two dimensions we may

write

DΔ = β

Re
∂�ui

∂xj

∂�ui

∂xj
= β

Re

(
�Sij�Sij + 1

2
�ω2

)
, (2.12)

where �ω is the vorticity difference. As before, we can take the principal axes of �Sij as
a local orthonormal basis, and we obtain

DΔ = β

Re

(
2Λ2

Δ + 1
2
�ω2

)
, (2.13)

highlighting that viscous dissipation occurs due to differences in both extension (ΛΔ) and
vorticity (�ω).

As a consequence of the elliptic nature of the incompressibility constraint in (2.1)
and (2.2), a perturbation to the flow which is local in space can generate a non-zero
uncertainty over the entire flow field instantly. For uncertainty in the flow this non-local
behaviour is via the pressure-gradient term in (2.5). The pressure-gradient term in (2.7)
disappears on spatial averaging (i.e. it does not appear in (2.8)). Whilst it therefore does
not explicitly contribute to the evolution of 〈EΔ〉 as a global measure of uncertainty, it
does still influence the evolution of 〈EΔ〉, through its influence on both �ui and �cii.
This is verified by numerical experiments, and discussed further in § 3.

2.2. Uncertainty in polymer deformation
Identifying a suitable scalar measure of the uncertainty in the conformation tensor is non-
trivial. Two requirements for such a measure are (i) that it is strictly positive and (ii) that
it is independent of the conformation tensor basis. Although c(1)ij and c(2)ij are (symmetric)
positive definite, the invariants of �cij are not necessarily positive. Several approaches
are offered by Hameduddin et al. (2018), including the logarithmic volume ratio and
the squared distance between c(1)ij and c(2)ij along a geodesic curve on a Riemannian
manifold. Whilst both approaches provide a strictly positive scalar measure, the derivation
of evolution equations for these measures becomes prohibitively complex. For the Oldroyd
B model, the elastic energy stored in the polymers is proportional to the conformation
tensor trace, and a measure which can be related to the uncertainty in the stored elastic
energy is desirable. We opt to take the square of the conformation tensor trace difference
as a scalar measure of uncertainty on the polymeric deformation, which satisfies both the
above requirements. We define ΓΔ = (�cii)

2 and multiply the trace of (2.6) by 2�cjj to
obtain an evolution equation for ΓΔ:

∂ΓΔ

∂t
+ u(1)k

∂ΓΔ

∂xk
+�uk

∂ΓΔ

∂xk
+ 2�cjj�uk

∂c(1)ii
∂xk

− 4�cjj�cikS(1)ik − 4�cjjc
(1)
ik �Sik

− 4�cjj�cik�Sik = −2ΓΔ
Wi

[
1 + 2εc(1)ii + ε�cii

] + κ
∂2ΓΔ

∂xk∂xk
− 2κ

∂�cii

∂xk

∂�cjj

∂xk
.

(2.14)

We take the spatial average, and again exploiting the fact that any terms expressed in flux
form average to zero over a periodic domain, we obtain
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d 〈ΓΔ〉
dt

=
〈
−2�cii�uk

∂c(1)jj

∂xk

〉
+ 〈

4�cjj�cikS(1)ik
〉 + 〈

4�cjjc
(1)
ik �Sik

〉

+ 〈
4�cjj�cik�Sik

〉 − 〈
2ΓΔ
Wi

[
1 + 2εc(1)ii + ε�cii

]〉 −
〈
2κ
∂�cii

∂xk

∂�cjj

∂xk

〉
. (2.15)

The first term on the right-hand side relates to the production of uncertainty due to
advection. The next three terms originate from the upper convected derivative, and relate
to the production and propagation of uncertainty due to stretching and rotation of the
polymers. The penultimate term corresponds to the destruction of uncertainty due to
polymer relaxation. The final term is the dissipation of uncertainty due to polymeric
diffusion. For convenience, we rewrite (2.15) with the terms denoted

d 〈ΓΔ〉
dt

= 〈AΔ〉 + 〈UC1Δ〉 + 〈UC2Δ〉 + 〈UC3Δ〉 − 〈RΔ〉 − 〈PDΔ〉 . (2.16)

We first comment on the effect of polymer relaxation on uncertainty. In the limit of
ε→ 0 (the Oldroyd B limit) RΔ is positive by construction; in the Oldroyd B limit,
polymer relaxation always reduces uncertainty in the polymer deformation. For finite ε, the
nonlinearity in the polymer relaxation may result in (locally) negative RΔ, when and where
the inequality c(2)ii > 3c(1)ii + 1/ε is satisfied. Certainly in the early stages of uncertainty
evolution, when the two fields are closely correlated, we would not expect this to occur.
With the two realisations following the same evolution equations, and expected to have
the same statistics, we would not expect 〈RΔ〉< 0 either. Indeed, 〈RΔ〉 remains positive
throughout all our numerical simulations, and in fact we see a trend that 〈RΔ〉/〈ΓΔ〉
increases with increasing ε. The term 〈PDΔ〉 is positive by construction; polymeric
diffusion always reduces uncertainty in the polymer deformation. The remaining terms
〈AΔ〉, 〈UC1Δ〉, 〈UC2Δ〉 and 〈UC3Δ〉 may be either positive or negative. We note that an
alternative positive scalar measure of the uncertainty in the polymer deformation could
be defined as ΠΔ =�cij�cij. This measure is frame-invariant, and includes information
on the off-diagonal elements of �cij; note that, in two dimensions, we can write ΠΔ =
ΓΔ − 2 det(�cij). Although we do not explore this measure in detail, we include it in our
investigation of the orientation of uncertainty in § 3.1.1, and an evolution equation for ΠΔ
is provided in Appendix C.

Returning to the evolution of 〈ΓΔ〉 and considering the production term 〈UC1Δ〉, we
take the principal axes of S(1)ij as a local orthonormal basis, and we denote the components
of �c in this basis as �c′

ij. Expressed in this basis, we can write

UC1Δ = 4Λ(1)
(
�c′2

22 −�c′2
11

)
, (2.17)

where �c′
11 represents deformation in the conformation tensor difference aligned with

compressive flow in the reference field and �c′
22 represents that aligned with stretching

flow. From (2.17), we see that regions of extensional deformation in the conformation
tensor difference aligned with extensional flow produce uncertainty, whilst extensional
deformation in the conformation tensor difference aligned with compressive flow reduce
uncertainty. Next we consider the term 〈UC2Δ〉, which is a propagation or transfer term,
through which uncertainty in the flow (via ΛΔ) propagates into the conformation tensor
uncertainty (but only where some uncertainty in the polymeric deformation already exists,
i.e.�cii �= 0). We take the principal axes of�Sij as a local orthornormal basis, and write
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UC2Δ = 4�ciiΛΔ

(
c(1)�22 − c(1)�11

)
, (2.18)

in which c(1)�22 and c(1)�11 correspond to polymeric deformation in the reference field aligned
with stretching and compression (respectively) in the velocity difference field. Whether
or not this term is positive or negative depends on the sign of the conformation tensor
trace difference, and the normal stress difference in the reference field aligned with the
principal stretching direction of the velocity difference. The term 〈UC3Δ〉, also describing
uncertainty propagation, is constructed from the product of three differences, whilst the
terms 〈UC1Δ〉 and 〈UC2Δ〉 are each formed of the product of two differences and a
reference field. Hence, whilst the two realisations are largely correlated and uncertainty is
small, we expect the term 〈UC3Δ〉 to be small relative to the other two upper convected
terms. The term in (2.15) relating to the advection of polymers contains only invariants of
the conformation tensor and its difference. If we take the principal axes of c(1)ij as a local
orthonormal basis, and denote tensors expressed in this basis, and vectors projected onto
this basis, with a double prime, we can express the advection term in (2.15) as

AΔ = −2�cii�u′′
k

∂c(1)jj

∂x ′′
k
. (2.19)

A characteristic of elastic turbulence is thin regions of highly deformed polymers, and
here the gradient of the conformation tensor trace ∂c(1)ii /∂xk will be predominantly
aligned normal to the principal stretching direction of the polymers. Hence, we expect
∂c(1)jj /∂x ′′

1 � ∂c(1)jj /∂x ′′
2 in regions of large polymer deformation. Noting that �cii may be

negative, but whilst the two realisations are still predominantly correlated, |�cii| is likely
to be larger in regions where c(1)ii is large, we may expect 〈AΔ〉 to depend on the relative
orientation of the uncertainty in the velocity, and the reference polymer deformation. Such
analysis can only provide a certain amount of insight, and to investigate the dynamics of
uncertainty further, we turn to numerical simulations.

3. Numerical experiments
We conduct numerical experiments on the system described in § 2. We consider two-
dimensional realisations of (2.1) to (2.3) on a doubly periodic domain with (integer)
side length n, subject to a constant cellular forcing. The system is non-dimensionalised
by the forcing wavelength and the velocity magnitude of the Newtonian laminar fixed
point, and setting the forcing f1 = f0 sin(2πx2), f2 = f0 sin(2πx1) with f0 = 4π2/Re
gives, for the Newtonian case (β → 1 or Wi → 0) at small Re, a stable laminar fixed point
u1 = sin(2πx2), u2 = sin(2πx2). We note that this configuration is closely related to those
studied in Plan et al. (2017), but with a different non-dimensionalisation: we take the
forcing scale as the characteristic length scale, and impose a forcing magnitude inversely
proportional to Re, whilst Plan et al. (2017) take the domain size as the characteristic length
scale, and do not provide information on the relationship between f0 and Re.

We numerically solve (2.1) to (2.3) using a pseudo-spectral code built within the
Dedalus framework (Burns et al. 2020). The domain is discretised with 128 Fourier
modes per forcing wavelength (i.e. the entire domain is discretised with (128n)2) unless
specified otherwise. The system is integrated in time with a second-order Runge–Kutta
scheme, and except where explicitly stated, we use a fixed time step of δt = 4 × 10−4.
We base our experiments around a reference configuration with Re = 10−2, β = 1/2,
ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2. Whilst for our primary investigation we set ε= 0
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to obtain the Oldroyd B model, we include a study of the effects of the sPTT nonlinearity
parameter in Appendix B. We include a polymeric diffusivity term in our simulations to
provide numerical stability. The topic of polymeric diffusivity is one of debate within
the community, with many early simulations of chaotic polymer flows using values of
diffusivity much larger than the physical values for real polymer solutions (see Dubief
et al. (2023) for a discussion on this topic). As explored in detail in Gupta & Vincenzi
(2019), care must be taken when including polymeric diffusivity in a numerical simulation.
An argument can be made that there is a physical basis for the inclusion of polymeric
diffusivity, and several researchers (e.g. Morozov 2022; Nichols, Guy & Thomases 2025)
justify the use of polymeric diffusivity by kinetic theory. A rigorous justification remains
elusive, and there are open questions about whether the polymeric diffusivity used in
numerical simulations is modelled in appropriate form (e.g. is real polymer diffusivity
really spatially uniform and flow/polymer deformation independent?). The value of κ we
use is slightly smaller than that used in Morozov (2022). The values of κ and Re in our
reference state above correspond to a Schmidt number of Sc = 4 × 106, and this value is in
agreement with the physical value of Sc for polymers in water suggested by Dubief et al.
(2023). However, we again highlight that our decision to include polymeric diffusivity
is based on numerical necessity. We note that whilst Morozov (2022) was exploring the
onset of instabilities, we are investigating the dynamics of an established chaotic state.
Consequently, in contrast to the simulations presented by Morozov (2022), our results
are not independent of κ . Due to the chaotic nature of the flow, and the sensitivity to
perturbations which we explore in the following sections, this dependence on polymeric
diffusivity is expected: for a chaotic flow, we expect the evolution of two realisations with
the same initial conditions and differing only by a small change in the polymeric diffusivity
�κ to diverge over time. We discuss this dependence in more detail in § 3.2.

Additional simulations of the reference configuration at lower ((96n)2 modes) and
higher ((192n)2 modes) resolutions confirm resolution independence. The simulations are
run for 200 time units to allow initial transients to decay. For the largest domain sizes and
Weissenberg numbers considered, this is more than 10 times the maximum time scale of
the flow. Statistics are then gathered for a further 200 time units. Between (128n)2 and
(192n)2 modes the discrepancy in the mean kinetic energy is 0.35 %, and the standard
deviation of the kinetic energy differs by 1.6 %. In the Oldroyd B limit (ε= 0), there
are lower bounds on the conformation tensor trace (cii � 2 in two dimensions) and its
determinant (det c � 1) (Hu & Lelièvre 2007): values below these bounds represent non-
physical configurations of polymer deformation, and it has recently been shown by Yerasi
et al. (2024) that failing to satisfy these constraints can result in a numerical simulation
exhibiting significantly modified large-scale flow dynamics. Although these criteria are
not enforced by construction in our numerical framework, we confirm that the resolution
we use ((128n)2 modes) is sufficient that both are met, whilst noting that at the lower
resolution of (96n)2 modes, these criteria are not always satisfied. Figure 1(a) shows
the energy spectra of the flow for three resolutions. Note that here, and in all other
spectra calculated in this work, the wavenumbers have been normalised by the forcing
wavenumber (indicated by a vertical dotted red line). There is a close agreement in the
energy spectra up to the Nyquist wavenumber of the most coarse resolution. The energy
spectra show a power-law decay, with a slope of approximately 3.7 (indicated in figure 1
by a dashed black line), characteristic of the elastic turbulent regime. We also show in
figure 1 the spectra at lower (dashed line) and higher (dash-dot line) diffusivities, and
reiterate here that our simulations are not independent of κ . Further discussion and results
demonstrating temporal- and spatial-resolution independence are provided in Appendix A.
Figure 1(b) shows a snapshot of the vorticity field for the reference configuration.
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Figure 1. (a) The kinetic energy spectra of the flow in the reference configuration, for three resolutions (96n)2,
(128n)2 and (192n)2 (solid lines), and for lower (κ = 5 × 10−5, dash-dot line) and higher (κ = 10−5, dashed
line) polymeric diffusivity. (b) A snapshot of the vorticity field for the reference configuration.

For each configuration we run a precursor simulation for 400 time units (realisation 1).
Realisation 2 is initialised by restarting the simulation from realisation 1 at a specified time
t0 > 200, and subject to a small perturbation. We then track the evolution of the difference
between the two realisations. We denote the time after the perturbation is imposed as
τ = t − t0. The perturbation is imposed by the addition of the term

−A0 exp

[
−

(
τ

δt0

)2
]

∂4c(2)ij

∂xk∂xk∂xl∂xl
∀τ � 0 (3.1)

to the right-hand side of (2.3). The parameter δt0 controls the temporal extent of the
perturbation, and we use δt0 = 10−3 throughout. Term A0 controls the magnitude of the
perturbation, and except where explicitly stated, we set A0 = 2.5 × 10−8. This perturbation
acts directly on the conformation tensor, and suppresses high-wavenumber modes. We
have investigated reducing δt0, such that δt0 
 δt , where δt is the time step used in the
numerical framework, and find that although the magnitude of the uncertainty is reduced
(the integral of the term in (3.1) is smaller) this does not influence the evolution of
uncertainty.

The temporal evolution of the spatially averaged quantities exhibits a dependence
on the reference flow. Hence, for each configuration we conduct 10 simulations for
t0 ∈ [200, 210, 220, 230, 240, 250, 260, 270, 280, 290]. Simulations are run until τ = 50,
allowing the uncertainty to reach a statistically steady state for the reference configuration.
Except where stated in the following, when plotting the time evolution of spatially
averaged quantities, we show the ensemble average across these 10 simulations. For strictly
positive spatially averaged quantities which evolve over many orders of magnitude (e.g.
〈EΔ〉 and 〈ΓΔ〉), the ensemble average is taken as the geometric mean. For normalisation
purposes, we define an average total energy as

E (tot)
avg = 1

τ0

∫ τ0

0

〈
E (1)

〉 + 〈
E (2)

〉
dτ, (3.2)

where τ0 = 50 time units, the duration of the simulation.
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Figure 2. (a) The evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 for the reference configuration (Re = 10−2, β = 1/2,

ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2). Red lines indicate the evolution for individual simulations, whilst blue
lines indicate the average. (b) The evolution of A−2

0 〈EΔ〉/E (tot)
avg and A−2

0 〈ΓΔ〉/Wi2 for a range of values of A0.
In each panel, the inset shows the evolution of uncertainty at small τ .

3.1. The evolution of uncertainty

Figure 2(a) shows the evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 with τ , for individual

instances (red lines) and the ensemble average (blue lines). There is a clear period of
exponential growth, over approximately six orders of magnitude, with the same exponent
in both 〈EΔ〉/E (tot)

avg and 〈ΓΔ〉/Wi2. This exponential growth starts at τ ≈ 1 for the flow
uncertainty and τ ≈ 3 for 〈ΓΔ〉. As observed by Berti et al. (2008) and Berti & Boffetta
(2010) for elastic turbulence driven by a Kolmogorov forcing, there is a strong imprint
of the laminar fixed point in the chaotic flow field, and as a consequence there is
a limit to the uncertainty (the extent to which the two realisations can decorrelate).
This is clear in figure 2(a) as both 〈EΔ〉/E (tot)

avg and 〈ΓΔ〉/Wi2 reach limiting values of
approximately 0.3 and 2000 (respectively) after approximately 30 time units. Note that
〈(c(1)ii )

2 + (c(2)ii )
2〉/Wi2 ≈ 6645, and the saturation value of 〈ΓΔ〉/Wi2 is about 0.3 times

this. From these results we can identify four regimes: (I) very short time growth 〈EΔ〉 and
〈ΓΔ〉 until τ ≈ 0.1; (II) a reduction in uncertainty, initially in 〈ΓΔ〉, over time scales of
the order of unity; (III) exponential growth of uncertainty, initially in 〈EΔ〉 from τ ≈ 1,
then also 〈ΓΔ〉 from τ ≈ 4; and (IV) saturation of uncertainty from τ ≈ 30. We discuss the
mechanisms controlling these regimes further below. Note that we have run simulations
for an additional 150 time units, up to τ = 200, and do not observe any further growth in
uncertainty. During the exponential regime (III), the evolution of the quantities 〈EΔ〉 and
〈ΓΔ〉 can be modelled by

d 〈EΔ〉
dt

= λ 〈EΔ〉 ; d 〈ΓΔ〉
dt

= λ 〈ΓΔ〉 (3.3)

in which λ is a characteristic growth rate, equal to twice the maximal Lyapunov exponent.
Letting {·}(III ) represent the temporal mean of a quantity over regime (III), we calculate
{λ}(III ) = 0.68. This growth rate is shown by the dashed black lines in figure 2(a).

Figure 2(b) shows the evolution of 〈EΔ〉/E (tot)
avg with τ for different values of A0, with

results scaled by A−2
0 , for a single simulation. Prior to the saturation of uncertainty, the

lines collapse, as the magnitude of the uncertainty scales with A2
0, the square of the
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Figure 3. The evolution of the orientation of uncertainty for the reference configuration (Re = 10−2, β = 1/2,
ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2). (a) The evolution of 〈θ ′〉 and 〈θ ′′〉. (b) The evolution of components
of 〈ψ ′〉 and 〈ψ ′′〉. Note that the components of 〈ψ ′′〉 may be greater than unity, and where we have plotted
〈1 −ψ ′′

22〉 and this quantity is negative, it is plotted with a dotted line. The black line shows the evolution of
−(〈ΓΔ〉 − 〈ΠΔ〉)/2〈ΓΔ〉. The different regimes of uncertainty evolution are indicated separated by dotted red
vertical lines.

perturbation amplitude, by definition of EΔ and ΓΔ. Just as the evolution of uncertainty is
independent of δt0 it is unchanged by the magnitude of A0, despite the magnitude of the
perturbation changing by over three orders of magnitude. The imprint of the reference flow
on the uncertainty is visible in figure 2(b), where for all values of A0 the same reference
flow is used.

3.1.1. The orientation of uncertainty
As before, we take the principal axes of the reference strain rate tensor S(1)ij to define a
local orthonormal basis (denoted with a prime). We also use the principal axes of the
reference conformation tensor c(1)ij to define another basis (denoted with a double prime).
We use each basis to obtain a projection of the flow uncertainty �ui , which we denote
�u′

i and �u′′
i . We also express the uncertainty in the conformation tensor in these bases

(denoted �c′
ij and �c′′

ij). We denote the proportion of the uncertainty energy aligned with
each principal direction as

θ ′
i = �u′2

i

2 〈EΔ〉 , (3.4)

where an equivalent definition follows for θ ′′
i . Note that θ ′

1 + θ ′
2 = θ ′′

1 + θ ′′
2 = 1. The

quantity θ ′
1 represents the proportion of uncertainty energy aligned with compressive flow

and θ ′
2 represents the proportion aligned with stretching flow. The quantity θ ′′

2 represents
the proportion of uncertainty energy aligned with the principal stretching direction of the
conformation tensor and θ ′′

1 is the proportion of uncertainty energy orthogonal to this.
In Ge et al. (2023), they observed an uneven distribution of the orientation of the

uncertainty energy for three-dimensional turbulence in a Newtonian fluid: during the
similarity regime characterised by exponential growth of uncertainty, the majority of
the uncertainty energy was aligned with the compressive flow direction. The picture is
different in the two-dimensional low-Re elastic turbulence case. Figure 3(a) shows the
evolution of 〈θ ′〉 and 〈θ ′′〉. The variation of 〈θ ′

1〉 is small: at all times 0.467 � 〈θ ′
1〉� 0.542;
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the uncertainty energy is approximately evenly split between regions of compression and
extension. There does not appear to be any preferential orientation of uncertainty energy
due to the reference flow. The relative orientation of the velocity difference field and
the reference flow field only appears in (2.8) in the inertial production term, and for
small Re, this is small. At early times, the quantity 〈θ ′′

1 〉 is very small, and 〈θ ′′
2 〉 ≈ 1;

i.e. the perturbation we impose in the conformation tensor is predominantly aligned with
the direction of polymer extension. During regime (I) (τ � 0.1), the orientation changes,
and 〈θ ′′

1 〉, the proportion of the uncertainty energy 〈EΔ〉 perpendicular to the extensional
direction of the polymers, increases to approximately 0.15. There is a further increase in
〈θ ′′

1 〉 during regime (II) (0.1 � τ � 1), and during regime (III) (1 � τ � 30), 〈θ ′′
1 〉 ≈ 0.25.

During the exponential growth regime approximately a quarter of the uncertainty energy
is aligned perpendicular to the direction of polymeric extension. The increase in the
proportion of the uncertainty energy aligned normal to the principal direction of reference
polymer deformation prior to regime (III) is consistent with the analysis in § 2; we expect
the production of uncertainty due to polymer advection 〈AΔ〉 to be larger when the
uncertainty energy is aligned with the gradient of the polymer deformation trace, which
we expect to be normal to the primary polymer deformation. In regime (IV) (τ � 30),
there is a slight further increase in 〈θ ′′

1 〉. That 〈θ ′′
1 〉 always remains below approximately

0.3 is further indication that there is a limit to complete decorrelation: both realisations are
subject to the same forcing, and even when their evolutions are fully diverged, the imprint
of the forcing in each flow results in a residual correlation.

As a measure of the relative orientation of the uncertainty in the conformation tensor
we define

ψ ′
ij =

�c′2
ij

〈ΠΔ〉 , (3.5)

with an equivalent definition for ψ ′′
ij . We note here that the normalisation of ψ ′

ij by 〈ΠΔ〉
(as opposed to 〈ΓΔ〉) ensures the sum over all components of ψ ′

ij equals one. Figure 3(b)
shows the evolution of 〈ψ ′〉 and 〈ψ ′′〉.

At all times the largest component of 〈ψ ′〉 is 〈ψ ′
22〉 and the largest component of

〈ψ ′′〉 is 〈ψ ′′
22〉 – the largest component of the uncertainty in the polymer deformation is

aligned with stretching and polymeric extension in the reference flow. During regime (II)
this proportion decreases, from approximately 0.6 to approximately 0.35 at τ = 1, before
increasing again during regime (III) to approximately 0.5. Following the expression for
UC1Δ in (2.17), this implies that 〈UC1Δ〉 will be positive at all times. We next inspect the
evolution of 〈ψ ′′〉. Note that in figure 3(b) we have plotted 〈ψ ′′

11〉, 〈ψ ′′
12〉 and 〈1 −ψ ′′

22〉.
At short times the orientation of the uncertainty in the polymer deformation relative
to the reference polymeric deformation is roughly constant, with 〈ψ ′′

22〉 ≈ 0.997. At the
start of regime (III), from τ ≈ 1 to τ ≈ 4, 〈ψ ′′

22〉 decreases. This period coincides with
exponential growth starting in 〈EΔ〉 whilst 〈ΓΔ〉 continues to decay. As we discuss later,
during this period, uncertainty is growing exponentially at large scales, but is reducing
due to polymeric dissipation and relaxation at small scales. During this period at the start
of regime (III), there is also a decrease in 〈ψ ′′

11〉 and an increase in 〈ψ ′′
12〉. During the

transition to exponential growth, a greater proportion of the uncertainty in the polymeric
deformation is deviatoric in an orthornormal basis aligned with the reference polymeric
deformation, indicating a rotation of the uncertainty relative to the polymeric deformation
of the reference field as the two realisations decorrelate. However, we note that for the
remainder of regime (III) (4 � τ � 30) the orientation of uncertainty in the polymeric
deformation is roughly constant with respect to the reference polymeric deformation.
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Figure 4. The evolution of d〈EΔ〉/dt and terms in (2.8) for the reference configuration (Re = 10−2, β = 1/2,
ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2). (a) The sum of terms in (2.8) and the calculated values of d〈EΔ〉/dt .
Where d〈EΔ〉/dt > 0, a solid red line is used, and where d〈EΔ〉/dt < 0, a dotted red line. (b) Ratios of the
terms in (2.8). The lower inset highlights the early-time evolution. The upper inset shows the evolution of the
individual terms 〈IΔ〉, 〈DΔ〉 and 〈PΔ〉.

At the end of regime (III), there is a sharp decrease in 〈ψ ′′
22〉 (〈1 −ψ ′′

22〉 increases by two
orders of magnitude) and a corresponding increase in 〈ψ ′′

11〉 and 〈ψ ′′
12〉. Figure 3(b) shows

the evolution of −(〈ΓΔ〉 − 〈ΠΔ〉)/2〈ΓΔ〉 = −〈det(�cij)〉/〈ΓΔ〉, and we note this quantity
is always positive, indicating the spatial average of the determinant of�cij is negative. The
relative differences between 〈ΓΔ〉 and 〈ΠΔ〉 are small: −(〈ΓΔ〉 − 〈ΠΔ〉)/2〈ΓΔ〉 remains
below 0.01 during regimes (I) to (III), increasing to approximately 0.1 in regime (IV). The
evolution of −(〈ΓΔ〉 − 〈ΠΔ〉)/2〈ΓΔ〉 closely follows the evolution of 〈ψ ′′

12〉, suggesting
that the exponential growth in regime (III) is characterised by not only a relative rotation
of the uncertainty in polymer deformation, but also a relative increase in |det(�cij)|.

3.1.2. Terms contributing to the evolution of 〈EΔ〉
We now consider how the terms in (2.8) evolve. Figure 4(a) shows the evolution of
d〈EΔ〉/dt , and the terms contributing to d〈EΔ〉/dt in (2.8). Note that we have calculated
d〈EΔ〉/dt with a first-order forward difference approximation based on successive values
of 〈EΔ〉 separated by δτ = 10−3. There is very close agreement between the calculated
value of d〈EΔ〉/dt and 〈IΔ〉 − 〈DΔ〉 + 〈PΔ〉, providing confirmation that (2.8) holds.
Figure 4(b) shows the evolution of the ratios −〈IΔ〉/〈DΔ〉 and 〈PΔ〉/〈DΔ〉 − 1 (scaled
by 104). The upper inset shows the individual terms 〈IΔ〉, 〈PΔ〉 and 〈DΔ〉. Firstly, we
note that 〈IΔ〉 is almost always negative (we have plotted |〈IΔ〉| in the inset), indicating
that in this regime the (small) net effect of the inertial terms is to reduce uncertainty.
The quantities 〈PΔ〉 and 〈DΔ〉 are closely matched, and approximately four orders of
magnitude larger than 〈IΔ〉. The quantity 〈PΔ〉/〈DΔ〉 − 1 provides a measure of this
match: for 〈PΔ〉/〈DΔ〉 − 1> 0, polymeric propagation of uncertainty outweighs viscous
dissipation of uncertainty. For 〈PΔ〉/〈DΔ〉 − 1< 0, viscous dissipation dominates. The
evolution of 〈PΔ〉/〈DΔ〉 − 1 shows several distinct behaviours. At very early times (lower
inset) the quantity 〈PΔ〉/〈DΔ〉 − 1 is positive, indicating the early-stage increase in
uncertainty is driven by polymeric propagation. Subsequently, 〈PΔ〉/〈DΔ〉 − 1 becomes
negative on time scales of the order of 10−1. In this period, there is a net reduction
in uncertainty as viscous dissipation dominates polymeric propagation. From τ ≈ 1 to
τ ≈ 25, 〈PΔ〉/〈DΔ〉 − 1 fluctuates, but is predominantly positive. This period corresponds
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Figure 5. The evolution of d〈ΓΔ〉/dt and terms in (2.15) for the reference configuration (Re = 10−2, β = 1/2,
ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2). (a) The sum of terms in (2.15) and the calculated values of d〈ΓΔ〉/dt .
Where d〈ΓΔ〉/dt > 0, a solid red line is used, and where d〈ΓΔ〉/dt < 0, a dotted red line. (b) The individual
terms in (2.15). The inset shows these same terms normalised by 〈ΓΔ〉. Where 〈AΔ〉 is negative, it is plotted
with a dotted red line, and with a solid red line where positive.

to the regime of exponential growth of uncertainty. As uncertainty saturates, the quantity
〈PΔ〉/〈DΔ〉 − 1 increases, with a trend matching that of −〈IΔ〉/〈DΔ〉.

3.1.3. Terms contributing to the evolution of 〈ΓΔ〉
Figure 5 shows the evolution of d〈ΓΔ〉/dt and the contributing terms in (2.15). Figure 5(a)
shows the evolution of d〈ΓΔ〉/dt (evaluated from successive values of 〈ΓΔ〉 at intervals of
δτ = 10−3), and the sum of the terms in the right-hand side of (2.15). The two quantities
match very closely, with discrepancies only arising when d〈ΓΔ〉/dt is rapidly changing,
due to the first-order finite-difference approximation used to evaluate d〈ΓΔ〉/dt .

Figure 5(b) shows the evolution of the individual terms in (2.15). For this configuration
with ε= 0 (i.e. Oldroyd B), 〈RΔ〉 = 〈2ΓΔ/Wi〉 = 〈ΓΔ〉. We first consider the upper
convected terms. Term 〈UC1Δ〉 is at all times positive. This observation is consistent
with the finding in § 3.1.1 that 〈ψ ′

22〉 is always the largest component of 〈ψ ′〉. Stretching
in the conformation tensor difference field is predominantly aligned with stretching in
the reference flow, and this results in a production of uncertainty. Term 〈UC2Δ〉 is at all
times negative (note that we have plotted −〈UC2Δ〉), and always approximately an order
of magnitude smaller than 〈UC1Δ〉. Term 〈UC3Δ〉 is sometimes positive and sometimes
negative, and with magnitude several orders smaller than 〈UC1Δ〉, as predicted in § 2.
The relative importance of 〈UC3Δ〉 increases with time as the uncertainty increases,
but even in regime (IV) it remains an order of magnitude smaller than the other two
upper convected terms. Of the upper convected terms, it is 〈UC1Δ〉 which dominates the
dynamics of uncertainty evolution, with 〈UC2Δ〉 ∼ −0.1〈UC1Δ〉 through regime (III), and
〈UC1Δ〉> 0 at all times. The net contribution of the upper convected terms is to amplify
uncertainty.

The inset of figure 5(b) shows the evolution of the terms in (2.15) normalised by
〈ΓΔ〉. At early times, 〈PDΔ〉 dominates, as the perturbation is focused at small scales.
Over the first few time units, the relative magnitude of 〈PDΔ〉 reduces, and during the
exponential regime (τ ∈ [1, 30]), we see 〈PDΔ〉 ≈ 〈RΔ〉 = 〈ΓΔ〉. During the period of
exponential growth of 〈ΓΔ〉, the ratio 〈UC1Δ〉/〈ΓΔ〉 is always greater than unity and the
ratio 〈PDΔ〉/〈ΓΔ〉 is always less than unity. The growth of uncertainty is approximately
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Figure 6. Evolution of the uncertainty energy spectrum ÊΔ(k) (a) and the uncertainty in the conformation
tensor trace �ĉii(k) (b) for the reference configuration (Re = 10−2, β = 1/2, ε= 0, κ = 2.5 × 10−5, n = 4,
Wi = 2) at very short times (regime (I)). The dashed black lines show the reference energy spectrum Ê (1) and
conformation tensor trace ĉ(1)(k). The dotted red line indicates the forcing wavenumber k = 2π .

determined by the balance of the quantity

〈UC1Δ〉 + 〈AΔ〉 − 〈RΔ〉 − 〈PDΔ〉
〈ΓΔ〉 , (3.6)

which is equivalent (neglecting the contributions of 〈UC2Δ〉 and 〈UC3Δ〉) to twice the
maximal Lyapunov exponent of 〈ΓΔ〉. With 〈RΔ〉 = 〈ΓΔ〉, and 〈UC1Δ〉 and 〈PDΔ〉 closely
correlated to 〈ΓΔ〉, it is the advective term which largely determines whether uncertainty
increases or reduces (note that this advective term, originating from (2.3), remains relevant
even at very low Re). This can be seen in figure 5, where regions of negative 〈AΔ〉 (shown
with a dotted red line), correspond to short-term decreases in 〈RΔ〉.

3.1.4. The spectra of uncertainty
We next investigate how the spectra of the uncertainty evolve. We calculate the energy
spectra of �ui (denoted ÊΔ) and the spectra of �cii (denoted �ĉii). Figure 6 shows ÊΔ
and �ĉii at very early times τ � 0.05, covering until nearly the end of regime (I). Figure 7
shows the same for τ ∈ [0.1, 0.6], covering regime (II). Figure 8 shows the same at later
times τ ∈ [1, 32], covering regime (III). In all three figures, the forcing wavenumber is
indicated by a vertical dotted red line, and the spectra of the reference field (averaged over
50 time units) are shown with a black dashed line.

At early times (figure 6) the uncertainty energy and uncertainty in the conformation
tensor trace are predominantly at high wavenumbers. This is due to the nature of the
perturbation, which is imposed via (3.1). At the earliest times, both ÊΔ and �ĉii have a
slope of k4, consistent with the ∇4 operator used to impose the perturbation. For τ � 10−3,
there is an increase in ÊΔ and �ĉii across all wavenumbers, as the perturbation is applied
over a finite time – the characteristic time scale of the perturbation in (3.1) is 10−3. From
the earliest times, there is an almost immediate increase in uncertainty at large scales,
and this increase continues after the perturbation has ceased, and spreads across a greater
range of wavenumbers with increasing τ . This transfer of uncertainty from small scales to
large scales is due to the elliptic constraint of incompressibility: small-scale uncertainty
localised at one point in space creates uncertainty everywhere, instantly.
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Ê 	

(k
)
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Figure 7. Evolution of the uncertainty energy spectrum ÊΔ(k) (a) and the uncertainty in the conformation
tensor trace �ĉii(k) (b) for the reference configuration (Re = 10−2, β = 1/2, ε= 0, κ = 2.5 × 10−5, n = 4,
Wi = 2) at short times (regime (II)). The dashed black lines show the reference energy spectrum Ê (1) and
conformation tensor trace ĉ(1)(k). The dotted red line indicates the forcing wavenumber k = 2π .
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Figure 8. The evolution of the uncertainty energy spectrum ÊΔ(k) (a) and the uncertainty in the conformation
tensor trace �ĉii(k) (b) for the reference configuration (Re = 10−2, β = 1/2, ε= 0, κ = 2.5 × 10−5, n = 4,
Wi = 2) at longer times (regime (III)). The dashed black lines show the reference energy spectrum Ê (1) and
conformation tensor trace ĉ(1)(k). The dotted red line indicates the forcing wavenumber k = 2π .

At slightly longer times –τ ∈ [0.1, 1] (figure 7) – there is a reduction in uncertainty at
small scales, and the uncertainty at large scales remains roughly constant. This period
corresponds to regime (II) as defined above, and the time during which the viscous
dissipation of uncertainty dominates polymeric propagation. We see a slight reduction
in ÊΔ across all scales and a decrease in �ĉii at small scales. In this regime the spectrum
ÊΔ has a slope of approximately k−2 and �ĉii has a slope (which matches that of ĉ(1)ii )
of k1. After this (regime (III); figure 8), there is exponential growth of ÊΔ and �ĉii. This
exponential growth occurs initially at large scales, whilst diffusion still dominates small
scales until τ ≈ 4, after which we see exponential growth across all scales. With increasing
τ , the slope of ÊΔ increases towards k−3.7, the slope of the reference energy spectra.
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Figure 9. The time evolution of components of the uncertainty energy spectra ÊΔ(k) (a) and the spectra of
the uncertainty in conformation tensor trace �ĉii(k) (b), normalised by the reference spectra, for the reference
configuration (Re = 10−2, β = 1/2, ε= 0, Sc = 4 × 106, n = 4, Wi = 2).

In figure 9 we plot the time evolution of individual components of ÊΔ and �ĉii. The
different regimes of uncertainty evolution are marked with vertical dotted red lines. We
denote regime (0) as the time scale over which the perturbation is imposed. For ÊΔ, the
uncertainty at small scales initially grows at a rate proportional to τ 2, which is consistent
with the injection of uncertainty during the imposition of the perturbation for τ < δt0.
For τ > δt0, this growth at small scales ceases. For �ĉii, this early growth at small
scales is at a rate proportional to τ . The picture is different at large scales, with ÊΔ
growing proportional to τ 6 and �ĉii growing proportional to τ 2. This growth at large
scales continues for τ > δt0. We have also performed simulations with δt0 = 10−5 
 δt =
4 × 10−4, where δt is the computational time step. Even in this limit, the same short-time
growth rate of τ 6 is observed, and this growth rate persists for the same duration (i.e. it
persists until τ � δt0).

Through regime (I), the uncertainty in both flow and conformation tensor continues
to grow at large scales, whilst the uncertainty at small scales is roughly constant. The
growth rate decreases with time, as the balance between viscous dissipation and polymeric
propagation changes. By τ ≈ 0.1, viscous dissipation of uncertainty becomes greater than
polymeric propagation, and the uncertainty in both flow and conformation tensor decreases
at small scales through regime (II). For τ > 1, in regime (III), there is exponential growth
of uncertainty in both the flow and conformation tensor, again initially at large scales, and
followed by small scales by τ ≈ 4. For τ > 30, in regime (IV), the uncertainty saturates at
all scales.

We comment here on the short-time evolution of uncertainty. If we impose a
perturbation on c(2)ij using a Laplacian operator (rather than a hyperviscous operator), we
observe qualitatively similar behaviour during regimes (I) and (II). We note that for all
perturbations, regimes (III) and (IV) are unchanged; the growth rate in regime (III) and
the saturation values in regime (IV) are independent of the perturbation imposed.

3.2. The effect of polymeric diffusivity κ
Polymeric diffusivity acts to limit the smallest length scales of the polymer deformation
field, and we see from (2.15) that the effect of polymeric diffusivity on uncertainty is
to reduce it. Figure 10(a) shows the evolution of 〈EΔ〉/E (tot)

avg and 〈ΓΔ〉/Wi2 for κ ∈
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Figure 10. (a) The evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 for different values of κ . (b) The evolution of terms

in (2.15), normalised by 〈ΓΔ〉, for different values of κ . All other parameters match the reference configuration
(Re = 10−2, β = 1/2, ε= 0, n = 4, Wi = 2). For κ = 10−5, the resolution is (192n)2; for all larger κ , the
resolution is (128n)2.

[10−4, 5 × 10−5, 2.5 × 10−5, 10−5]. The growth rate of uncertainty during regime (III)
increases with decreasing κ . At short times, the polymeric diffusivity has a significant
influence on the uncertainty. The inset shows the short-time evolution of 〈EΔ〉/E (tot)

avg and
〈ΓΔ〉Wi2, collapsing when scaled by κ3. This dependence on κ is a result of the form of the
perturbation: the perturbation imposed generates polymeric deformation difference spectra
which scales with k4 (as in figure 6). Polymeric diffusivity limits the smallest length scales
of the polymer deformation field, and consequently the imposed perturbation is smaller
for larger κ . Figure 10(b) shows the evolution of the terms in (2.15), normalised by 〈ΓΔ〉,
for different κ . The inset shows the early time evolution. For κ � 2.5 × 10−5, the relative
magnitude of 〈UC1Δ〉 and 〈AΔ〉 is little changed by κ . At very short times, 〈PDΔ〉/〈ΓΔ〉
is independent of κ . During regime (III), 〈PDΔ〉/〈ΓΔ〉 is approximately constant, with
a value which decreases with decreasing κ . One could extrapolate this trend to estimate
the maximum permissible value of κ such that the effect of polymeric diffusivity on the
chaotic dynamics is negligible (e.g. the value of κ such that 〈PDΔ〉/〈ΓΔ〉< 0.1 during
regime (III)), but in the absence of extremely high-fidelity simulations at very small κ to
confirm such an extrapolation, we leave this as a suggestion for future studies. For all four
values of κ , the terms 〈UC1Δ〉 and 〈AΔ〉 are larger than 〈PDΔ〉 during regime (III).

3.3. The influence of Re
We next investigate the influence of Re, keeping all other parameters fixed. Figure 11(a)
shows the evolution of 〈EΔ〉/E (tot)

avg and 〈ΓΔ〉/Wi2 for a range Re ∈ [10−4, 10−3, 10−2,

10−1, 1]. The growth rate of uncertainty during regime (III) is shown in the inset, and
appears weakly dependent on Re for Re< 0.1. For Re = 1, the growth rate decreases.
Figure 11(b) shows the evolution of 〈IΔ〉, 〈DΔ〉 and 〈PΔ〉. The evolution of |〈IΔ〉|
grows in approximate proportion to 〈EΔ〉, with the proportionality independent of Re.
The magnitudes of 〈DΔ〉 and 〈PΔ〉 scale with Re−1. The quantities 〈PΔ〉/〈DΔ〉 − 1 and
−〈IΔ〉/〈DΔ〉 also scale with Re−1; this collapse is anticipated provided the average flow
is independent of Re, as both 〈PΔ〉 and 〈DΔ〉 contain Re in the denominator. What is
remarkable is that the average ratio of these quantities during regime (III) is only weakly
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Figure 11. (a) The evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 for a range of Re. All other parameters match the

reference configuration (β = 1/2, ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2). Inset shows the average growth rate
over regime (III). (b) The evolution of 〈IΔ〉, 〈DΔ〉 and 〈PΔ〉 for a range of Re.
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Figure 12. Snapshots of the conformation tensor trace field for Re ∈ [10−4, 10−2, 1]. All other parameters
match the reference configuration (β = 1/2, ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2).

dependent on Re. Defining

C(Re)= {〈IΔ〉/〈DΔ〉}(III )
[{〈PΔ〉/〈DΔ〉}(III ) − 1] , (3.7)

in which C(Re) is a function of Re, we find C ∈ [0.113, 0.117, 0.121, 0.143, 0.153] for
Re ∈ [10−4, 10−3, 10−2, 10−1, 1]. The relative importance of the inertial production of
uncertainty is still of the order of 10 % even for Re = 10−4. How C(Re) approaches zero
in the limit Re → 0 is an interesting question, but one which we leave for future studies.
We have also calculated the ratios {〈AΔ〉/〈RΔ〉}(III ) and {〈UC1Δ〉/〈RΔ〉}(III ) and find that
both ratios are independent of Re.

Figure 12 shows snapshots of the conformation tensor trace field for three values of Re.
Note that in these snapshots, structures similar to the ‘narwhal’ or ‘arrowhead’ structures
recently identified as exact travelling-wave solutions (Page et al. 2020; Morozov 2022)
are visible for both Re = 10−4 and Re = 1. These larger-scale structures spanning the
domain and breaking the cellular structure of the flow are present intermittently at all
Re investigated, but are present for a greater proportion of the time at larger Re. We also
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Figure 13. The time evolution of components of the uncertainty energy spectra ÊΔ(k) (a) and the spectra
of the uncertainty in conformation tensor trace �ĉii(k) (b), normalised by the reference spectra, for different
values of Re. The inset of (a) shows components of ÊΔ(k) scaled by Re2. The line styles correspond to different
wavenumbers: k = 1/n, solid lines; k = 10, dashed lines; k = 50, dash-dot lines. All other parameters match
the reference configuration (β = 1/2, ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2).

note that the occurrence of these structures is less frequent at larger ε: we do not observe
them at all for simulations with ε= 10−2.

We next assess the influence of Re on the spectra of uncertainty, following the same
analysis as above for the reference configuration. The results are shown in figure 13. From
figure 11, we have observed that the evolution of uncertainty in regime (III) is only weakly
dependent on Re, and here we are interested in how the inertial terms influence the early
stages of uncertainty growth. At short times, for all Re ∈ [10−4, 1] we see the same growth
rates: at the largest scales, ÊΔ grows with τ 6, and this growth rate persists for some time
after the imposition of the perturbation. At the smallest scales, ÊΔ grows with τ 2 during
the imposition of the perturbation, after which it plateaus, before diffusive effects begin to
reduce uncertainty. Although the growth rate is independent of Re, the magnitude of ÊΔ
at small k scales approximately with Re−2. This can be seen in the inset of figure 13(a),
which shows the early stages of the evolution of Re2 ÊΔ. There appears to be a maximum
uncertainty in the large scales during regime (II). For smaller Re, the growth proportional
to τ 6 persists for a shorter time. For all Re ≤ 1, the low-wavenumber components of ÊΔ
reach a similar magnitude during the transition from regime (I) to regime (II), after which
the evolution during the exponential growth regime (III) tracks approximately the same
course. For Re = 1, the evolution of the large scales of uncertainty is qualitatively similar,
but with smaller magnitudes and lower growth rates during the exponential regime (III).

3.4. The effect of increasing Wi
We next investigate the influence of elasticity on the evolution of uncertainty. Following
the observation in § 3.2 that, for a given configuration, increased nonlinearity reduces
the relative influence of polymeric diffusivity on the evolution of uncertainty, in this
section, we take a base configuration with ε= 10−2 (Re = 10−2, β = 1/2, ε= 10−2,
κ = 2.5 × 10−5, n = 4) and vary Wi. Relative to the case with ε= 0, we expect this to allow
us to reach larger Wi without the effects of polymeric diffusivity masking the nature of how
the uncertainty evolution varies with Wi. Figure 14 shows snapshots of the vorticity field
(upper panel) and normalised conformation tensor trace c(1)ii /Wi (lower panel) for different
values of Wi. For Wi = 0.5, the flow is steady, the flow pattern is periodic on the scale of
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Figure 14. Snapshots of the vorticity field (a) and normalised conformation tensor trace (c(1)ii /Wi) (b) for
increasing Wi. Other parameters are (Re = 10−2, β = 1/2, ε= 10−2, κ = 2.5 × 10−5, n = 4).
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Figure 15. Time evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 with increasing Wi. (a) Other parameters are

(Re = 10−2, β = 1/2, ε= 10−2, κ = 2.5 × 10−5, n = 4). (b) The polymeric diffusivity is increased to
κ = 10−4.

the forcing and in a laminar regime. With increasing Wi there is a symmetry breaking as
the thin regions of high polymer deformation between cells interact with stagnation points
and are swept laterally. Figure 15 shows the evolution of 〈EΔ〉/E (tot)

avg and 〈ΓΔ〉/Wi2 for a
range of Wi ∈ [0.5, 3]. In our simulations, at larger Wi we obtain finer flow features, and
hence to reach larger Wi, we require either a finer resolution or larger values of polymeric
diffusivity. The former will increase computational costs to a level beyond our resources
for this work (doubling resolution increases costs by a factor of >8) whilst for the latter
option the chaotic dynamics will be altered by the polymeric diffusivity. We show in
figure 15(b) the evolution of 〈EΔ〉/E (tot)

avg and 〈ΓΔ〉/Wi2 for a range of Wi ∈ [1, 20], with
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polymeric diffusivity increased to κ = 10−4. This increase in κ permits stable simulations
at larger Wi, but it is likely that the dynamics of the flow is influenced by the polymeric
diffusivity, particularly at larger elasticities. For smaller Wi we see a sublinear increase
in the growth rate of uncertainty during the exponential regime (insets of figure 15). The
dashed black lines in both insets are linear in Wi0.7, and for κ = 2.5 × 10−5 in figure 15(a),
there is a reasonable fit, suggesting the growth rate of uncertainty scales approximately
with Wi0.7. Acknowledging that the Lyapunov dimension and Lyapunov exponent are
different, we note that the Lyapunov dimension obtained by Plan et al. (2017) was given in
the form CWiα , with α ≈ 0.7. At large Wi (figure 15b) this increase in {λ}(III ) ceases, and
for κ = 10−4 and Wi � 8, the growth rate of uncertainty is roughly constant with further
increases in Wi. We postulate that this limit is a consequence of the larger polymeric
diffusivity, which acts to reduce uncertainty growth. For the simulations with larger κ , we
observe a much more significant decrease of uncertainty at low Wi during regime (II); in
figure 15(b), 〈EΔ〉/E (tot)

avg decreases significantly with decreasing Wi during the early stages
when polymeric diffusion dominates the uncertainty evolution. We note here that the rapid
transfer of uncertainty across scales during regime (I) occurs for all Wi investigated (even
those at low Wi in the laminar regime), and the growth rate or large-scale uncertainty with
τ 6 in this regime holds across the range of Wi.

3.5. The effect of increasing domain size n

Finally, we explore the influence of the domain size. We have observed in regime (I)
rapid transfer of uncertainty across scales, and with the configuration used in this work,
it is interesting to explore how uncertainty evolves differently as the domain size is
changed. Note that our non-dimensionalisation is based on the forcing, and not on any
large-scale flow features which may develop. An alternative non-dimensionalisation is
possible, based on a fixed (unit) domain size, as was used in Plan et al. (2017). In that
work they estimated the Lyapunov dimension for two different forcing wavelengths, and
obtained a scaling with Wi which was independent of the forcing scale. Denoting the
dimensionless quantities based on the domain size with a subscript n, we can express
the relationship Ren = nRe and Win = Wi/n. If we non-dimensionalise based on the
domain size, for fixed fluid transport properties (i.e. viscosity, relaxation times) and forcing
magnitude, the Reynolds number would increase with domain size and the Weissenberg
number would scale with the inverse of domain size. Defining the elasticity number as
El = Wi/Re, we see that the domain-size-based elasticity number Eln scales with 1/n2.
We conduct simulations all with the same (unit) forcing wavelength, for a range of domain
sizes n ∈ [2, 16], and for three configurations: (i) with all other parameters matching the
reference configuration (Re = 10−2, β = 1/2, ε= 0, κ = 2.5 × 10−5, Wi = 2); (ii) using
the sPTT model (Re = 10−2, β = 1/2, ε= 10−2, κ = 2.5 × 10−5, Wi = 2); and (iii) with
the sPTT model and increased polymeric diffusivity (Re = 10−2, β = 1/2, ε= 10−2,
κ = 10−4, Wi = 2). Results highlighting the effect of sPTT nonlinearity parameter ε on
uncertainty evolution are provided in Appendix B. Note that whilst the mean kinetic
energy is independent of n, high-energy intermittent events increase with increasing n,
and consequently for n > 10, we use a smaller time step of δt = 2 × 10−4.

Figure 16(a) shows the evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 with increasing domain

size n. All other parameters match configuration (ii) described above (Re = 10−2, β =
1/2, ε= 10−2, κ = 2.5 × 10−5, Wi = 2). In figure 16(b), the results are plotted against
τ ln(n0.5). In figure 16(a), it is clear that increasing the maximum length scales of the flow
results in a faster growth of uncertainty during regime (III). The collapse of the curves
in figure 16(b) shows this increased growth rate follows a trend of approximately ln(n0.5).
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Figure 16. (a,b) Time evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 with increasing domain size n. Other

parameters are (Re = 10−2, β = 1/2, ε= 10−2, κ = 2.5 × 10−5, Wi = 2). In (b), τ has been rescaled
by ln(n0.5).
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Figure 17. (a) The variation of the growth rate {λ}(III ) with increasing domain size n, for three different
configurations. The dashed line corresponds to 0.5 ln(n). The inset shows {Wi2〈EΔ〉/E (tot)

avg 〈ΓΔ〉}(III ).
(b) The energy spectra of the reference field for different values of n. All other parameters match the reference
configuration (Re = 10−2, β = 1/2, ε= 0, κ = 2.5 × 10−5, Wi = 2).

Our numerical experiments in which we increase n for a fixed forcing strength may be
re-framed as a set in which we increase El−1/2

n whilst co-varying Ren and Win; we are
effectively moving from (at small n) a high-Eln regime where inertial effects are negligible
to (at large n) a low-Eln regime in which inertial effects play an increasing role.

We denote the average growth rate during regime (III) as {λ}(III ), and this is plotted
against n in figure 17, for several parameter configurations. For the cases with ε= 10−2

(red and black lines), we see that {λ}(III ) scales with 0.5 ln(n) over the range n ∈ [4, 16].
For small n, the growth rate drops below this. For the reference configuration (blue
lines/symbols) the growth rate follows this trend up to n = 6, and for larger n drops below
this trend. For the configuration with ε= 0.01 and an increased κ = 10−4, a growth rate
is lower (due to the effect of polymeric diffusivity to reduce uncertainty growth), but the
variation with n still follows the logarithmic trend. For the configuration with increased
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Figure 18. Snapshots of the normalised conformation tensor trace (c(1)ii /Wi) for increasing n. All other
parameters match the reference configuration (Re = 10−2, β = 1/2, ε= 0, κ = 2.5 × 10−5, Wi = 2).

polymeric diffusivity (Re = 10−2, β = 1/2, ε= 0.01, κ = 10−4, Wi = 2), we can obtain
converged results with a resolution of (64n)2 modes, allowing us to reach larger domain
sizes at reasonable computational costs. For n = 32, the results deviate from the 0.5 ln(n)
scaling. The inset of figure 17 shows the variation of {Wi2〈EΔ〉/E (tot)

avg 〈ΓΔ〉}(III ) with n
for the three different configurations. In the Oldroyd B limit, this quantity represents the
ratio of uncertainty in kinetic energy to that in elastic energy, and we see for all three
configurations that this quantity increases with increasing domain size. This is despite the
average energies of the reference field being independent of domain size.

It is known that in two-dimensional inertial turbulence, large-scale condensates develop
(see e.g. Chertkov et al. 2007, Svirsky, Herbert & Frishman 2023) in finite domains, due
to the inverse energy cascade and accumulation of energy at the largest scales. In two-
dimensional elasto-inertial turbulence, the inverse cascade is present (Gupta, Perlekar &
Pandit 2015), and such condensates may form in settings with out-of-equilibrium forcing.
The inverse cascade in two-dimensional (inertial, Newtonian) turbulence arises as a
consequence of the additional constraint on the conservation of (squared) vorticity
(Svirsky & Frishman 2025). The addition of polymers provides a mechanism which can
draw energy from large to small scales, weakening or reversing the cascade depending
on the relative balance of inertial and elastic effects (Gillissen 2019). In the present
investigation, inertial effects are small, so the inverse cascade which leads to energy
condensation is absent: the dynamics is a consequence of elastic effects drawing energy
from large to small scales, with a scale-by-scale balance between this transfer and viscous
dissipation. Figure 17(b) shows the energy spectra of the reference field for different
domain sizes n. We see that there is energy below the forcing wavenumber, as in the
simulations of Plan et al. (2017). In our simulations the energy spectra below the forcing
wavenumber scale with k−α for an α > 1; there must be some transfer of energy from
smaller to large scales. Furthermore, given the spectra above the forcing wavenumber
closely match for all n � 3, we postulate that it is the large-scale flow structures which
drive the increase in the rate of uncertainty growth with increasing domain size. Figure 18
shows snapshots of the conformation tensor trace for increasing domain sizes. We see
that for n = 2, the flow is laminar. With increasing domain size, there are increasing
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Figure 19. (a) The time evolution of terms in (2.8) contributing to the evolution of d〈EΔ〉/dt for a range of
domain sizes n. Time is scaled by 0.5 ln n. The inset shows the variation of ratios of these terms with n. (b) The
time evolution of the ratio 〈RΔ〉/〈PDΔ〉, with time scaled by 0.5 ln n. The inset shows the short-time evolution
of this ratio, which collapses with time scaled by n0.2. Other parameters are (Re = 10−2, β = 1/2, ε= 10−2,
κ = 2.5 × 10−5, Wi = 2).

regions exhibiting the arrowhead-like flow structures (Page et al. 2020) and increasingly
large-scale patterns in the polymer deformation. A consequence of the rapid transfer of
uncertainty across scales is that if one region of the flow has characteristics which result
in a faster uncertainty growth, this will be transferred throughout the domain increasing
the uncertainty growth rate everywhere. In figure 18 for n = 16, we see some form of large-
scale structure consisting of alternating regions of arrowhead structures and cellular flow.
Whilst the mechanisms driving the formation of large-scale flow features are uncertain,
understanding their formation and structure may provide further insight into the dynamics
of elastic turbulence. Such investigations via numerical simulations become prohibitively
expensive, and are left for future work. Note that when inspecting the conformation tensor
trace fields for the case with sPTT nonlinearity ε= 10−2, we observe large-scale patterns
spanning the domain, but we do not observe the formation of arrowhead-like structures.

We next consider the terms in (2.8) and (2.15) for varying n. Figure 19(a) shows the
individual terms in (2.8) for increasing n, plotted against τ ln(n0.5). The same collapse
is observed as in 〈EΔ〉/E (tot)

avg and 〈ΓΔ〉/Wi2 in figure 16. The inset shows the averages
during regime (III) of ratios of these terms. Both quantities 〈IΔ〉/〈DΔ〉, which represents
the ratio of inertial production to viscous dissipation of uncertainty, and 〈PΔ〉/〈DΔ〉 − 1,
which indicates whether polymeric propagation of uncertainty outweighs viscous
dissipation, increase with increasing n, and this increase is roughly linear. However, the
ratio 〈IΔ〉/(〈PΔ〉 − 〈DΔ〉) decreases with increasing n, implying that the relative influence
of inertial effects on uncertainty growth decreases with increasing n.

Figure 19(b) shows the evolution of the ratio 〈RΔ〉/〈PDΔ〉 plotted against τ ln(n0.5). At
short times, polymeric dissipation of uncertainty dominates in (2.15), and we see this in the
inset with small values of 〈RΔ〉/〈PDΔ〉 at early times. Note that we have plotted the data
in the inset against τn0.2 and the early-time evolution of 〈RΔ〉/〈PDΔ〉 collapses under this
scaling. At the start of regime (III), there is an increase in 〈RΔ〉/〈PDΔ〉 to approximately
6.5, a value that is roughly independent of n, and persists through the exponential regime
(III), before increasing further as a saturation of uncertainty is reached. In figure 20(a)
we plot the evolution of 〈AΔ〉/〈ΓΔ〉. The collapse with ln(n0.5) still holds during regime
(III), whilst (not shown) the collapse with n0.2 observed for 〈RΔ〉/〈PDΔ〉 holds. At late
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Figure 20. The time evolution of terms in (2.15) contributing to the evolution of 〈ΓΔ〉. (a) The evolution of
the ratio 〈AΔ〉/〈RΔ〉. (b) The evolution of the ratio 〈UC1Δ〉/〈RΔ〉. In both cases, time is scaled by 0.5 ln n.
The insets show the average values of these ratios over the period of exponential growth. Other parameters are
(Re = 10−2, β = 1/2, ε= 10−2, κ = 2.5 × 10−5, Wi = 2).

times, into regime (IV), for all n, 〈AΔ〉/〈ΓΔ〉 tends towards the same value just below
unity. During regime (III), the average value of 〈AΔ〉/〈ΓΔ〉 (plotted in the inset) increases
with increasing domain size. We see the same trend for the reference configuration with
ε= 0 (blue lines in the inset), but with lower magnitude. Figure 20(b) shows the evolution
of 〈UC1Δ〉/〈ΓΔ〉. This ratio appears to be roughly independent of n during regime (III).
We know from (2.17) that 〈UC1Δ〉 depends on the relative orientation of the conformation
tensor difference with the reference flow field, and the independence of 〈UC1Δ〉/〈ΓΔ〉
with n suggests changes in the domain size are not changing this orientation. We also
note that for all three configurations for which we have conducted the investigation on
increasing n, the magnitudes of both 〈RΔ〉/〈ΓΔ〉 and 〈PDΔ〉/〈ΓΔ〉 are independent of
n during regime (III). The changes we see in growth rate with increasing n appear to
be driven by increases in the production of uncertainty via polymeric advection, which
couples uncertainty across scales, and corresponding increases in inertial and polymeric
propagation terms in the equation governing the evolution of 〈EΔ〉.

4. Conclusions
In this work we have investigated the dynamics of uncertainty in elastic turbulence.
Inspection of the evolution equations for uncertainty provides insight, showing that
uncertainty in the polymeric deformation field can evolve into uncertainty in both flow
and polymer fields, and hence for a chaotic flow exhibiting sensitivity to initial conditions,
we would expect small perturbations or uncertainties inherent in polymer orientations to
grow in finite time, with implications for the accuracy and repeatability of numerical and
laboratory experiments. The evolution of uncertainty depends on the relative alignments
of the reference flow, the reference conformation tensor, the uncertainty in the flow and
the uncertainty in the conformation tensor. The growth of uncertainty in kinetic energy
is determined primarily by the balance of viscous dissipation and polymeric propagation,
whilst the growth of uncertainty in polymer deformation is primarily controlled by the
balance of production due to polymer advection, stretching and rotation, against polymer
relaxation and polymeric diffusivity, with the latter two effects always acting to reduce
uncertainty.
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We identify several regimes of evolution of uncertainty.

(i) At very short times, a transfer of uncertainty across scales, with rapid growth of
uncertainty in the flow and polymer deformation at large scales. Uncertainty at any
point instantly generates uncertainty everywhere, as a consequence of the elliptic
nature of the incompressibility constraint. Over a range of Re, this transfer of
uncertainty from very small to very large scales approximately with Re−2. In this
regime uncertainty in the kinetic energy grows with time to the power of 6 for
large scales, and this growth rate appears to be independent of Re, Wi, polymeric
diffusivity, the degree of nonlinearity in the sPTT model and the domain size.

(ii) At short times, of the order of one dimensionless time unit, a reduction in uncertainty,
predominantly at small scales, but in some configurations across all scales, due to
viscous and diffusive effects.

(iii) At moderate times, of the order of 1 to 30 dimensionless time units, exponential
growth of uncertainty across all scales. In the elastic turbulence regime, this growth
rate decreases slightly with increasing Reynolds number, increases approximately
with Wi0.7 and increases with the logarithm of the square root of the maximum length
scale. The growth rate decreases with increasing polymeric diffusivity, and is largely
independent of the degree of nonlinearity in the sPTT model, within the range of non-
linearity which results in elastic turbulence. This regime is characterised by a slight
rotation of the uncertainty in the polymeric deformation relative to the reference poly-
meric deformation, but the average rotation remains approximately constant through-
out the regime, even as the magnitude of the uncertainty increases by six orders.

(iv) A late times, uncertainty saturates. In general, the maximum uncertainty in the
kinetic energy, normalised by the total energy, is unity. For flows with a constant
forcing, there is a limit to the extent to which the flows can decorrelate, and in the
cellularly forced elastic turbulence setting, this limit appears to be approximately 0.3.

At short times, in particular in regime (II), the uncertainty evolution is influenced by the
nature of the initial uncertainty, but the growth rate in regime (III) is independent of the
initial uncertainty: it is a function purely of the reference flow state.

The observation of rapid transfer of uncertainty across scales raises questions about
closure models (analogous to large-eddy simulation for inertial turbulence) for elastic
turbulence. If uncertainty at the small scales can completely destabilise the trajectory of a
flow across all scales, then any closure models which make assumptions about the flow at
unresolved scales must somehow account for this. The observation also supports previous
findings by Gupta & Vincenzi (2019) and Yerasi et al. (2024) and highlights the need for
care in numerical simulations of elastic turbulence, as numerical errors or inaccuracies
may significantly alter the dynamics at large scales.

The approach taken in this study is new to viscoelastic flows, and there are many aspects
we would like to investigate which are beyond the scope of the present paper. In particular,
exploring the behaviour of uncertainty at extremely high elasticities, negligible polymeric
diffusivities and extremely large domain sizes would provide further insight, although
such investigations require a finer resolution and will result in significantly increased
computational costs. The formation of large-scale flow features in settings where the
maximum length scale is much larger than the forcing scale is a topic which has received
little attention in the context of viscoelastic flows, but understanding this behaviour may
have implications for the development of closure models for elastic turbulence. Our
theoretical framework is limited to periodic flows, but it would be interesting to extend this
approach to bounded flows (e.g. channel flows, or flows past obstacles). Whilst numerical
experiments in such settings are straightforward, developments to the theory are required
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Figure 21. The evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 for the reference configuration (Re = 10−2, β = 1/2,

ε= 0, κ = 2.5 × 10−5, n = 4, Wi = 2), for different spatial (a) and temporal (b) resolutions. In both panels, each
line corresponds to an individual realisation, not an ensemble average. In (b), the inset shows the evolution of
the difference between 〈EΔ〉 and 〈EΔ〉 for the smallest time step δt = 10−4.

to investigate the production and dissipation of uncertainty at walls. We comment that the
theory developed herein could equally be applied to flows with inertia, and a further study
of three-dimensional elasto-inertial turbulence is planned. Finally, the issue of polymeric
dissipation in numerical simulations of chaotic viscoelastic flows is a topic of debate
within the community, and although not the focus of the present study, we suggest that
the present approach may provide useful insight on this issue – that diffusivity decreases
uncertainty. Given that it is required for numerical stability, a detailed study on the effects
of polymeric diffusivity on uncertainty evolution would be of value.
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Appendix A. The influence of resolution on uncertainty evolution
Beyond the comparison of the reference flow spectra for different resolutions provided
in § 3, we here show the effects of temporal and spatial resolution on the evolution
of uncertainty. Figure 21(a) shows the evolution of 〈EΔ〉 and 〈ΓΔ〉 for three different
resolutions. Each realisation starts from a different precursor simulation (at a different
resolution), but the evolutions of 〈EΔ〉 and 〈ΓΔ〉 follow the same trend for all three
resolutions. Importantly, the growth rate in regime (III) is the same for all three resolutions.
Figure 21(b) shows the evolution of 〈EΔ〉 and 〈ΓΔ〉 for four different values of δt , with
a resolution of (128n)2 modes. Each realisation is initialised from the same precursor
simulation, and the evolutions of 〈EΔ〉 and 〈ΓΔ〉 match very closely for all values of δt
at short times. At late times (into regime (IV)), small discrepancies appear between the
different time steps. This is expected for a chaotic flow. In the inset of figure 21(b), we show
the evolution of 〈EΔ〉 − 〈EΔ〉δt=10−4 , where 〈EΔ〉δt=10−4 is the uncertainty calculated with
δt = 10−4; for all three values of δt ∈ [2 × 10−4, 6 × 10−4], the evolution of this measure
closely follows the evolution of uncertainty in the flow.
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Figure 22. (a) The evolution of 〈EΔ〉/E (tot)
avg and 〈ΓΔ〉/Wi2 for a range of ε. (b) The evolution of ratios

〈RΔ〉/〈ΓΔ〉 and 〈PDΔ〉/〈ΓΔ〉. All other parameters match the reference configuration (Re = 10−2, β = 1/2,
κ = 2.5 × 10−5, n = 4, Wi = 2).

Appendix B. The effect of sPTT nonlinearity ε

The sPTT model exhibits shear-thinning behaviour, and the extent of this shear
thinning increases with increasing nonlinearity ε. The maximum extensional velocity
is also influenced by the nonlinearity, scaling inversely with ε. To explore the
influence of this nonlinearity on the uncertainty dynamics, we run simulations
for ε ∈ [0, 10−4, 10−3, 10−2, 10−1], with all other parameters matching the reference
configuration. For ε= 10−1 the flow remains laminar, and the mean kinetic energy is larger
than for ε= 0 by an order of magnitude. Figure 22(a) shows the evolution of 〈EΔ〉/E (tot)

avg

and 〈ΓΔ〉/Wi2 for ε ∈ [0, 10−4, 10−3, 10−2]. A similar chaotic flow is observed for all ε in
this range, with an exponential growth rate in regime (III) approximately independent of
ε. The saturation values of 〈ΓΔ〉 and 〈EΔ〉 in regime (IV) are changed to a small extent
by the nonlinearity, with larger ε slightly reducing these maximum values; increasing
nonlinearity reduces the maximum decorrelation achievable. We also observe some
differences in the early-time evolution of uncertainty (shown in the inset). For larger
ε, the decrease in uncertainty in regime (II) is more pronounced, and occurs across all
length scales in both the flow and polymer deformation fields (spectra calculated but not
shown here for brevity). Figure 22(b) shows the evolution of 〈RΔ〉/〈ΓΔ〉 and 〈PDΔ〉/〈ΓΔ〉.
For ε= 0, 〈RΔ〉/〈ΓΔ〉 = 1 by definition. In all cases simulated, 〈RΔ〉 remains positive.
With increasing nonlinearity, this ratio increases, and develops some temporal variation,
although this temporal variation remains small. For ε= 10−2, 〈RΔ〉/〈ΓΔ〉 ≈ 8. During
the exponential growth regime (III), the ratio 〈PDΔ〉/〈ΓΔ〉 fluctuates, but remains in the
range [0.7, 0.9] throughout. For all four values of ε, there is a decrease in 〈PDΔ〉/〈ΓΔ〉 as
regime (IV) is approached, and the final value of this ratio is larger (approximately 0.3) for
ε= 10−2 than for ε� 10−3 (approximately 0.15). We note that the ratio of 〈RΔ〉/〈PDΔ〉
increases with increasing ε, suggesting that for a given configuration (Re, Wi, β, κ , n),
increasing nonlinearity reduces the relative influence of polymeric diffusivity on the
evolution of uncertainty, although we add that this comment relates only to the sPTT model
used here, and we do not make any inferences about other nonlinear constitutive models
(e.g. FENE-P). This observation suggests that for the sPTT model, increasing nonlinearity
ε may permit a larger value of polymeric diffusivity to be used without unduly influencing
the chaotic dynamics of the flow. Although not shown, we note that 〈PΔ〉/〈DΔ〉 − 1 is
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Figure 23. Snapshots of the conformation tensor trace field for ε ∈ [0, 10−4, 10−3, 10−2]. All other
parameters match the reference configuration (Re = 10−2, β = 1/2, κ = 2.5 × 10−5, n = 4, Wi = 2).

dependent on ε. For larger ε, the magnitude of the variation of 〈PΔ〉/〈DΔ〉 − 1 in regimes
(I) and (II) (shown in the inset of figure 4b for ε= 0) increases, and the decrease in 〈EΔ〉
observed during regime (II) is more pronounced.

Figure 23 shows snapshots of the conformation tensor field for a range of ε. For smaller ε
we see more large-scale structures spanning the domain and breaking the cellular structure
of the flow. For ε= 10−2, the cellular structure of the flow is much stronger. This is
consistent with the larger value of 〈EΔ〉/E (tot)

avg obtained for smaller ε in the saturation
of uncertainty regime (IV).

Appendix C. An evolution equation for ΠΔ

As noted in § 2, an alternative measure of the uncertainty in the polymer deformation can
be given by the sum of the squares of the components of �cij: ΠΔ =�cij�cij. In two
dimensions, this may be written ΠΔ = ΓΔ − 2 det(�cij). HereΠΔ is frame-invariant, and
ΠΔ ≥ 0 by construction. An evolution equation for ΠΔ may be derived as

∂ΠΔ

∂t
+ u(1)k

∂ΠΔ

∂xk
+�uk

∂Π

∂xk
+ 2�cij�uk

∂c(1)ij

∂xk
− 2�cijS

(1)
ik �ckj − 2�cij�Sikc(1)kj

− 2�cij�Sik�ckj − 2�cijS
(1)
jk �cki − 2�cij�Sjkc(1)ki − 2�cij�Sjk�cki

− 2ΠΔ
Wi

(1 − dε)+ 2
Wi
ε (�ckk)

2 − 2ε
Wi

(
�cijc

(1)
ij �ckk +ΠΔc(1)kk +ΠΔ�ckk

)
× κ

∂2ΠΔ

∂xk∂xk
− 2κ

∂�cij

∂xk

∂�cij

∂xk
. (C1)

When we take an average over a spatially periodic domain, we obtain

d 〈ΠΔ〉
dt

=
〈
−2�cij�uk

∂c(1)ij

∂xk

〉
+

〈
2�cijS

(1)
ik �ckj + 2�cij�Sikc(1)kj + 2�cij�Sik�ckj

〉

+
〈
2�cijS

(1)
jk �cki + 2�cij�Sjkc(1)ki + 2�cij�Sjk�cki

〉
−

〈
2ΠΔ
Wi

(1 − dε)+ 2
Wi
ε (�ckk)

2 − 2ε
Wi

(
�cijc

(1)
ij �ckk +ΠΔc(1)kk +ΠΔ�ckk

)〉

−
〈
2κ
∂�cij

∂xk

∂�cij

∂xk

〉
, (C2)

and note the similarities in construction of the advection term (first term on right-hand
side), relaxation term (penultimate term) and diffusive term (final term) to the equivalent
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terms in (2.15). We note that an evolution equation for 〈det(�cij)〉 may be obtained by
subtracting (C2) from (2.15) and dividing by two.

Appendix D. Environmental impact of simulations
Numerical simulations of the Navier–Stokes equations are computationally intensive and
have an associated carbon footprint. In our field this is rarely discussed or reported, but
in the interests of sustainable research, a greater awareness of the environmental cost of
simulations is essential. To this end, here we summarise the carbon footprint of simulations
used in this study, with calculations performed using the Green Algorithms calculator
(Lannelongue, Grealey & Inouye 2021). All simulations were run on the Computational
Shared Facility at the University of Manchester. For configurations with n = 4 (at a
resolution of (128n)2 modes), a set of simulations (precursor and 10 runs to obtain
ensemble averages) required approximately 48 hours on 64 cores of an AMD EPYC Genoa
9634 CPU, with a carbon footprint of approximately 15.6 kg CO2e. Larger simulations
were run on up to 168 cores, with the longest run time of 360 hours, and a carbon footprint
of approximately 180.4 kg CO2e. A small number of large simulations were run on Intel
Xeon Gold 6130 CPUs, using up to 1024 cores, with a maximum run time of 120 hours, and
the largest simulation having emissions of 454.7 kg CO2e. The combined carbon footprint
of all simulations used in this work was approximately 9.1 × 103 kg CO2e. This estimate
does not include the cost of post-processing and data analysis.
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